summaryrefslogtreecommitdiff
path: root/vendor/ring/crypto/poly1305/poly1305.c
blob: 67595362f81b6898644a23cbc7ae6382ed027cfe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/* Copyright (c) 2014, Google Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */

// This implementation of poly1305 is by Andrew Moon
// (https://github.com/floodyberry/poly1305-donna) and released as public
// domain.

#include <ring-core/base.h>

#include "../internal.h"
#include "ring-core/check.h"

#if defined(__GNUC__) || defined(__clang__)
#pragma GCC diagnostic ignored "-Wsign-conversion"
#pragma GCC diagnostic ignored "-Wconversion"
#endif

static uint64_t mul32x32_64(uint32_t a, uint32_t b) { return (uint64_t)a * b; }

// Keep in sync with `poly1305_state_st` in ffi_fallback.rs.
struct poly1305_state_st {
  alignas(64) uint32_t r0;
  uint32_t r1, r2, r3, r4;
  uint32_t s1, s2, s3, s4;
  uint32_t h0, h1, h2, h3, h4;
  uint8_t key[16];
};

// poly1305_blocks updates |state| given some amount of input data. This
// function may only be called with a |len| that is not a multiple of 16 at the
// end of the data. Otherwise the input must be buffered into 16 byte blocks.
static void poly1305_update(struct poly1305_state_st *state, const uint8_t *in,
                            size_t len) {
  debug_assert_nonsecret((uintptr_t)state % 64 == 0);

  uint32_t t0, t1, t2, t3;
  uint64_t t[5];
  uint32_t b;
  uint64_t c;
  size_t j;
  uint8_t mp[16];

  if (len < 16) {
    goto poly1305_donna_atmost15bytes;
  }

poly1305_donna_16bytes:
  t0 = CRYPTO_load_u32_le(in);
  t1 = CRYPTO_load_u32_le(in + 4);
  t2 = CRYPTO_load_u32_le(in + 8);
  t3 = CRYPTO_load_u32_le(in + 12);

  in += 16;
  len -= 16;

  state->h0 += t0 & 0x3ffffff;
  state->h1 += ((((uint64_t)t1 << 32) | t0) >> 26) & 0x3ffffff;
  state->h2 += ((((uint64_t)t2 << 32) | t1) >> 20) & 0x3ffffff;
  state->h3 += ((((uint64_t)t3 << 32) | t2) >> 14) & 0x3ffffff;
  state->h4 += (t3 >> 8) | (1 << 24);

poly1305_donna_mul:
  t[0] = mul32x32_64(state->h0, state->r0) + mul32x32_64(state->h1, state->s4) +
         mul32x32_64(state->h2, state->s3) + mul32x32_64(state->h3, state->s2) +
         mul32x32_64(state->h4, state->s1);
  t[1] = mul32x32_64(state->h0, state->r1) + mul32x32_64(state->h1, state->r0) +
         mul32x32_64(state->h2, state->s4) + mul32x32_64(state->h3, state->s3) +
         mul32x32_64(state->h4, state->s2);
  t[2] = mul32x32_64(state->h0, state->r2) + mul32x32_64(state->h1, state->r1) +
         mul32x32_64(state->h2, state->r0) + mul32x32_64(state->h3, state->s4) +
         mul32x32_64(state->h4, state->s3);
  t[3] = mul32x32_64(state->h0, state->r3) + mul32x32_64(state->h1, state->r2) +
         mul32x32_64(state->h2, state->r1) + mul32x32_64(state->h3, state->r0) +
         mul32x32_64(state->h4, state->s4);
  t[4] = mul32x32_64(state->h0, state->r4) + mul32x32_64(state->h1, state->r3) +
         mul32x32_64(state->h2, state->r2) + mul32x32_64(state->h3, state->r1) +
         mul32x32_64(state->h4, state->r0);

  state->h0 = (uint32_t)t[0] & 0x3ffffff;
  c = (t[0] >> 26);
  t[1] += c;
  state->h1 = (uint32_t)t[1] & 0x3ffffff;
  b = (uint32_t)(t[1] >> 26);
  t[2] += b;
  state->h2 = (uint32_t)t[2] & 0x3ffffff;
  b = (uint32_t)(t[2] >> 26);
  t[3] += b;
  state->h3 = (uint32_t)t[3] & 0x3ffffff;
  b = (uint32_t)(t[3] >> 26);
  t[4] += b;
  state->h4 = (uint32_t)t[4] & 0x3ffffff;
  b = (uint32_t)(t[4] >> 26);
  state->h0 += b * 5;

  if (len >= 16) {
    goto poly1305_donna_16bytes;
  }

// final bytes
poly1305_donna_atmost15bytes:
  if (!len) {
    return;
  }

  for (j = 0; j < len; j++) {
    mp[j] = in[j];
  }
  mp[j++] = 1;
  for (; j < 16; j++) {
    mp[j] = 0;
  }
  len = 0;

  t0 = CRYPTO_load_u32_le(mp + 0);
  t1 = CRYPTO_load_u32_le(mp + 4);
  t2 = CRYPTO_load_u32_le(mp + 8);
  t3 = CRYPTO_load_u32_le(mp + 12);

  state->h0 += t0 & 0x3ffffff;
  state->h1 += ((((uint64_t)t1 << 32) | t0) >> 26) & 0x3ffffff;
  state->h2 += ((((uint64_t)t2 << 32) | t1) >> 20) & 0x3ffffff;
  state->h3 += ((((uint64_t)t3 << 32) | t2) >> 14) & 0x3ffffff;
  state->h4 += (t3 >> 8);

  goto poly1305_donna_mul;
}

void CRYPTO_poly1305_init(struct poly1305_state_st *state, const uint8_t key[32]) {
  debug_assert_nonsecret((uintptr_t)state % 64 == 0);

  uint32_t t0, t1, t2, t3;

  t0 = CRYPTO_load_u32_le(key + 0);
  t1 = CRYPTO_load_u32_le(key + 4);
  t2 = CRYPTO_load_u32_le(key + 8);
  t3 = CRYPTO_load_u32_le(key + 12);

  // precompute multipliers
  state->r0 = t0 & 0x3ffffff;
  t0 >>= 26;
  t0 |= t1 << 6;
  state->r1 = t0 & 0x3ffff03;
  t1 >>= 20;
  t1 |= t2 << 12;
  state->r2 = t1 & 0x3ffc0ff;
  t2 >>= 14;
  t2 |= t3 << 18;
  state->r3 = t2 & 0x3f03fff;
  t3 >>= 8;
  state->r4 = t3 & 0x00fffff;

  state->s1 = state->r1 * 5;
  state->s2 = state->r2 * 5;
  state->s3 = state->r3 * 5;
  state->s4 = state->r4 * 5;

  // init state
  state->h0 = 0;
  state->h1 = 0;
  state->h2 = 0;
  state->h3 = 0;
  state->h4 = 0;

  OPENSSL_memcpy(state->key, key + 16, sizeof(state->key));
}

void CRYPTO_poly1305_update(struct poly1305_state_st *state, const uint8_t *in,
                            size_t in_len) {
  // Work around a C language bug. See https://crbug.com/1019588.
  if (in_len == 0) {
    return;
  }

  poly1305_update(state, in, in_len);
}

void CRYPTO_poly1305_finish(struct poly1305_state_st *state, uint8_t mac[16]) {
  uint32_t g0, g1, g2, g3, g4;
  uint32_t b, nb;

  b = state->h0 >> 26;
  state->h0 = state->h0 & 0x3ffffff;
  state->h1 += b;
  b = state->h1 >> 26;
  state->h1 = state->h1 & 0x3ffffff;
  state->h2 += b;
  b = state->h2 >> 26;
  state->h2 = state->h2 & 0x3ffffff;
  state->h3 += b;
  b = state->h3 >> 26;
  state->h3 = state->h3 & 0x3ffffff;
  state->h4 += b;
  b = state->h4 >> 26;
  state->h4 = state->h4 & 0x3ffffff;
  state->h0 += b * 5;

  g0 = state->h0 + 5;
  b = g0 >> 26;
  g0 &= 0x3ffffff;
  g1 = state->h1 + b;
  b = g1 >> 26;
  g1 &= 0x3ffffff;
  g2 = state->h2 + b;
  b = g2 >> 26;
  g2 &= 0x3ffffff;
  g3 = state->h3 + b;
  b = g3 >> 26;
  g3 &= 0x3ffffff;
  g4 = state->h4 + b - (1 << 26);

  b = (g4 >> 31) - 1;
  nb = ~b;
  state->h0 = (state->h0 & nb) | (g0 & b);
  state->h1 = (state->h1 & nb) | (g1 & b);
  state->h2 = (state->h2 & nb) | (g2 & b);
  state->h3 = (state->h3 & nb) | (g3 & b);
  state->h4 = (state->h4 & nb) | (g4 & b);

  uint64_t f0 = ((state->h0) | (state->h1 << 26)) +
                (uint64_t)CRYPTO_load_u32_le(&state->key[0]);
  uint64_t f1 = ((state->h1 >> 6) | (state->h2 << 20)) +
                (uint64_t)CRYPTO_load_u32_le(&state->key[4]);
  uint64_t f2 = ((state->h2 >> 12) | (state->h3 << 14)) +
                (uint64_t)CRYPTO_load_u32_le(&state->key[8]);
  uint64_t f3 = ((state->h3 >> 18) | (state->h4 << 8)) +
                (uint64_t)CRYPTO_load_u32_le(&state->key[12]);

  CRYPTO_store_u32_le(&mac[0], (uint32_t)f0);
  f1 += (f0 >> 32);
  CRYPTO_store_u32_le(&mac[4], (uint32_t)f1);
  f2 += (f1 >> 32);
  CRYPTO_store_u32_le(&mac[8], (uint32_t)f2);
  f3 += (f2 >> 32);
  CRYPTO_store_u32_le(&mac[12], (uint32_t)f3);
}