1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
|
use std::{
hash::Hash,
iter::{from_fn, FromIterator},
};
use indexmap::IndexSet;
use crate::{
visit::{IntoNeighborsDirected, NodeCount},
Direction::Outgoing,
};
/// Returns an iterator that produces all simple paths from `from` node to `to`, which contains at least `min_intermediate_nodes` nodes
/// and at most `max_intermediate_nodes`, if given, or limited by the graph's order otherwise. The simple path is a path without repetitions.
///
/// This algorithm is adapted from <https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.simple_paths.all_simple_paths.html>.
///
/// # Example
/// ```
/// use petgraph::{algo, prelude::*};
///
/// let mut graph = DiGraph::<&str, i32>::new();
///
/// let a = graph.add_node("a");
/// let b = graph.add_node("b");
/// let c = graph.add_node("c");
/// let d = graph.add_node("d");
///
/// graph.extend_with_edges(&[(a, b, 1), (b, c, 1), (c, d, 1), (a, b, 1), (b, d, 1)]);
///
/// let paths = algo::all_simple_paths::<Vec<_>, _>(&graph, a, d, 0, None)
/// .collect::<Vec<_>>();
///
/// assert_eq!(paths.len(), 4);
///
///
/// // Take only 2 paths.
/// let paths = algo::all_simple_paths::<Vec<_>, _>(&graph, a, d, 0, None)
/// .take(2)
/// .collect::<Vec<_>>();
///
/// assert_eq!(paths.len(), 2);
///
/// ```
///
/// # Note
///
/// The number of simple paths between a given pair of vertices almost always grows exponentially,
/// reaching `O(V!)` on a dense graphs at `V` vertices.
///
/// So if you have a large enough graph, be prepared to wait for the results for years.
/// Or consider extracting only part of the simple paths using the adapter [`Iterator::take`].
pub fn all_simple_paths<TargetColl, G>(
graph: G,
from: G::NodeId,
to: G::NodeId,
min_intermediate_nodes: usize,
max_intermediate_nodes: Option<usize>,
) -> impl Iterator<Item = TargetColl>
where
G: NodeCount,
G: IntoNeighborsDirected,
G::NodeId: Eq + Hash,
TargetColl: FromIterator<G::NodeId>,
{
// how many nodes are allowed in simple path up to target node
// it is min/max allowed path length minus one, because it is more appropriate when implementing lookahead
// than constantly add 1 to length of current path
let max_length = if let Some(l) = max_intermediate_nodes {
l + 1
} else {
graph.node_count() - 1
};
let min_length = min_intermediate_nodes + 1;
// list of visited nodes
let mut visited: IndexSet<G::NodeId> = IndexSet::from_iter(Some(from));
// list of childs of currently exploring path nodes,
// last elem is list of childs of last visited node
let mut stack = vec![graph.neighbors_directed(from, Outgoing)];
from_fn(move || {
while let Some(children) = stack.last_mut() {
if let Some(child) = children.next() {
if visited.len() < max_length {
if child == to {
if visited.len() >= min_length {
let path = visited
.iter()
.cloned()
.chain(Some(to))
.collect::<TargetColl>();
return Some(path);
}
} else if !visited.contains(&child) {
visited.insert(child);
stack.push(graph.neighbors_directed(child, Outgoing));
}
} else {
if (child == to || children.any(|v| v == to)) && visited.len() >= min_length {
let path = visited
.iter()
.cloned()
.chain(Some(to))
.collect::<TargetColl>();
return Some(path);
}
stack.pop();
visited.pop();
}
} else {
stack.pop();
visited.pop();
}
}
None
})
}
#[cfg(test)]
mod test {
use std::{collections::HashSet, iter::FromIterator};
use itertools::assert_equal;
use crate::{dot::Dot, prelude::DiGraph};
use super::all_simple_paths;
#[test]
fn test_all_simple_paths() {
let graph = DiGraph::<i32, i32, _>::from_edges(&[
(0, 1),
(0, 2),
(0, 3),
(1, 2),
(1, 3),
(2, 3),
(2, 4),
(3, 2),
(3, 4),
(4, 2),
(4, 5),
(5, 2),
(5, 3),
]);
let expexted_simple_paths_0_to_5 = vec![
vec![0usize, 1, 2, 3, 4, 5],
vec![0, 1, 2, 4, 5],
vec![0, 1, 3, 2, 4, 5],
vec![0, 1, 3, 4, 5],
vec![0, 2, 3, 4, 5],
vec![0, 2, 4, 5],
vec![0, 3, 2, 4, 5],
vec![0, 3, 4, 5],
];
println!("{}", Dot::new(&graph));
let actual_simple_paths_0_to_5: HashSet<Vec<_>> =
all_simple_paths(&graph, 0u32.into(), 5u32.into(), 0, None)
.map(|v: Vec<_>| v.into_iter().map(|i| i.index()).collect())
.collect();
assert_eq!(actual_simple_paths_0_to_5.len(), 8);
assert_eq!(
HashSet::from_iter(expexted_simple_paths_0_to_5),
actual_simple_paths_0_to_5
);
}
#[test]
fn test_one_simple_path() {
let graph = DiGraph::<i32, i32, _>::from_edges(&[(0, 1), (2, 1)]);
let expexted_simple_paths_0_to_1 = &[vec![0usize, 1]];
println!("{}", Dot::new(&graph));
let actual_simple_paths_0_to_1: Vec<Vec<_>> =
all_simple_paths(&graph, 0u32.into(), 1u32.into(), 0, None)
.map(|v: Vec<_>| v.into_iter().map(|i| i.index()).collect())
.collect();
assert_eq!(actual_simple_paths_0_to_1.len(), 1);
assert_equal(expexted_simple_paths_0_to_1, &actual_simple_paths_0_to_1);
}
#[test]
fn test_no_simple_paths() {
let graph = DiGraph::<i32, i32, _>::from_edges(&[(0, 1), (2, 1)]);
println!("{}", Dot::new(&graph));
let actual_simple_paths_0_to_2: Vec<Vec<_>> =
all_simple_paths(&graph, 0u32.into(), 2u32.into(), 0, None)
.map(|v: Vec<_>| v.into_iter().map(|i| i.index()).collect())
.collect();
assert_eq!(actual_simple_paths_0_to_2.len(), 0);
}
}
|