diff options
| author | mo khan <mo@mokhan.ca> | 2025-07-15 16:37:08 -0600 |
|---|---|---|
| committer | mo khan <mo@mokhan.ca> | 2025-07-17 16:30:22 -0600 |
| commit | 45df4d0d9b577fecee798d672695fe24ff57fb1b (patch) | |
| tree | 1b99bf645035b58e0d6db08c7a83521f41f7a75b /vendor/itertools/src | |
| parent | f94f79608393d4ab127db63cc41668445ef6b243 (diff) | |
feat: migrate from Cedar to SpiceDB authorization system
This is a major architectural change that replaces the Cedar policy-based
authorization system with SpiceDB's relation-based authorization.
Key changes:
- Migrate from Rust to Go implementation
- Replace Cedar policies with SpiceDB schema and relationships
- Switch from envoy `ext_authz` with Cedar to SpiceDB permission checks
- Update build system and dependencies for Go ecosystem
- Maintain Envoy integration for external authorization
This change enables more flexible permission modeling through SpiceDB's
Google Zanzibar inspired relation-based system, supporting complex
hierarchical permissions that were difficult to express in Cedar.
Breaking change: Existing Cedar policies and Rust-based configuration
will no longer work and need to be migrated to SpiceDB schema.
Diffstat (limited to 'vendor/itertools/src')
50 files changed, 0 insertions, 14505 deletions
diff --git a/vendor/itertools/src/adaptors/coalesce.rs b/vendor/itertools/src/adaptors/coalesce.rs deleted file mode 100644 index ab1ab525..00000000 --- a/vendor/itertools/src/adaptors/coalesce.rs +++ /dev/null @@ -1,286 +0,0 @@ -use std::fmt; -use std::iter::FusedIterator; - -use crate::size_hint; - -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct CoalesceBy<I, F, C> -where - I: Iterator, - C: CountItem<I::Item>, -{ - iter: I, - /// `last` is `None` while no item have been taken out of `iter` (at definition). - /// Then `last` will be `Some(Some(item))` until `iter` is exhausted, - /// in which case `last` will be `Some(None)`. - last: Option<Option<C::CItem>>, - f: F, -} - -impl<I, F, C> Clone for CoalesceBy<I, F, C> -where - I: Clone + Iterator, - F: Clone, - C: CountItem<I::Item>, - C::CItem: Clone, -{ - clone_fields!(last, iter, f); -} - -impl<I, F, C> fmt::Debug for CoalesceBy<I, F, C> -where - I: Iterator + fmt::Debug, - C: CountItem<I::Item>, - C::CItem: fmt::Debug, -{ - debug_fmt_fields!(CoalesceBy, iter, last); -} - -pub trait CoalescePredicate<Item, T> { - fn coalesce_pair(&mut self, t: T, item: Item) -> Result<T, (T, T)>; -} - -impl<I, F, C> Iterator for CoalesceBy<I, F, C> -where - I: Iterator, - F: CoalescePredicate<I::Item, C::CItem>, - C: CountItem<I::Item>, -{ - type Item = C::CItem; - - fn next(&mut self) -> Option<Self::Item> { - let Self { iter, last, f } = self; - // this fuses the iterator - let init = match last { - Some(elt) => elt.take(), - None => { - *last = Some(None); - iter.next().map(C::new) - } - }?; - - Some( - iter.try_fold(init, |accum, next| match f.coalesce_pair(accum, next) { - Ok(joined) => Ok(joined), - Err((last_, next_)) => { - *last = Some(Some(next_)); - Err(last_) - } - }) - .unwrap_or_else(|x| x), - ) - } - - fn size_hint(&self) -> (usize, Option<usize>) { - let (low, hi) = size_hint::add_scalar( - self.iter.size_hint(), - matches!(self.last, Some(Some(_))) as usize, - ); - ((low > 0) as usize, hi) - } - - fn fold<Acc, FnAcc>(self, acc: Acc, mut fn_acc: FnAcc) -> Acc - where - FnAcc: FnMut(Acc, Self::Item) -> Acc, - { - let Self { - mut iter, - last, - mut f, - } = self; - if let Some(last) = last.unwrap_or_else(|| iter.next().map(C::new)) { - let (last, acc) = iter.fold((last, acc), |(last, acc), elt| { - match f.coalesce_pair(last, elt) { - Ok(joined) => (joined, acc), - Err((last_, next_)) => (next_, fn_acc(acc, last_)), - } - }); - fn_acc(acc, last) - } else { - acc - } - } -} - -impl<I, F, C> FusedIterator for CoalesceBy<I, F, C> -where - I: Iterator, - F: CoalescePredicate<I::Item, C::CItem>, - C: CountItem<I::Item>, -{ -} - -pub struct NoCount; - -pub struct WithCount; - -pub trait CountItem<T> { - type CItem; - fn new(t: T) -> Self::CItem; -} - -impl<T> CountItem<T> for NoCount { - type CItem = T; - #[inline(always)] - fn new(t: T) -> T { - t - } -} - -impl<T> CountItem<T> for WithCount { - type CItem = (usize, T); - #[inline(always)] - fn new(t: T) -> (usize, T) { - (1, t) - } -} - -/// An iterator adaptor that may join together adjacent elements. -/// -/// See [`.coalesce()`](crate::Itertools::coalesce) for more information. -pub type Coalesce<I, F> = CoalesceBy<I, F, NoCount>; - -impl<F, Item, T> CoalescePredicate<Item, T> for F -where - F: FnMut(T, Item) -> Result<T, (T, T)>, -{ - fn coalesce_pair(&mut self, t: T, item: Item) -> Result<T, (T, T)> { - self(t, item) - } -} - -/// Create a new `Coalesce`. -pub fn coalesce<I, F>(iter: I, f: F) -> Coalesce<I, F> -where - I: Iterator, -{ - Coalesce { - last: None, - iter, - f, - } -} - -/// An iterator adaptor that removes repeated duplicates, determining equality using a comparison function. -/// -/// See [`.dedup_by()`](crate::Itertools::dedup_by) or [`.dedup()`](crate::Itertools::dedup) for more information. -pub type DedupBy<I, Pred> = CoalesceBy<I, DedupPred2CoalescePred<Pred>, NoCount>; - -#[derive(Clone)] -pub struct DedupPred2CoalescePred<DP>(DP); - -impl<DP> fmt::Debug for DedupPred2CoalescePred<DP> { - debug_fmt_fields!(DedupPred2CoalescePred,); -} - -pub trait DedupPredicate<T> { - // TODO replace by Fn(&T, &T)->bool once Rust supports it - fn dedup_pair(&mut self, a: &T, b: &T) -> bool; -} - -impl<DP, T> CoalescePredicate<T, T> for DedupPred2CoalescePred<DP> -where - DP: DedupPredicate<T>, -{ - fn coalesce_pair(&mut self, t: T, item: T) -> Result<T, (T, T)> { - if self.0.dedup_pair(&t, &item) { - Ok(t) - } else { - Err((t, item)) - } - } -} - -#[derive(Clone, Debug)] -pub struct DedupEq; - -impl<T: PartialEq> DedupPredicate<T> for DedupEq { - fn dedup_pair(&mut self, a: &T, b: &T) -> bool { - a == b - } -} - -impl<T, F: FnMut(&T, &T) -> bool> DedupPredicate<T> for F { - fn dedup_pair(&mut self, a: &T, b: &T) -> bool { - self(a, b) - } -} - -/// Create a new `DedupBy`. -pub fn dedup_by<I, Pred>(iter: I, dedup_pred: Pred) -> DedupBy<I, Pred> -where - I: Iterator, -{ - DedupBy { - last: None, - iter, - f: DedupPred2CoalescePred(dedup_pred), - } -} - -/// An iterator adaptor that removes repeated duplicates. -/// -/// See [`.dedup()`](crate::Itertools::dedup) for more information. -pub type Dedup<I> = DedupBy<I, DedupEq>; - -/// Create a new `Dedup`. -pub fn dedup<I>(iter: I) -> Dedup<I> -where - I: Iterator, -{ - dedup_by(iter, DedupEq) -} - -/// An iterator adaptor that removes repeated duplicates, while keeping a count of how many -/// repeated elements were present. This will determine equality using a comparison function. -/// -/// See [`.dedup_by_with_count()`](crate::Itertools::dedup_by_with_count) or -/// [`.dedup_with_count()`](crate::Itertools::dedup_with_count) for more information. -pub type DedupByWithCount<I, Pred> = - CoalesceBy<I, DedupPredWithCount2CoalescePred<Pred>, WithCount>; - -#[derive(Clone, Debug)] -pub struct DedupPredWithCount2CoalescePred<DP>(DP); - -impl<DP, T> CoalescePredicate<T, (usize, T)> for DedupPredWithCount2CoalescePred<DP> -where - DP: DedupPredicate<T>, -{ - fn coalesce_pair( - &mut self, - (c, t): (usize, T), - item: T, - ) -> Result<(usize, T), ((usize, T), (usize, T))> { - if self.0.dedup_pair(&t, &item) { - Ok((c + 1, t)) - } else { - Err(((c, t), (1, item))) - } - } -} - -/// An iterator adaptor that removes repeated duplicates, while keeping a count of how many -/// repeated elements were present. -/// -/// See [`.dedup_with_count()`](crate::Itertools::dedup_with_count) for more information. -pub type DedupWithCount<I> = DedupByWithCount<I, DedupEq>; - -/// Create a new `DedupByWithCount`. -pub fn dedup_by_with_count<I, Pred>(iter: I, dedup_pred: Pred) -> DedupByWithCount<I, Pred> -where - I: Iterator, -{ - DedupByWithCount { - last: None, - iter, - f: DedupPredWithCount2CoalescePred(dedup_pred), - } -} - -/// Create a new `DedupWithCount`. -pub fn dedup_with_count<I>(iter: I) -> DedupWithCount<I> -where - I: Iterator, -{ - dedup_by_with_count(iter, DedupEq) -} diff --git a/vendor/itertools/src/adaptors/map.rs b/vendor/itertools/src/adaptors/map.rs deleted file mode 100644 index c78b9be6..00000000 --- a/vendor/itertools/src/adaptors/map.rs +++ /dev/null @@ -1,130 +0,0 @@ -use std::iter::FromIterator; -use std::marker::PhantomData; - -#[derive(Clone, Debug)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct MapSpecialCase<I, F> { - pub(crate) iter: I, - pub(crate) f: F, -} - -pub trait MapSpecialCaseFn<T> { - type Out; - fn call(&mut self, t: T) -> Self::Out; -} - -impl<I, R> Iterator for MapSpecialCase<I, R> -where - I: Iterator, - R: MapSpecialCaseFn<I::Item>, -{ - type Item = R::Out; - - fn next(&mut self) -> Option<Self::Item> { - self.iter.next().map(|i| self.f.call(i)) - } - - fn size_hint(&self) -> (usize, Option<usize>) { - self.iter.size_hint() - } - - fn fold<Acc, Fold>(self, init: Acc, mut fold_f: Fold) -> Acc - where - Fold: FnMut(Acc, Self::Item) -> Acc, - { - let mut f = self.f; - self.iter.fold(init, move |acc, v| fold_f(acc, f.call(v))) - } - - fn collect<C>(self) -> C - where - C: FromIterator<Self::Item>, - { - let mut f = self.f; - self.iter.map(move |v| f.call(v)).collect() - } -} - -impl<I, R> DoubleEndedIterator for MapSpecialCase<I, R> -where - I: DoubleEndedIterator, - R: MapSpecialCaseFn<I::Item>, -{ - fn next_back(&mut self) -> Option<Self::Item> { - self.iter.next_back().map(|i| self.f.call(i)) - } -} - -impl<I, R> ExactSizeIterator for MapSpecialCase<I, R> -where - I: ExactSizeIterator, - R: MapSpecialCaseFn<I::Item>, -{ -} - -/// An iterator adapter to apply a transformation within a nested `Result::Ok`. -/// -/// See [`.map_ok()`](crate::Itertools::map_ok) for more information. -pub type MapOk<I, F> = MapSpecialCase<I, MapSpecialCaseFnOk<F>>; - -impl<F, T, U, E> MapSpecialCaseFn<Result<T, E>> for MapSpecialCaseFnOk<F> -where - F: FnMut(T) -> U, -{ - type Out = Result<U, E>; - fn call(&mut self, t: Result<T, E>) -> Self::Out { - t.map(|v| self.0(v)) - } -} - -#[derive(Clone)] -pub struct MapSpecialCaseFnOk<F>(F); - -impl<F> std::fmt::Debug for MapSpecialCaseFnOk<F> { - debug_fmt_fields!(MapSpecialCaseFnOk,); -} - -/// Create a new `MapOk` iterator. -pub fn map_ok<I, F, T, U, E>(iter: I, f: F) -> MapOk<I, F> -where - I: Iterator<Item = Result<T, E>>, - F: FnMut(T) -> U, -{ - MapSpecialCase { - iter, - f: MapSpecialCaseFnOk(f), - } -} - -/// An iterator adapter to apply `Into` conversion to each element. -/// -/// See [`.map_into()`](crate::Itertools::map_into) for more information. -pub type MapInto<I, R> = MapSpecialCase<I, MapSpecialCaseFnInto<R>>; - -impl<T: Into<U>, U> MapSpecialCaseFn<T> for MapSpecialCaseFnInto<U> { - type Out = U; - fn call(&mut self, t: T) -> Self::Out { - t.into() - } -} - -pub struct MapSpecialCaseFnInto<U>(PhantomData<U>); - -impl<U> std::fmt::Debug for MapSpecialCaseFnInto<U> { - debug_fmt_fields!(MapSpecialCaseFnInto, 0); -} - -impl<U> Clone for MapSpecialCaseFnInto<U> { - #[inline] - fn clone(&self) -> Self { - Self(PhantomData) - } -} - -/// Create a new [`MapInto`] iterator. -pub fn map_into<I, R>(iter: I) -> MapInto<I, R> { - MapSpecialCase { - iter, - f: MapSpecialCaseFnInto(PhantomData), - } -} diff --git a/vendor/itertools/src/adaptors/mod.rs b/vendor/itertools/src/adaptors/mod.rs deleted file mode 100644 index 77192f26..00000000 --- a/vendor/itertools/src/adaptors/mod.rs +++ /dev/null @@ -1,1265 +0,0 @@ -//! Licensed under the Apache License, Version 2.0 -//! <https://www.apache.org/licenses/LICENSE-2.0> or the MIT license -//! <https://opensource.org/licenses/MIT>, at your -//! option. This file may not be copied, modified, or distributed -//! except according to those terms. - -mod coalesce; -pub(crate) mod map; -mod multi_product; -pub use self::coalesce::*; -pub use self::map::{map_into, map_ok, MapInto, MapOk}; -#[cfg(feature = "use_alloc")] -pub use self::multi_product::*; - -use crate::size_hint::{self, SizeHint}; -use std::fmt; -use std::iter::{Enumerate, FromIterator, Fuse, FusedIterator}; -use std::marker::PhantomData; - -/// An iterator adaptor that alternates elements from two iterators until both -/// run out. -/// -/// This iterator is *fused*. -/// -/// See [`.interleave()`](crate::Itertools::interleave) for more information. -#[derive(Clone, Debug)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct Interleave<I, J> { - i: Fuse<I>, - j: Fuse<J>, - next_coming_from_j: bool, -} - -/// Create an iterator that interleaves elements in `i` and `j`. -/// -/// [`IntoIterator`] enabled version of [`Itertools::interleave`](crate::Itertools::interleave). -pub fn interleave<I, J>( - i: I, - j: J, -) -> Interleave<<I as IntoIterator>::IntoIter, <J as IntoIterator>::IntoIter> -where - I: IntoIterator, - J: IntoIterator<Item = I::Item>, -{ - Interleave { - i: i.into_iter().fuse(), - j: j.into_iter().fuse(), - next_coming_from_j: false, - } -} - -impl<I, J> Iterator for Interleave<I, J> -where - I: Iterator, - J: Iterator<Item = I::Item>, -{ - type Item = I::Item; - #[inline] - fn next(&mut self) -> Option<Self::Item> { - self.next_coming_from_j = !self.next_coming_from_j; - if self.next_coming_from_j { - match self.i.next() { - None => self.j.next(), - r => r, - } - } else { - match self.j.next() { - None => self.i.next(), - r => r, - } - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - size_hint::add(self.i.size_hint(), self.j.size_hint()) - } - - fn fold<B, F>(self, mut init: B, mut f: F) -> B - where - F: FnMut(B, Self::Item) -> B, - { - let Self { - mut i, - mut j, - next_coming_from_j, - } = self; - if next_coming_from_j { - match j.next() { - Some(y) => init = f(init, y), - None => return i.fold(init, f), - } - } - let res = i.try_fold(init, |mut acc, x| { - acc = f(acc, x); - match j.next() { - Some(y) => Ok(f(acc, y)), - None => Err(acc), - } - }); - match res { - Ok(acc) => j.fold(acc, f), - Err(acc) => i.fold(acc, f), - } - } -} - -impl<I, J> FusedIterator for Interleave<I, J> -where - I: Iterator, - J: Iterator<Item = I::Item>, -{ -} - -/// An iterator adaptor that alternates elements from the two iterators until -/// one of them runs out. -/// -/// This iterator is *fused*. -/// -/// See [`.interleave_shortest()`](crate::Itertools::interleave_shortest) -/// for more information. -#[derive(Clone, Debug)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct InterleaveShortest<I, J> -where - I: Iterator, - J: Iterator<Item = I::Item>, -{ - i: I, - j: J, - next_coming_from_j: bool, -} - -/// Create a new `InterleaveShortest` iterator. -pub fn interleave_shortest<I, J>(i: I, j: J) -> InterleaveShortest<I, J> -where - I: Iterator, - J: Iterator<Item = I::Item>, -{ - InterleaveShortest { - i, - j, - next_coming_from_j: false, - } -} - -impl<I, J> Iterator for InterleaveShortest<I, J> -where - I: Iterator, - J: Iterator<Item = I::Item>, -{ - type Item = I::Item; - - #[inline] - fn next(&mut self) -> Option<Self::Item> { - let e = if self.next_coming_from_j { - self.j.next() - } else { - self.i.next() - }; - if e.is_some() { - self.next_coming_from_j = !self.next_coming_from_j; - } - e - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - let (curr_hint, next_hint) = { - let i_hint = self.i.size_hint(); - let j_hint = self.j.size_hint(); - if self.next_coming_from_j { - (j_hint, i_hint) - } else { - (i_hint, j_hint) - } - }; - let (curr_lower, curr_upper) = curr_hint; - let (next_lower, next_upper) = next_hint; - let (combined_lower, combined_upper) = - size_hint::mul_scalar(size_hint::min(curr_hint, next_hint), 2); - let lower = if curr_lower > next_lower { - combined_lower + 1 - } else { - combined_lower - }; - let upper = { - let extra_elem = match (curr_upper, next_upper) { - (_, None) => false, - (None, Some(_)) => true, - (Some(curr_max), Some(next_max)) => curr_max > next_max, - }; - if extra_elem { - combined_upper.and_then(|x| x.checked_add(1)) - } else { - combined_upper - } - }; - (lower, upper) - } - - fn fold<B, F>(self, mut init: B, mut f: F) -> B - where - F: FnMut(B, Self::Item) -> B, - { - let Self { - mut i, - mut j, - next_coming_from_j, - } = self; - if next_coming_from_j { - match j.next() { - Some(y) => init = f(init, y), - None => return init, - } - } - let res = i.try_fold(init, |mut acc, x| { - acc = f(acc, x); - match j.next() { - Some(y) => Ok(f(acc, y)), - None => Err(acc), - } - }); - match res { - Ok(val) => val, - Err(val) => val, - } - } -} - -impl<I, J> FusedIterator for InterleaveShortest<I, J> -where - I: FusedIterator, - J: FusedIterator<Item = I::Item>, -{ -} - -#[derive(Clone, Debug)] -/// An iterator adaptor that allows putting back a single -/// item to the front of the iterator. -/// -/// Iterator element type is `I::Item`. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct PutBack<I> -where - I: Iterator, -{ - top: Option<I::Item>, - iter: I, -} - -/// Create an iterator where you can put back a single item -pub fn put_back<I>(iterable: I) -> PutBack<I::IntoIter> -where - I: IntoIterator, -{ - PutBack { - top: None, - iter: iterable.into_iter(), - } -} - -impl<I> PutBack<I> -where - I: Iterator, -{ - /// put back value `value` (builder method) - pub fn with_value(mut self, value: I::Item) -> Self { - self.put_back(value); - self - } - - /// Split the `PutBack` into its parts. - #[inline] - pub fn into_parts(self) -> (Option<I::Item>, I) { - let Self { top, iter } = self; - (top, iter) - } - - /// Put back a single value to the front of the iterator. - /// - /// If a value is already in the put back slot, it is returned. - #[inline] - pub fn put_back(&mut self, x: I::Item) -> Option<I::Item> { - self.top.replace(x) - } -} - -impl<I> Iterator for PutBack<I> -where - I: Iterator, -{ - type Item = I::Item; - #[inline] - fn next(&mut self) -> Option<Self::Item> { - match self.top { - None => self.iter.next(), - ref mut some => some.take(), - } - } - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - // Not ExactSizeIterator because size may be larger than usize - size_hint::add_scalar(self.iter.size_hint(), self.top.is_some() as usize) - } - - fn count(self) -> usize { - self.iter.count() + (self.top.is_some() as usize) - } - - fn last(self) -> Option<Self::Item> { - self.iter.last().or(self.top) - } - - fn nth(&mut self, n: usize) -> Option<Self::Item> { - match self.top { - None => self.iter.nth(n), - ref mut some => { - if n == 0 { - some.take() - } else { - *some = None; - self.iter.nth(n - 1) - } - } - } - } - - fn all<G>(&mut self, mut f: G) -> bool - where - G: FnMut(Self::Item) -> bool, - { - if let Some(elt) = self.top.take() { - if !f(elt) { - return false; - } - } - self.iter.all(f) - } - - fn fold<Acc, G>(mut self, init: Acc, mut f: G) -> Acc - where - G: FnMut(Acc, Self::Item) -> Acc, - { - let mut accum = init; - if let Some(elt) = self.top.take() { - accum = f(accum, elt); - } - self.iter.fold(accum, f) - } -} - -#[derive(Debug, Clone)] -/// An iterator adaptor that iterates over the cartesian product of -/// the element sets of two iterators `I` and `J`. -/// -/// Iterator element type is `(I::Item, J::Item)`. -/// -/// See [`.cartesian_product()`](crate::Itertools::cartesian_product) for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct Product<I, J> -where - I: Iterator, -{ - a: I, - /// `a_cur` is `None` while no item have been taken out of `a` (at definition). - /// Then `a_cur` will be `Some(Some(item))` until `a` is exhausted, - /// in which case `a_cur` will be `Some(None)`. - a_cur: Option<Option<I::Item>>, - b: J, - b_orig: J, -} - -/// Create a new cartesian product iterator -/// -/// Iterator element type is `(I::Item, J::Item)`. -pub fn cartesian_product<I, J>(i: I, j: J) -> Product<I, J> -where - I: Iterator, - J: Clone + Iterator, - I::Item: Clone, -{ - Product { - a_cur: None, - a: i, - b: j.clone(), - b_orig: j, - } -} - -impl<I, J> Iterator for Product<I, J> -where - I: Iterator, - J: Clone + Iterator, - I::Item: Clone, -{ - type Item = (I::Item, J::Item); - - fn next(&mut self) -> Option<Self::Item> { - let Self { - a, - a_cur, - b, - b_orig, - } = self; - let elt_b = match b.next() { - None => { - *b = b_orig.clone(); - match b.next() { - None => return None, - Some(x) => { - *a_cur = Some(a.next()); - x - } - } - } - Some(x) => x, - }; - a_cur - .get_or_insert_with(|| a.next()) - .as_ref() - .map(|a| (a.clone(), elt_b)) - } - - fn size_hint(&self) -> (usize, Option<usize>) { - // Not ExactSizeIterator because size may be larger than usize - // Compute a * b_orig + b for both lower and upper bound - let mut sh = size_hint::mul(self.a.size_hint(), self.b_orig.size_hint()); - if matches!(self.a_cur, Some(Some(_))) { - sh = size_hint::add(sh, self.b.size_hint()); - } - sh - } - - fn fold<Acc, G>(self, mut accum: Acc, mut f: G) -> Acc - where - G: FnMut(Acc, Self::Item) -> Acc, - { - // use a split loop to handle the loose a_cur as well as avoiding to - // clone b_orig at the end. - let Self { - mut a, - a_cur, - mut b, - b_orig, - } = self; - if let Some(mut elt_a) = a_cur.unwrap_or_else(|| a.next()) { - loop { - accum = b.fold(accum, |acc, elt| f(acc, (elt_a.clone(), elt))); - - // we can only continue iterating a if we had a first element; - if let Some(next_elt_a) = a.next() { - b = b_orig.clone(); - elt_a = next_elt_a; - } else { - break; - } - } - } - accum - } -} - -impl<I, J> FusedIterator for Product<I, J> -where - I: FusedIterator, - J: Clone + FusedIterator, - I::Item: Clone, -{ -} - -/// A “meta iterator adaptor”. Its closure receives a reference to the iterator -/// and may pick off as many elements as it likes, to produce the next iterator element. -/// -/// Iterator element type is `X` if the return type of `F` is `Option<X>`. -/// -/// See [`.batching()`](crate::Itertools::batching) for more information. -#[derive(Clone)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct Batching<I, F> { - f: F, - iter: I, -} - -impl<I, F> fmt::Debug for Batching<I, F> -where - I: fmt::Debug, -{ - debug_fmt_fields!(Batching, iter); -} - -/// Create a new Batching iterator. -pub fn batching<I, F>(iter: I, f: F) -> Batching<I, F> { - Batching { f, iter } -} - -impl<B, F, I> Iterator for Batching<I, F> -where - I: Iterator, - F: FnMut(&mut I) -> Option<B>, -{ - type Item = B; - #[inline] - fn next(&mut self) -> Option<Self::Item> { - (self.f)(&mut self.iter) - } -} - -/// An iterator adaptor that borrows from a `Clone`-able iterator -/// to only pick off elements while the predicate returns `true`. -/// -/// See [`.take_while_ref()`](crate::Itertools::take_while_ref) for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct TakeWhileRef<'a, I: 'a, F> { - iter: &'a mut I, - f: F, -} - -impl<I, F> fmt::Debug for TakeWhileRef<'_, I, F> -where - I: Iterator + fmt::Debug, -{ - debug_fmt_fields!(TakeWhileRef, iter); -} - -/// Create a new `TakeWhileRef` from a reference to clonable iterator. -pub fn take_while_ref<I, F>(iter: &mut I, f: F) -> TakeWhileRef<I, F> -where - I: Iterator + Clone, -{ - TakeWhileRef { iter, f } -} - -impl<I, F> Iterator for TakeWhileRef<'_, I, F> -where - I: Iterator + Clone, - F: FnMut(&I::Item) -> bool, -{ - type Item = I::Item; - - fn next(&mut self) -> Option<Self::Item> { - let old = self.iter.clone(); - match self.iter.next() { - None => None, - Some(elt) => { - if (self.f)(&elt) { - Some(elt) - } else { - *self.iter = old; - None - } - } - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - (0, self.iter.size_hint().1) - } -} - -/// An iterator adaptor that filters `Option<A>` iterator elements -/// and produces `A`. Stops on the first `None` encountered. -/// -/// See [`.while_some()`](crate::Itertools::while_some) for more information. -#[derive(Clone, Debug)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct WhileSome<I> { - iter: I, -} - -/// Create a new `WhileSome<I>`. -pub fn while_some<I>(iter: I) -> WhileSome<I> { - WhileSome { iter } -} - -impl<I, A> Iterator for WhileSome<I> -where - I: Iterator<Item = Option<A>>, -{ - type Item = A; - - fn next(&mut self) -> Option<Self::Item> { - match self.iter.next() { - None | Some(None) => None, - Some(elt) => elt, - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - (0, self.iter.size_hint().1) - } - - fn fold<B, F>(mut self, acc: B, mut f: F) -> B - where - Self: Sized, - F: FnMut(B, Self::Item) -> B, - { - let res = self.iter.try_fold(acc, |acc, item| match item { - Some(item) => Ok(f(acc, item)), - None => Err(acc), - }); - - match res { - Ok(val) => val, - Err(val) => val, - } - } -} - -/// An iterator to iterate through all combinations in a `Clone`-able iterator that produces tuples -/// of a specific size. -/// -/// See [`.tuple_combinations()`](crate::Itertools::tuple_combinations) for more -/// information. -#[derive(Clone, Debug)] -#[must_use = "this iterator adaptor is not lazy but does nearly nothing unless consumed"] -pub struct TupleCombinations<I, T> -where - I: Iterator, - T: HasCombination<I>, -{ - iter: T::Combination, - _mi: PhantomData<I>, -} - -pub trait HasCombination<I>: Sized { - type Combination: From<I> + Iterator<Item = Self>; -} - -/// Create a new `TupleCombinations` from a clonable iterator. -pub fn tuple_combinations<T, I>(iter: I) -> TupleCombinations<I, T> -where - I: Iterator + Clone, - I::Item: Clone, - T: HasCombination<I>, -{ - TupleCombinations { - iter: T::Combination::from(iter), - _mi: PhantomData, - } -} - -impl<I, T> Iterator for TupleCombinations<I, T> -where - I: Iterator, - T: HasCombination<I>, -{ - type Item = T; - - fn next(&mut self) -> Option<Self::Item> { - self.iter.next() - } - - fn size_hint(&self) -> SizeHint { - self.iter.size_hint() - } - - fn count(self) -> usize { - self.iter.count() - } - - fn fold<B, F>(self, init: B, f: F) -> B - where - F: FnMut(B, Self::Item) -> B, - { - self.iter.fold(init, f) - } -} - -impl<I, T> FusedIterator for TupleCombinations<I, T> -where - I: FusedIterator, - T: HasCombination<I>, -{ -} - -#[derive(Clone, Debug)] -pub struct Tuple1Combination<I> { - iter: I, -} - -impl<I> From<I> for Tuple1Combination<I> { - fn from(iter: I) -> Self { - Self { iter } - } -} - -impl<I: Iterator> Iterator for Tuple1Combination<I> { - type Item = (I::Item,); - - fn next(&mut self) -> Option<Self::Item> { - self.iter.next().map(|x| (x,)) - } - - fn size_hint(&self) -> SizeHint { - self.iter.size_hint() - } - - fn count(self) -> usize { - self.iter.count() - } - - fn fold<B, F>(self, init: B, f: F) -> B - where - F: FnMut(B, Self::Item) -> B, - { - self.iter.map(|x| (x,)).fold(init, f) - } -} - -impl<I: Iterator> HasCombination<I> for (I::Item,) { - type Combination = Tuple1Combination<I>; -} - -macro_rules! impl_tuple_combination { - ($C:ident $P:ident ; $($X:ident)*) => ( - #[derive(Clone, Debug)] - pub struct $C<I: Iterator> { - item: Option<I::Item>, - iter: I, - c: $P<I>, - } - - impl<I: Iterator + Clone> From<I> for $C<I> { - fn from(mut iter: I) -> Self { - Self { - item: iter.next(), - iter: iter.clone(), - c: iter.into(), - } - } - } - - impl<I: Iterator + Clone> From<I> for $C<Fuse<I>> { - fn from(iter: I) -> Self { - Self::from(iter.fuse()) - } - } - - impl<I, A> Iterator for $C<I> - where I: Iterator<Item = A> + Clone, - A: Clone, - { - type Item = (A, $(ignore_ident!($X, A)),*); - - fn next(&mut self) -> Option<Self::Item> { - if let Some(($($X,)*)) = self.c.next() { - let z = self.item.clone().unwrap(); - Some((z, $($X),*)) - } else { - self.item = self.iter.next(); - self.item.clone().and_then(|z| { - self.c = self.iter.clone().into(); - self.c.next().map(|($($X,)*)| (z, $($X),*)) - }) - } - } - - fn size_hint(&self) -> SizeHint { - const K: usize = 1 + count_ident!($($X)*); - let (mut n_min, mut n_max) = self.iter.size_hint(); - n_min = checked_binomial(n_min, K).unwrap_or(usize::MAX); - n_max = n_max.and_then(|n| checked_binomial(n, K)); - size_hint::add(self.c.size_hint(), (n_min, n_max)) - } - - fn count(self) -> usize { - const K: usize = 1 + count_ident!($($X)*); - let n = self.iter.count(); - checked_binomial(n, K).unwrap() + self.c.count() - } - - fn fold<B, F>(self, mut init: B, mut f: F) -> B - where - F: FnMut(B, Self::Item) -> B, - { - // We outline this closure to prevent it from unnecessarily - // capturing the type parameters `I`, `B`, and `F`. Not doing - // so ended up causing exponentially big types during MIR - // inlining when building itertools with optimizations enabled. - // - // This change causes a small improvement to compile times in - // release mode. - type CurrTuple<A> = (A, $(ignore_ident!($X, A)),*); - type PrevTuple<A> = ($(ignore_ident!($X, A),)*); - fn map_fn<A: Clone>(z: &A) -> impl FnMut(PrevTuple<A>) -> CurrTuple<A> + '_ { - move |($($X,)*)| (z.clone(), $($X),*) - } - let Self { c, item, mut iter } = self; - if let Some(z) = item.as_ref() { - init = c - .map(map_fn::<A>(z)) - .fold(init, &mut f); - } - while let Some(z) = iter.next() { - let c: $P<I> = iter.clone().into(); - init = c - .map(map_fn::<A>(&z)) - .fold(init, &mut f); - } - init - } - } - - impl<I, A> HasCombination<I> for (A, $(ignore_ident!($X, A)),*) - where I: Iterator<Item = A> + Clone, - I::Item: Clone - { - type Combination = $C<Fuse<I>>; - } - ) -} - -// This snippet generates the twelve `impl_tuple_combination!` invocations: -// use core::iter; -// use itertools::Itertools; -// -// for i in 2..=12 { -// println!("impl_tuple_combination!(Tuple{arity}Combination Tuple{prev}Combination; {idents});", -// arity = i, -// prev = i - 1, -// idents = ('a'..'z').take(i - 1).join(" "), -// ); -// } -// It could probably be replaced by a bit more macro cleverness. -impl_tuple_combination!(Tuple2Combination Tuple1Combination; a); -impl_tuple_combination!(Tuple3Combination Tuple2Combination; a b); -impl_tuple_combination!(Tuple4Combination Tuple3Combination; a b c); -impl_tuple_combination!(Tuple5Combination Tuple4Combination; a b c d); -impl_tuple_combination!(Tuple6Combination Tuple5Combination; a b c d e); -impl_tuple_combination!(Tuple7Combination Tuple6Combination; a b c d e f); -impl_tuple_combination!(Tuple8Combination Tuple7Combination; a b c d e f g); -impl_tuple_combination!(Tuple9Combination Tuple8Combination; a b c d e f g h); -impl_tuple_combination!(Tuple10Combination Tuple9Combination; a b c d e f g h i); -impl_tuple_combination!(Tuple11Combination Tuple10Combination; a b c d e f g h i j); -impl_tuple_combination!(Tuple12Combination Tuple11Combination; a b c d e f g h i j k); - -// https://en.wikipedia.org/wiki/Binomial_coefficient#In_programming_languages -pub(crate) fn checked_binomial(mut n: usize, mut k: usize) -> Option<usize> { - if n < k { - return Some(0); - } - // `factorial(n) / factorial(n - k) / factorial(k)` but trying to avoid it overflows: - k = (n - k).min(k); // symmetry - let mut c = 1; - for i in 1..=k { - c = (c / i) - .checked_mul(n)? - .checked_add((c % i).checked_mul(n)? / i)?; - n -= 1; - } - Some(c) -} - -#[test] -fn test_checked_binomial() { - // With the first row: [1, 0, 0, ...] and the first column full of 1s, we check - // row by row the recurrence relation of binomials (which is an equivalent definition). - // For n >= 1 and k >= 1 we have: - // binomial(n, k) == binomial(n - 1, k - 1) + binomial(n - 1, k) - const LIMIT: usize = 500; - let mut row = vec![Some(0); LIMIT + 1]; - row[0] = Some(1); - for n in 0..=LIMIT { - for k in 0..=LIMIT { - assert_eq!(row[k], checked_binomial(n, k)); - } - row = std::iter::once(Some(1)) - .chain((1..=LIMIT).map(|k| row[k - 1]?.checked_add(row[k]?))) - .collect(); - } -} - -/// An iterator adapter to filter values within a nested `Result::Ok`. -/// -/// See [`.filter_ok()`](crate::Itertools::filter_ok) for more information. -#[derive(Clone)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct FilterOk<I, F> { - iter: I, - f: F, -} - -impl<I, F> fmt::Debug for FilterOk<I, F> -where - I: fmt::Debug, -{ - debug_fmt_fields!(FilterOk, iter); -} - -/// Create a new `FilterOk` iterator. -pub fn filter_ok<I, F, T, E>(iter: I, f: F) -> FilterOk<I, F> -where - I: Iterator<Item = Result<T, E>>, - F: FnMut(&T) -> bool, -{ - FilterOk { iter, f } -} - -impl<I, F, T, E> Iterator for FilterOk<I, F> -where - I: Iterator<Item = Result<T, E>>, - F: FnMut(&T) -> bool, -{ - type Item = Result<T, E>; - - fn next(&mut self) -> Option<Self::Item> { - let f = &mut self.f; - self.iter.find(|res| match res { - Ok(t) => f(t), - _ => true, - }) - } - - fn size_hint(&self) -> (usize, Option<usize>) { - (0, self.iter.size_hint().1) - } - - fn fold<Acc, Fold>(self, init: Acc, fold_f: Fold) -> Acc - where - Fold: FnMut(Acc, Self::Item) -> Acc, - { - let mut f = self.f; - self.iter - .filter(|v| v.as_ref().map(&mut f).unwrap_or(true)) - .fold(init, fold_f) - } - - fn collect<C>(self) -> C - where - C: FromIterator<Self::Item>, - { - let mut f = self.f; - self.iter - .filter(|v| v.as_ref().map(&mut f).unwrap_or(true)) - .collect() - } -} - -impl<I, F, T, E> DoubleEndedIterator for FilterOk<I, F> -where - I: DoubleEndedIterator<Item = Result<T, E>>, - F: FnMut(&T) -> bool, -{ - fn next_back(&mut self) -> Option<Self::Item> { - let f = &mut self.f; - self.iter.rfind(|res| match res { - Ok(t) => f(t), - _ => true, - }) - } - - fn rfold<Acc, Fold>(self, init: Acc, fold_f: Fold) -> Acc - where - Fold: FnMut(Acc, Self::Item) -> Acc, - { - let mut f = self.f; - self.iter - .filter(|v| v.as_ref().map(&mut f).unwrap_or(true)) - .rfold(init, fold_f) - } -} - -impl<I, F, T, E> FusedIterator for FilterOk<I, F> -where - I: FusedIterator<Item = Result<T, E>>, - F: FnMut(&T) -> bool, -{ -} - -/// An iterator adapter to filter and apply a transformation on values within a nested `Result::Ok`. -/// -/// See [`.filter_map_ok()`](crate::Itertools::filter_map_ok) for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -#[derive(Clone)] -pub struct FilterMapOk<I, F> { - iter: I, - f: F, -} - -impl<I, F> fmt::Debug for FilterMapOk<I, F> -where - I: fmt::Debug, -{ - debug_fmt_fields!(FilterMapOk, iter); -} - -fn transpose_result<T, E>(result: Result<Option<T>, E>) -> Option<Result<T, E>> { - match result { - Ok(Some(v)) => Some(Ok(v)), - Ok(None) => None, - Err(e) => Some(Err(e)), - } -} - -/// Create a new `FilterOk` iterator. -pub fn filter_map_ok<I, F, T, U, E>(iter: I, f: F) -> FilterMapOk<I, F> -where - I: Iterator<Item = Result<T, E>>, - F: FnMut(T) -> Option<U>, -{ - FilterMapOk { iter, f } -} - -impl<I, F, T, U, E> Iterator for FilterMapOk<I, F> -where - I: Iterator<Item = Result<T, E>>, - F: FnMut(T) -> Option<U>, -{ - type Item = Result<U, E>; - - fn next(&mut self) -> Option<Self::Item> { - let f = &mut self.f; - self.iter.find_map(|res| match res { - Ok(t) => f(t).map(Ok), - Err(e) => Some(Err(e)), - }) - } - - fn size_hint(&self) -> (usize, Option<usize>) { - (0, self.iter.size_hint().1) - } - - fn fold<Acc, Fold>(self, init: Acc, fold_f: Fold) -> Acc - where - Fold: FnMut(Acc, Self::Item) -> Acc, - { - let mut f = self.f; - self.iter - .filter_map(|v| transpose_result(v.map(&mut f))) - .fold(init, fold_f) - } - - fn collect<C>(self) -> C - where - C: FromIterator<Self::Item>, - { - let mut f = self.f; - self.iter - .filter_map(|v| transpose_result(v.map(&mut f))) - .collect() - } -} - -impl<I, F, T, U, E> DoubleEndedIterator for FilterMapOk<I, F> -where - I: DoubleEndedIterator<Item = Result<T, E>>, - F: FnMut(T) -> Option<U>, -{ - fn next_back(&mut self) -> Option<Self::Item> { - let f = &mut self.f; - self.iter.by_ref().rev().find_map(|res| match res { - Ok(t) => f(t).map(Ok), - Err(e) => Some(Err(e)), - }) - } - - fn rfold<Acc, Fold>(self, init: Acc, fold_f: Fold) -> Acc - where - Fold: FnMut(Acc, Self::Item) -> Acc, - { - let mut f = self.f; - self.iter - .filter_map(|v| transpose_result(v.map(&mut f))) - .rfold(init, fold_f) - } -} - -impl<I, F, T, U, E> FusedIterator for FilterMapOk<I, F> -where - I: FusedIterator<Item = Result<T, E>>, - F: FnMut(T) -> Option<U>, -{ -} - -/// An iterator adapter to get the positions of each element that matches a predicate. -/// -/// See [`.positions()`](crate::Itertools::positions) for more information. -#[derive(Clone)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct Positions<I, F> { - iter: Enumerate<I>, - f: F, -} - -impl<I, F> fmt::Debug for Positions<I, F> -where - I: fmt::Debug, -{ - debug_fmt_fields!(Positions, iter); -} - -/// Create a new `Positions` iterator. -pub fn positions<I, F>(iter: I, f: F) -> Positions<I, F> -where - I: Iterator, - F: FnMut(I::Item) -> bool, -{ - let iter = iter.enumerate(); - Positions { iter, f } -} - -impl<I, F> Iterator for Positions<I, F> -where - I: Iterator, - F: FnMut(I::Item) -> bool, -{ - type Item = usize; - - fn next(&mut self) -> Option<Self::Item> { - let f = &mut self.f; - self.iter.find_map(|(count, val)| f(val).then_some(count)) - } - - fn size_hint(&self) -> (usize, Option<usize>) { - (0, self.iter.size_hint().1) - } - - fn fold<B, G>(self, init: B, mut func: G) -> B - where - G: FnMut(B, Self::Item) -> B, - { - let mut f = self.f; - self.iter.fold(init, |mut acc, (count, val)| { - if f(val) { - acc = func(acc, count); - } - acc - }) - } -} - -impl<I, F> DoubleEndedIterator for Positions<I, F> -where - I: DoubleEndedIterator + ExactSizeIterator, - F: FnMut(I::Item) -> bool, -{ - fn next_back(&mut self) -> Option<Self::Item> { - let f = &mut self.f; - self.iter - .by_ref() - .rev() - .find_map(|(count, val)| f(val).then_some(count)) - } - - fn rfold<B, G>(self, init: B, mut func: G) -> B - where - G: FnMut(B, Self::Item) -> B, - { - let mut f = self.f; - self.iter.rfold(init, |mut acc, (count, val)| { - if f(val) { - acc = func(acc, count); - } - acc - }) - } -} - -impl<I, F> FusedIterator for Positions<I, F> -where - I: FusedIterator, - F: FnMut(I::Item) -> bool, -{ -} - -/// An iterator adapter to apply a mutating function to each element before yielding it. -/// -/// See [`.update()`](crate::Itertools::update) for more information. -#[derive(Clone)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct Update<I, F> { - iter: I, - f: F, -} - -impl<I, F> fmt::Debug for Update<I, F> -where - I: fmt::Debug, -{ - debug_fmt_fields!(Update, iter); -} - -/// Create a new `Update` iterator. -pub fn update<I, F>(iter: I, f: F) -> Update<I, F> -where - I: Iterator, - F: FnMut(&mut I::Item), -{ - Update { iter, f } -} - -impl<I, F> Iterator for Update<I, F> -where - I: Iterator, - F: FnMut(&mut I::Item), -{ - type Item = I::Item; - - fn next(&mut self) -> Option<Self::Item> { - if let Some(mut v) = self.iter.next() { - (self.f)(&mut v); - Some(v) - } else { - None - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - self.iter.size_hint() - } - - fn fold<Acc, G>(self, init: Acc, mut g: G) -> Acc - where - G: FnMut(Acc, Self::Item) -> Acc, - { - let mut f = self.f; - self.iter.fold(init, move |acc, mut v| { - f(&mut v); - g(acc, v) - }) - } - - // if possible, re-use inner iterator specializations in collect - fn collect<C>(self) -> C - where - C: FromIterator<Self::Item>, - { - let mut f = self.f; - self.iter - .map(move |mut v| { - f(&mut v); - v - }) - .collect() - } -} - -impl<I, F> ExactSizeIterator for Update<I, F> -where - I: ExactSizeIterator, - F: FnMut(&mut I::Item), -{ -} - -impl<I, F> DoubleEndedIterator for Update<I, F> -where - I: DoubleEndedIterator, - F: FnMut(&mut I::Item), -{ - fn next_back(&mut self) -> Option<Self::Item> { - if let Some(mut v) = self.iter.next_back() { - (self.f)(&mut v); - Some(v) - } else { - None - } - } -} - -impl<I, F> FusedIterator for Update<I, F> -where - I: FusedIterator, - F: FnMut(&mut I::Item), -{ -} diff --git a/vendor/itertools/src/adaptors/multi_product.rs b/vendor/itertools/src/adaptors/multi_product.rs deleted file mode 100644 index 314d4a46..00000000 --- a/vendor/itertools/src/adaptors/multi_product.rs +++ /dev/null @@ -1,231 +0,0 @@ -#![cfg(feature = "use_alloc")] -use Option::{self as State, None as ProductEnded, Some as ProductInProgress}; -use Option::{self as CurrentItems, None as NotYetPopulated, Some as Populated}; - -use alloc::vec::Vec; - -use crate::size_hint; - -#[derive(Clone)] -/// An iterator adaptor that iterates over the cartesian product of -/// multiple iterators of type `I`. -/// -/// An iterator element type is `Vec<I::Item>`. -/// -/// See [`.multi_cartesian_product()`](crate::Itertools::multi_cartesian_product) -/// for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct MultiProduct<I>(State<MultiProductInner<I>>) -where - I: Iterator + Clone, - I::Item: Clone; - -#[derive(Clone)] -/// Internals for `MultiProduct`. -struct MultiProductInner<I> -where - I: Iterator + Clone, - I::Item: Clone, -{ - /// Holds the iterators. - iters: Vec<MultiProductIter<I>>, - /// Not populated at the beginning then it holds the current item of each iterator. - cur: CurrentItems<Vec<I::Item>>, -} - -impl<I> std::fmt::Debug for MultiProduct<I> -where - I: Iterator + Clone + std::fmt::Debug, - I::Item: Clone + std::fmt::Debug, -{ - debug_fmt_fields!(MultiProduct, 0); -} - -impl<I> std::fmt::Debug for MultiProductInner<I> -where - I: Iterator + Clone + std::fmt::Debug, - I::Item: Clone + std::fmt::Debug, -{ - debug_fmt_fields!(MultiProductInner, iters, cur); -} - -/// Create a new cartesian product iterator over an arbitrary number -/// of iterators of the same type. -/// -/// Iterator element is of type `Vec<H::Item::Item>`. -pub fn multi_cartesian_product<H>(iters: H) -> MultiProduct<<H::Item as IntoIterator>::IntoIter> -where - H: Iterator, - H::Item: IntoIterator, - <H::Item as IntoIterator>::IntoIter: Clone, - <H::Item as IntoIterator>::Item: Clone, -{ - let inner = MultiProductInner { - iters: iters - .map(|i| MultiProductIter::new(i.into_iter())) - .collect(), - cur: NotYetPopulated, - }; - MultiProduct(ProductInProgress(inner)) -} - -#[derive(Clone, Debug)] -/// Holds the state of a single iterator within a `MultiProduct`. -struct MultiProductIter<I> -where - I: Iterator + Clone, - I::Item: Clone, -{ - iter: I, - iter_orig: I, -} - -impl<I> MultiProductIter<I> -where - I: Iterator + Clone, - I::Item: Clone, -{ - fn new(iter: I) -> Self { - Self { - iter: iter.clone(), - iter_orig: iter, - } - } -} - -impl<I> Iterator for MultiProduct<I> -where - I: Iterator + Clone, - I::Item: Clone, -{ - type Item = Vec<I::Item>; - - fn next(&mut self) -> Option<Self::Item> { - // This fuses the iterator. - let inner = self.0.as_mut()?; - match &mut inner.cur { - Populated(values) => { - debug_assert!(!inner.iters.is_empty()); - // Find (from the right) a non-finished iterator and - // reset the finished ones encountered. - for (iter, item) in inner.iters.iter_mut().zip(values.iter_mut()).rev() { - if let Some(new) = iter.iter.next() { - *item = new; - return Some(values.clone()); - } else { - iter.iter = iter.iter_orig.clone(); - // `cur` is populated so the untouched `iter_orig` can not be empty. - *item = iter.iter.next().unwrap(); - } - } - self.0 = ProductEnded; - None - } - // Only the first time. - NotYetPopulated => { - let next: Option<Vec<_>> = inner.iters.iter_mut().map(|i| i.iter.next()).collect(); - if next.is_none() || inner.iters.is_empty() { - // This cartesian product had at most one item to generate and now ends. - self.0 = ProductEnded; - } else { - inner.cur.clone_from(&next); - } - next - } - } - } - - fn count(self) -> usize { - match self.0 { - ProductEnded => 0, - // The iterator is fresh so the count is the product of the length of each iterator: - // - If one of them is empty, stop counting. - // - Less `count()` calls than the general case. - ProductInProgress(MultiProductInner { - iters, - cur: NotYetPopulated, - }) => iters - .into_iter() - .map(|iter| iter.iter_orig.count()) - .try_fold(1, |product, count| { - if count == 0 { - None - } else { - Some(product * count) - } - }) - .unwrap_or_default(), - // The general case. - ProductInProgress(MultiProductInner { - iters, - cur: Populated(_), - }) => iters.into_iter().fold(0, |mut acc, iter| { - if acc != 0 { - acc *= iter.iter_orig.count(); - } - acc + iter.iter.count() - }), - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - match &self.0 { - ProductEnded => (0, Some(0)), - ProductInProgress(MultiProductInner { - iters, - cur: NotYetPopulated, - }) => iters - .iter() - .map(|iter| iter.iter_orig.size_hint()) - .fold((1, Some(1)), size_hint::mul), - ProductInProgress(MultiProductInner { - iters, - cur: Populated(_), - }) => { - if let [first, tail @ ..] = &iters[..] { - tail.iter().fold(first.iter.size_hint(), |mut sh, iter| { - sh = size_hint::mul(sh, iter.iter_orig.size_hint()); - size_hint::add(sh, iter.iter.size_hint()) - }) - } else { - // Since it is populated, this cartesian product has started so `iters` is not empty. - unreachable!() - } - } - } - } - - fn last(self) -> Option<Self::Item> { - let MultiProductInner { iters, cur } = self.0?; - // Collect the last item of each iterator of the product. - if let Populated(values) = cur { - let mut count = iters.len(); - let last = iters - .into_iter() - .zip(values) - .map(|(i, value)| { - i.iter.last().unwrap_or_else(|| { - // The iterator is empty, use its current `value`. - count -= 1; - value - }) - }) - .collect(); - if count == 0 { - // `values` was the last item. - None - } else { - Some(last) - } - } else { - iters.into_iter().map(|i| i.iter.last()).collect() - } - } -} - -impl<I> std::iter::FusedIterator for MultiProduct<I> -where - I: Iterator + Clone, - I::Item: Clone, -{ -} diff --git a/vendor/itertools/src/combinations.rs b/vendor/itertools/src/combinations.rs deleted file mode 100644 index 54a02755..00000000 --- a/vendor/itertools/src/combinations.rs +++ /dev/null @@ -1,308 +0,0 @@ -use core::array; -use core::borrow::BorrowMut; -use std::fmt; -use std::iter::FusedIterator; - -use super::lazy_buffer::LazyBuffer; -use alloc::vec::Vec; - -use crate::adaptors::checked_binomial; - -/// Iterator for `Vec` valued combinations returned by [`.combinations()`](crate::Itertools::combinations) -pub type Combinations<I> = CombinationsGeneric<I, Vec<usize>>; -/// Iterator for const generic combinations returned by [`.array_combinations()`](crate::Itertools::array_combinations) -pub type ArrayCombinations<I, const K: usize> = CombinationsGeneric<I, [usize; K]>; - -/// Create a new `Combinations` from a clonable iterator. -pub fn combinations<I: Iterator>(iter: I, k: usize) -> Combinations<I> -where - I::Item: Clone, -{ - Combinations::new(iter, (0..k).collect()) -} - -/// Create a new `ArrayCombinations` from a clonable iterator. -pub fn array_combinations<I: Iterator, const K: usize>(iter: I) -> ArrayCombinations<I, K> -where - I::Item: Clone, -{ - ArrayCombinations::new(iter, array::from_fn(|i| i)) -} - -/// An iterator to iterate through all the `k`-length combinations in an iterator. -/// -/// See [`.combinations()`](crate::Itertools::combinations) and [`.array_combinations()`](crate::Itertools::array_combinations) for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct CombinationsGeneric<I: Iterator, Idx> { - indices: Idx, - pool: LazyBuffer<I>, - first: bool, -} - -/// A type holding indices of elements in a pool or buffer of items from an inner iterator -/// and used to pick out different combinations in a generic way. -pub trait PoolIndex<T>: BorrowMut<[usize]> { - type Item; - - fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Self::Item - where - T: Clone; - - fn len(&self) -> usize { - self.borrow().len() - } -} - -impl<T> PoolIndex<T> for Vec<usize> { - type Item = Vec<T>; - - fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Vec<T> - where - T: Clone, - { - pool.get_at(self) - } -} - -impl<T, const K: usize> PoolIndex<T> for [usize; K] { - type Item = [T; K]; - - fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> [T; K] - where - T: Clone, - { - pool.get_array(*self) - } -} - -impl<I, Idx> Clone for CombinationsGeneric<I, Idx> -where - I: Iterator + Clone, - I::Item: Clone, - Idx: Clone, -{ - clone_fields!(indices, pool, first); -} - -impl<I, Idx> fmt::Debug for CombinationsGeneric<I, Idx> -where - I: Iterator + fmt::Debug, - I::Item: fmt::Debug, - Idx: fmt::Debug, -{ - debug_fmt_fields!(Combinations, indices, pool, first); -} - -impl<I: Iterator, Idx: PoolIndex<I::Item>> CombinationsGeneric<I, Idx> { - /// Constructor with arguments the inner iterator and the initial state for the indices. - fn new(iter: I, indices: Idx) -> Self { - Self { - indices, - pool: LazyBuffer::new(iter), - first: true, - } - } - - /// Returns the length of a combination produced by this iterator. - #[inline] - pub fn k(&self) -> usize { - self.indices.len() - } - - /// Returns the (current) length of the pool from which combination elements are - /// selected. This value can change between invocations of [`next`](Combinations::next). - #[inline] - pub fn n(&self) -> usize { - self.pool.len() - } - - /// Returns a reference to the source pool. - #[inline] - pub(crate) fn src(&self) -> &LazyBuffer<I> { - &self.pool - } - - /// Return the length of the inner iterator and the count of remaining combinations. - pub(crate) fn n_and_count(self) -> (usize, usize) { - let Self { - indices, - pool, - first, - } = self; - let n = pool.count(); - (n, remaining_for(n, first, indices.borrow()).unwrap()) - } - - /// Initialises the iterator by filling a buffer with elements from the - /// iterator. Returns true if there are no combinations, false otherwise. - fn init(&mut self) -> bool { - self.pool.prefill(self.k()); - let done = self.k() > self.n(); - if !done { - self.first = false; - } - - done - } - - /// Increments indices representing the combination to advance to the next - /// (in lexicographic order by increasing sequence) combination. For example - /// if we have n=4 & k=2 then `[0, 1] -> [0, 2] -> [0, 3] -> [1, 2] -> ...` - /// - /// Returns true if we've run out of combinations, false otherwise. - fn increment_indices(&mut self) -> bool { - // Borrow once instead of noise each time it's indexed - let indices = self.indices.borrow_mut(); - - if indices.is_empty() { - return true; // Done - } - // Scan from the end, looking for an index to increment - let mut i: usize = indices.len() - 1; - - // Check if we need to consume more from the iterator - if indices[i] == self.pool.len() - 1 { - self.pool.get_next(); // may change pool size - } - - while indices[i] == i + self.pool.len() - indices.len() { - if i > 0 { - i -= 1; - } else { - // Reached the last combination - return true; - } - } - - // Increment index, and reset the ones to its right - indices[i] += 1; - for j in i + 1..indices.len() { - indices[j] = indices[j - 1] + 1; - } - // If we've made it this far, we haven't run out of combos - false - } - - /// Returns the n-th item or the number of successful steps. - pub(crate) fn try_nth(&mut self, n: usize) -> Result<<Self as Iterator>::Item, usize> - where - I: Iterator, - I::Item: Clone, - { - let done = if self.first { - self.init() - } else { - self.increment_indices() - }; - if done { - return Err(0); - } - for i in 0..n { - if self.increment_indices() { - return Err(i + 1); - } - } - Ok(self.indices.extract_item(&self.pool)) - } -} - -impl<I, Idx> Iterator for CombinationsGeneric<I, Idx> -where - I: Iterator, - I::Item: Clone, - Idx: PoolIndex<I::Item>, -{ - type Item = Idx::Item; - fn next(&mut self) -> Option<Self::Item> { - let done = if self.first { - self.init() - } else { - self.increment_indices() - }; - - if done { - return None; - } - - Some(self.indices.extract_item(&self.pool)) - } - - fn nth(&mut self, n: usize) -> Option<Self::Item> { - self.try_nth(n).ok() - } - - fn size_hint(&self) -> (usize, Option<usize>) { - let (mut low, mut upp) = self.pool.size_hint(); - low = remaining_for(low, self.first, self.indices.borrow()).unwrap_or(usize::MAX); - upp = upp.and_then(|upp| remaining_for(upp, self.first, self.indices.borrow())); - (low, upp) - } - - #[inline] - fn count(self) -> usize { - self.n_and_count().1 - } -} - -impl<I, Idx> FusedIterator for CombinationsGeneric<I, Idx> -where - I: Iterator, - I::Item: Clone, - Idx: PoolIndex<I::Item>, -{ -} - -impl<I: Iterator> Combinations<I> { - /// Resets this `Combinations` back to an initial state for combinations of length - /// `k` over the same pool data source. If `k` is larger than the current length - /// of the data pool an attempt is made to prefill the pool so that it holds `k` - /// elements. - pub(crate) fn reset(&mut self, k: usize) { - self.first = true; - - if k < self.indices.len() { - self.indices.truncate(k); - for i in 0..k { - self.indices[i] = i; - } - } else { - for i in 0..self.indices.len() { - self.indices[i] = i; - } - self.indices.extend(self.indices.len()..k); - self.pool.prefill(k); - } - } -} - -/// For a given size `n`, return the count of remaining combinations or None if it would overflow. -fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> { - let k = indices.len(); - if n < k { - Some(0) - } else if first { - checked_binomial(n, k) - } else { - // https://en.wikipedia.org/wiki/Combinatorial_number_system - // http://www.site.uottawa.ca/~lucia/courses/5165-09/GenCombObj.pdf - - // The combinations generated after the current one can be counted by counting as follows: - // - The subsequent combinations that differ in indices[0]: - // If subsequent combinations differ in indices[0], then their value for indices[0] - // must be at least 1 greater than the current indices[0]. - // As indices is strictly monotonically sorted, this means we can effectively choose k values - // from (n - 1 - indices[0]), leading to binomial(n - 1 - indices[0], k) possibilities. - // - The subsequent combinations with same indices[0], but differing indices[1]: - // Here we can choose k - 1 values from (n - 1 - indices[1]) values, - // leading to binomial(n - 1 - indices[1], k - 1) possibilities. - // - (...) - // - The subsequent combinations with same indices[0..=i], but differing indices[i]: - // Here we can choose k - i values from (n - 1 - indices[i]) values: binomial(n - 1 - indices[i], k - i). - // Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients. - - // Below, `n0` resembles indices[i]. - indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| { - sum.checked_add(checked_binomial(n - 1 - *n0, k - i)?) - }) - } -} diff --git a/vendor/itertools/src/combinations_with_replacement.rs b/vendor/itertools/src/combinations_with_replacement.rs deleted file mode 100644 index c17e7525..00000000 --- a/vendor/itertools/src/combinations_with_replacement.rs +++ /dev/null @@ -1,188 +0,0 @@ -use alloc::boxed::Box; -use alloc::vec::Vec; -use std::fmt; -use std::iter::FusedIterator; - -use super::lazy_buffer::LazyBuffer; -use crate::adaptors::checked_binomial; - -/// An iterator to iterate through all the `n`-length combinations in an iterator, with replacement. -/// -/// See [`.combinations_with_replacement()`](crate::Itertools::combinations_with_replacement) -/// for more information. -#[derive(Clone)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct CombinationsWithReplacement<I> -where - I: Iterator, - I::Item: Clone, -{ - indices: Box<[usize]>, - pool: LazyBuffer<I>, - first: bool, -} - -impl<I> fmt::Debug for CombinationsWithReplacement<I> -where - I: Iterator + fmt::Debug, - I::Item: fmt::Debug + Clone, -{ - debug_fmt_fields!(CombinationsWithReplacement, indices, pool, first); -} - -/// Create a new `CombinationsWithReplacement` from a clonable iterator. -pub fn combinations_with_replacement<I>(iter: I, k: usize) -> CombinationsWithReplacement<I> -where - I: Iterator, - I::Item: Clone, -{ - let indices = alloc::vec![0; k].into_boxed_slice(); - let pool: LazyBuffer<I> = LazyBuffer::new(iter); - - CombinationsWithReplacement { - indices, - pool, - first: true, - } -} - -impl<I> CombinationsWithReplacement<I> -where - I: Iterator, - I::Item: Clone, -{ - /// Increments indices representing the combination to advance to the next - /// (in lexicographic order by increasing sequence) combination. - /// - /// Returns true if we've run out of combinations, false otherwise. - fn increment_indices(&mut self) -> bool { - // Check if we need to consume more from the iterator - // This will run while we increment our first index digit - self.pool.get_next(); - - // Work out where we need to update our indices - let mut increment = None; - for (i, indices_int) in self.indices.iter().enumerate().rev() { - if *indices_int < self.pool.len() - 1 { - increment = Some((i, indices_int + 1)); - break; - } - } - match increment { - // If we can update the indices further - Some((increment_from, increment_value)) => { - // We need to update the rightmost non-max value - // and all those to the right - self.indices[increment_from..].fill(increment_value); - false - } - // Otherwise, we're done - None => true, - } - } -} - -impl<I> Iterator for CombinationsWithReplacement<I> -where - I: Iterator, - I::Item: Clone, -{ - type Item = Vec<I::Item>; - - fn next(&mut self) -> Option<Self::Item> { - if self.first { - // In empty edge cases, stop iterating immediately - if !(self.indices.is_empty() || self.pool.get_next()) { - return None; - } - self.first = false; - } else if self.increment_indices() { - return None; - } - Some(self.pool.get_at(&self.indices)) - } - - fn nth(&mut self, n: usize) -> Option<Self::Item> { - if self.first { - // In empty edge cases, stop iterating immediately - if !(self.indices.is_empty() || self.pool.get_next()) { - return None; - } - self.first = false; - } else if self.increment_indices() { - return None; - } - for _ in 0..n { - if self.increment_indices() { - return None; - } - } - Some(self.pool.get_at(&self.indices)) - } - - fn size_hint(&self) -> (usize, Option<usize>) { - let (mut low, mut upp) = self.pool.size_hint(); - low = remaining_for(low, self.first, &self.indices).unwrap_or(usize::MAX); - upp = upp.and_then(|upp| remaining_for(upp, self.first, &self.indices)); - (low, upp) - } - - fn count(self) -> usize { - let Self { - indices, - pool, - first, - } = self; - let n = pool.count(); - remaining_for(n, first, &indices).unwrap() - } -} - -impl<I> FusedIterator for CombinationsWithReplacement<I> -where - I: Iterator, - I::Item: Clone, -{ -} - -/// For a given size `n`, return the count of remaining combinations with replacement or None if it would overflow. -fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> { - // With a "stars and bars" representation, choose k values with replacement from n values is - // like choosing k out of k + n − 1 positions (hence binomial(k + n - 1, k) possibilities) - // to place k stars and therefore n - 1 bars. - // Example (n=4, k=6): ***|*||** represents [0,0,0,1,3,3]. - let count = |n: usize, k: usize| { - let positions = if n == 0 { - k.saturating_sub(1) - } else { - (n - 1).checked_add(k)? - }; - checked_binomial(positions, k) - }; - let k = indices.len(); - if first { - count(n, k) - } else { - // The algorithm is similar to the one for combinations *without replacement*, - // except we choose values *with replacement* and indices are *non-strictly* monotonically sorted. - - // The combinations generated after the current one can be counted by counting as follows: - // - The subsequent combinations that differ in indices[0]: - // If subsequent combinations differ in indices[0], then their value for indices[0] - // must be at least 1 greater than the current indices[0]. - // As indices is monotonically sorted, this means we can effectively choose k values with - // replacement from (n - 1 - indices[0]), leading to count(n - 1 - indices[0], k) possibilities. - // - The subsequent combinations with same indices[0], but differing indices[1]: - // Here we can choose k - 1 values with replacement from (n - 1 - indices[1]) values, - // leading to count(n - 1 - indices[1], k - 1) possibilities. - // - (...) - // - The subsequent combinations with same indices[0..=i], but differing indices[i]: - // Here we can choose k - i values with replacement from (n - 1 - indices[i]) values: count(n - 1 - indices[i], k - i). - // Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients. - - // Below, `n0` resembles indices[i]. - indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| { - sum.checked_add(count(n - 1 - *n0, k - i)?) - }) - } -} diff --git a/vendor/itertools/src/concat_impl.rs b/vendor/itertools/src/concat_impl.rs deleted file mode 100644 index dc80839c..00000000 --- a/vendor/itertools/src/concat_impl.rs +++ /dev/null @@ -1,27 +0,0 @@ -/// Combine all an iterator's elements into one element by using [`Extend`]. -/// -/// [`IntoIterator`]-enabled version of [`Itertools::concat`](crate::Itertools::concat). -/// -/// This combinator will extend the first item with each of the rest of the -/// items of the iterator. If the iterator is empty, the default value of -/// `I::Item` is returned. -/// -/// ```rust -/// use itertools::concat; -/// -/// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]]; -/// assert_eq!(concat(input), vec![1, 2, 3, 4, 5, 6]); -/// ``` -pub fn concat<I>(iterable: I) -> I::Item -where - I: IntoIterator, - I::Item: Extend<<<I as IntoIterator>::Item as IntoIterator>::Item> + IntoIterator + Default, -{ - iterable - .into_iter() - .reduce(|mut a, b| { - a.extend(b); - a - }) - .unwrap_or_default() -} diff --git a/vendor/itertools/src/cons_tuples_impl.rs b/vendor/itertools/src/cons_tuples_impl.rs deleted file mode 100644 index 7e86260b..00000000 --- a/vendor/itertools/src/cons_tuples_impl.rs +++ /dev/null @@ -1,39 +0,0 @@ -use crate::adaptors::map::{MapSpecialCase, MapSpecialCaseFn}; - -macro_rules! impl_cons_iter( - ($_A:ident, $_B:ident, ) => (); // stop - - ($A:ident, $($B:ident,)*) => ( - impl_cons_iter!($($B,)*); - #[allow(non_snake_case)] - impl<$($B),*, X> MapSpecialCaseFn<(($($B,)*), X)> for ConsTuplesFn { - type Out = ($($B,)* X, ); - fn call(&mut self, (($($B,)*), X): (($($B,)*), X)) -> Self::Out { - ($($B,)* X, ) - } - } - ); -); - -impl_cons_iter!(A, B, C, D, E, F, G, H, I, J, K, L,); - -#[derive(Debug, Clone)] -pub struct ConsTuplesFn; - -/// An iterator that maps an iterator of tuples like -/// `((A, B), C)` to an iterator of `(A, B, C)`. -/// -/// Used by the `iproduct!()` macro. -pub type ConsTuples<I> = MapSpecialCase<I, ConsTuplesFn>; - -/// Create an iterator that maps for example iterators of -/// `((A, B), C)` to `(A, B, C)`. -pub fn cons_tuples<I>(iterable: I) -> ConsTuples<I::IntoIter> -where - I: IntoIterator, -{ - ConsTuples { - iter: iterable.into_iter(), - f: ConsTuplesFn, - } -} diff --git a/vendor/itertools/src/diff.rs b/vendor/itertools/src/diff.rs deleted file mode 100644 index df88d803..00000000 --- a/vendor/itertools/src/diff.rs +++ /dev/null @@ -1,104 +0,0 @@ -//! "Diff"ing iterators for caching elements to sequential collections without requiring the new -//! elements' iterator to be `Clone`. -//! -//! [`Diff`] (produced by the [`diff_with`] function) -//! describes the difference between two non-`Clone` iterators `I` and `J` after breaking ASAP from -//! a lock-step comparison. - -use std::fmt; - -use crate::free::put_back; -use crate::structs::PutBack; - -/// A type returned by the [`diff_with`] function. -/// -/// `Diff` represents the way in which the elements yielded by the iterator `I` differ to some -/// iterator `J`. -pub enum Diff<I, J> -where - I: Iterator, - J: Iterator, -{ - /// The index of the first non-matching element along with both iterator's remaining elements - /// starting with the first mis-match. - FirstMismatch(usize, PutBack<I>, PutBack<J>), - /// The total number of elements that were in `J` along with the remaining elements of `I`. - Shorter(usize, PutBack<I>), - /// The total number of elements that were in `I` along with the remaining elements of `J`. - Longer(usize, PutBack<J>), -} - -impl<I, J> fmt::Debug for Diff<I, J> -where - I: Iterator, - J: Iterator, - PutBack<I>: fmt::Debug, - PutBack<J>: fmt::Debug, -{ - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - match self { - Self::FirstMismatch(idx, i, j) => f - .debug_tuple("FirstMismatch") - .field(idx) - .field(i) - .field(j) - .finish(), - Self::Shorter(idx, i) => f.debug_tuple("Shorter").field(idx).field(i).finish(), - Self::Longer(idx, j) => f.debug_tuple("Longer").field(idx).field(j).finish(), - } - } -} - -impl<I, J> Clone for Diff<I, J> -where - I: Iterator, - J: Iterator, - PutBack<I>: Clone, - PutBack<J>: Clone, -{ - fn clone(&self) -> Self { - match self { - Self::FirstMismatch(idx, i, j) => Self::FirstMismatch(*idx, i.clone(), j.clone()), - Self::Shorter(idx, i) => Self::Shorter(*idx, i.clone()), - Self::Longer(idx, j) => Self::Longer(*idx, j.clone()), - } - } -} - -/// Compares every element yielded by both `i` and `j` with the given function in lock-step and -/// returns a [`Diff`] which describes how `j` differs from `i`. -/// -/// If the number of elements yielded by `j` is less than the number of elements yielded by `i`, -/// the number of `j` elements yielded will be returned along with `i`'s remaining elements as -/// `Diff::Shorter`. -/// -/// If the two elements of a step differ, the index of those elements along with the remaining -/// elements of both `i` and `j` are returned as `Diff::FirstMismatch`. -/// -/// If `i` becomes exhausted before `j` becomes exhausted, the number of elements in `i` along with -/// the remaining `j` elements will be returned as `Diff::Longer`. -pub fn diff_with<I, J, F>(i: I, j: J, mut is_equal: F) -> Option<Diff<I::IntoIter, J::IntoIter>> -where - I: IntoIterator, - J: IntoIterator, - F: FnMut(&I::Item, &J::Item) -> bool, -{ - let mut i = i.into_iter(); - let mut j = j.into_iter(); - let mut idx = 0; - while let Some(i_elem) = i.next() { - match j.next() { - None => return Some(Diff::Shorter(idx, put_back(i).with_value(i_elem))), - Some(j_elem) => { - if !is_equal(&i_elem, &j_elem) { - let remaining_i = put_back(i).with_value(i_elem); - let remaining_j = put_back(j).with_value(j_elem); - return Some(Diff::FirstMismatch(idx, remaining_i, remaining_j)); - } - } - } - idx += 1; - } - j.next() - .map(|j_elem| Diff::Longer(idx, put_back(j).with_value(j_elem))) -} diff --git a/vendor/itertools/src/duplicates_impl.rs b/vendor/itertools/src/duplicates_impl.rs deleted file mode 100644 index a0db1543..00000000 --- a/vendor/itertools/src/duplicates_impl.rs +++ /dev/null @@ -1,216 +0,0 @@ -use std::hash::Hash; - -mod private { - use std::collections::HashMap; - use std::fmt; - use std::hash::Hash; - - #[derive(Clone)] - #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] - pub struct DuplicatesBy<I: Iterator, Key, F> { - pub(crate) iter: I, - pub(crate) meta: Meta<Key, F>, - } - - impl<I, V, F> fmt::Debug for DuplicatesBy<I, V, F> - where - I: Iterator + fmt::Debug, - V: fmt::Debug + Hash + Eq, - { - debug_fmt_fields!(DuplicatesBy, iter, meta.used); - } - - impl<I: Iterator, Key: Eq + Hash, F> DuplicatesBy<I, Key, F> { - pub(crate) fn new(iter: I, key_method: F) -> Self { - Self { - iter, - meta: Meta { - used: HashMap::new(), - pending: 0, - key_method, - }, - } - } - } - - #[derive(Clone)] - pub struct Meta<Key, F> { - used: HashMap<Key, bool>, - pending: usize, - key_method: F, - } - - impl<Key, F> Meta<Key, F> - where - Key: Eq + Hash, - { - /// Takes an item and returns it back to the caller if it's the second time we see it. - /// Otherwise the item is consumed and None is returned - #[inline(always)] - fn filter<I>(&mut self, item: I) -> Option<I> - where - F: KeyMethod<Key, I>, - { - let kv = self.key_method.make(item); - match self.used.get_mut(kv.key_ref()) { - None => { - self.used.insert(kv.key(), false); - self.pending += 1; - None - } - Some(true) => None, - Some(produced) => { - *produced = true; - self.pending -= 1; - Some(kv.value()) - } - } - } - } - - impl<I, Key, F> Iterator for DuplicatesBy<I, Key, F> - where - I: Iterator, - Key: Eq + Hash, - F: KeyMethod<Key, I::Item>, - { - type Item = I::Item; - - fn next(&mut self) -> Option<Self::Item> { - let Self { iter, meta } = self; - iter.find_map(|v| meta.filter(v)) - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - let (_, hi) = self.iter.size_hint(); - let hi = hi.map(|hi| { - if hi <= self.meta.pending { - // fewer or equally many iter-remaining elements than pending elements - // => at most, each iter-remaining element is matched - hi - } else { - // fewer pending elements than iter-remaining elements - // => at most: - // * each pending element is matched - // * the other iter-remaining elements come in pairs - self.meta.pending + (hi - self.meta.pending) / 2 - } - }); - // The lower bound is always 0 since we might only get unique items from now on - (0, hi) - } - } - - impl<I, Key, F> DoubleEndedIterator for DuplicatesBy<I, Key, F> - where - I: DoubleEndedIterator, - Key: Eq + Hash, - F: KeyMethod<Key, I::Item>, - { - fn next_back(&mut self) -> Option<Self::Item> { - let Self { iter, meta } = self; - iter.rev().find_map(|v| meta.filter(v)) - } - } - - /// A keying method for use with `DuplicatesBy` - pub trait KeyMethod<K, V> { - type Container: KeyXorValue<K, V>; - - fn make(&mut self, value: V) -> Self::Container; - } - - /// Apply the identity function to elements before checking them for equality. - #[derive(Debug, Clone)] - pub struct ById; - impl<V> KeyMethod<V, V> for ById { - type Container = JustValue<V>; - - fn make(&mut self, v: V) -> Self::Container { - JustValue(v) - } - } - - /// Apply a user-supplied function to elements before checking them for equality. - #[derive(Clone)] - pub struct ByFn<F>(pub(crate) F); - impl<F> fmt::Debug for ByFn<F> { - debug_fmt_fields!(ByFn,); - } - impl<K, V, F> KeyMethod<K, V> for ByFn<F> - where - F: FnMut(&V) -> K, - { - type Container = KeyValue<K, V>; - - fn make(&mut self, v: V) -> Self::Container { - KeyValue((self.0)(&v), v) - } - } - - // Implementors of this trait can hold onto a key and a value but only give access to one of them - // at a time. This allows the key and the value to be the same value internally - pub trait KeyXorValue<K, V> { - fn key_ref(&self) -> &K; - fn key(self) -> K; - fn value(self) -> V; - } - - #[derive(Debug)] - pub struct KeyValue<K, V>(K, V); - impl<K, V> KeyXorValue<K, V> for KeyValue<K, V> { - fn key_ref(&self) -> &K { - &self.0 - } - fn key(self) -> K { - self.0 - } - fn value(self) -> V { - self.1 - } - } - - #[derive(Debug)] - pub struct JustValue<V>(V); - impl<V> KeyXorValue<V, V> for JustValue<V> { - fn key_ref(&self) -> &V { - &self.0 - } - fn key(self) -> V { - self.0 - } - fn value(self) -> V { - self.0 - } - } -} - -/// An iterator adapter to filter for duplicate elements. -/// -/// See [`.duplicates_by()`](crate::Itertools::duplicates_by) for more information. -pub type DuplicatesBy<I, V, F> = private::DuplicatesBy<I, V, private::ByFn<F>>; - -/// Create a new `DuplicatesBy` iterator. -pub fn duplicates_by<I, Key, F>(iter: I, f: F) -> DuplicatesBy<I, Key, F> -where - Key: Eq + Hash, - F: FnMut(&I::Item) -> Key, - I: Iterator, -{ - DuplicatesBy::new(iter, private::ByFn(f)) -} - -/// An iterator adapter to filter out duplicate elements. -/// -/// See [`.duplicates()`](crate::Itertools::duplicates) for more information. -pub type Duplicates<I> = private::DuplicatesBy<I, <I as Iterator>::Item, private::ById>; - -/// Create a new `Duplicates` iterator. -pub fn duplicates<I>(iter: I) -> Duplicates<I> -where - I: Iterator, - I::Item: Eq + Hash, -{ - Duplicates::new(iter, private::ById) -} diff --git a/vendor/itertools/src/either_or_both.rs b/vendor/itertools/src/either_or_both.rs deleted file mode 100644 index b7a7fc14..00000000 --- a/vendor/itertools/src/either_or_both.rs +++ /dev/null @@ -1,514 +0,0 @@ -use core::ops::{Deref, DerefMut}; - -use crate::EitherOrBoth::*; - -use either::Either; - -/// Value that either holds a single A or B, or both. -#[derive(Clone, PartialEq, Eq, Hash, Debug)] -pub enum EitherOrBoth<A, B = A> { - /// Both values are present. - Both(A, B), - /// Only the left value of type `A` is present. - Left(A), - /// Only the right value of type `B` is present. - Right(B), -} - -impl<A, B> EitherOrBoth<A, B> { - /// If `Left`, or `Both`, return true. Otherwise, return false. - pub fn has_left(&self) -> bool { - self.as_ref().left().is_some() - } - - /// If `Right`, or `Both`, return true, otherwise, return false. - pub fn has_right(&self) -> bool { - self.as_ref().right().is_some() - } - - /// If `Left`, return true. Otherwise, return false. - /// Exclusive version of [`has_left`](EitherOrBoth::has_left). - pub fn is_left(&self) -> bool { - matches!(self, Left(_)) - } - - /// If `Right`, return true. Otherwise, return false. - /// Exclusive version of [`has_right`](EitherOrBoth::has_right). - pub fn is_right(&self) -> bool { - matches!(self, Right(_)) - } - - /// If `Both`, return true. Otherwise, return false. - pub fn is_both(&self) -> bool { - self.as_ref().both().is_some() - } - - /// If `Left`, or `Both`, return `Some` with the left value. Otherwise, return `None`. - pub fn left(self) -> Option<A> { - match self { - Left(left) | Both(left, _) => Some(left), - _ => None, - } - } - - /// If `Right`, or `Both`, return `Some` with the right value. Otherwise, return `None`. - pub fn right(self) -> Option<B> { - match self { - Right(right) | Both(_, right) => Some(right), - _ => None, - } - } - - /// Return tuple of options corresponding to the left and right value respectively - /// - /// If `Left` return `(Some(..), None)`, if `Right` return `(None,Some(..))`, else return - /// `(Some(..),Some(..))` - pub fn left_and_right(self) -> (Option<A>, Option<B>) { - self.map_any(Some, Some).or_default() - } - - /// If `Left`, return `Some` with the left value. If `Right` or `Both`, return `None`. - /// - /// # Examples - /// - /// ``` - /// // On the `Left` variant. - /// # use itertools::{EitherOrBoth, EitherOrBoth::{Left, Right, Both}}; - /// let x: EitherOrBoth<_, ()> = Left("bonjour"); - /// assert_eq!(x.just_left(), Some("bonjour")); - /// - /// // On the `Right` variant. - /// let x: EitherOrBoth<(), _> = Right("hola"); - /// assert_eq!(x.just_left(), None); - /// - /// // On the `Both` variant. - /// let x = Both("bonjour", "hola"); - /// assert_eq!(x.just_left(), None); - /// ``` - pub fn just_left(self) -> Option<A> { - match self { - Left(left) => Some(left), - _ => None, - } - } - - /// If `Right`, return `Some` with the right value. If `Left` or `Both`, return `None`. - /// - /// # Examples - /// - /// ``` - /// // On the `Left` variant. - /// # use itertools::{EitherOrBoth::{Left, Right, Both}, EitherOrBoth}; - /// let x: EitherOrBoth<_, ()> = Left("auf wiedersehen"); - /// assert_eq!(x.just_left(), Some("auf wiedersehen")); - /// - /// // On the `Right` variant. - /// let x: EitherOrBoth<(), _> = Right("adios"); - /// assert_eq!(x.just_left(), None); - /// - /// // On the `Both` variant. - /// let x = Both("auf wiedersehen", "adios"); - /// assert_eq!(x.just_left(), None); - /// ``` - pub fn just_right(self) -> Option<B> { - match self { - Right(right) => Some(right), - _ => None, - } - } - - /// If `Both`, return `Some` containing the left and right values. Otherwise, return `None`. - pub fn both(self) -> Option<(A, B)> { - match self { - Both(a, b) => Some((a, b)), - _ => None, - } - } - - /// If `Left` or `Both`, return the left value. Otherwise, convert the right value and return it. - pub fn into_left(self) -> A - where - B: Into<A>, - { - match self { - Left(a) | Both(a, _) => a, - Right(b) => b.into(), - } - } - - /// If `Right` or `Both`, return the right value. Otherwise, convert the left value and return it. - pub fn into_right(self) -> B - where - A: Into<B>, - { - match self { - Right(b) | Both(_, b) => b, - Left(a) => a.into(), - } - } - - /// Converts from `&EitherOrBoth<A, B>` to `EitherOrBoth<&A, &B>`. - pub fn as_ref(&self) -> EitherOrBoth<&A, &B> { - match *self { - Left(ref left) => Left(left), - Right(ref right) => Right(right), - Both(ref left, ref right) => Both(left, right), - } - } - - /// Converts from `&mut EitherOrBoth<A, B>` to `EitherOrBoth<&mut A, &mut B>`. - pub fn as_mut(&mut self) -> EitherOrBoth<&mut A, &mut B> { - match *self { - Left(ref mut left) => Left(left), - Right(ref mut right) => Right(right), - Both(ref mut left, ref mut right) => Both(left, right), - } - } - - /// Converts from `&EitherOrBoth<A, B>` to `EitherOrBoth<&_, &_>` using the [`Deref`] trait. - pub fn as_deref(&self) -> EitherOrBoth<&A::Target, &B::Target> - where - A: Deref, - B: Deref, - { - match *self { - Left(ref left) => Left(left), - Right(ref right) => Right(right), - Both(ref left, ref right) => Both(left, right), - } - } - - /// Converts from `&mut EitherOrBoth<A, B>` to `EitherOrBoth<&mut _, &mut _>` using the [`DerefMut`] trait. - pub fn as_deref_mut(&mut self) -> EitherOrBoth<&mut A::Target, &mut B::Target> - where - A: DerefMut, - B: DerefMut, - { - match *self { - Left(ref mut left) => Left(left), - Right(ref mut right) => Right(right), - Both(ref mut left, ref mut right) => Both(left, right), - } - } - - /// Convert `EitherOrBoth<A, B>` to `EitherOrBoth<B, A>`. - pub fn flip(self) -> EitherOrBoth<B, A> { - match self { - Left(a) => Right(a), - Right(b) => Left(b), - Both(a, b) => Both(b, a), - } - } - - /// Apply the function `f` on the value `a` in `Left(a)` or `Both(a, b)` variants. If it is - /// present rewrapping the result in `self`'s original variant. - pub fn map_left<F, M>(self, f: F) -> EitherOrBoth<M, B> - where - F: FnOnce(A) -> M, - { - match self { - Both(a, b) => Both(f(a), b), - Left(a) => Left(f(a)), - Right(b) => Right(b), - } - } - - /// Apply the function `f` on the value `b` in `Right(b)` or `Both(a, b)` variants. - /// If it is present rewrapping the result in `self`'s original variant. - pub fn map_right<F, M>(self, f: F) -> EitherOrBoth<A, M> - where - F: FnOnce(B) -> M, - { - match self { - Left(a) => Left(a), - Right(b) => Right(f(b)), - Both(a, b) => Both(a, f(b)), - } - } - - /// Apply the functions `f` and `g` on the value `a` and `b` respectively; - /// found in `Left(a)`, `Right(b)`, or `Both(a, b)` variants. - /// The Result is rewrapped `self`'s original variant. - pub fn map_any<F, L, G, R>(self, f: F, g: G) -> EitherOrBoth<L, R> - where - F: FnOnce(A) -> L, - G: FnOnce(B) -> R, - { - match self { - Left(a) => Left(f(a)), - Right(b) => Right(g(b)), - Both(a, b) => Both(f(a), g(b)), - } - } - - /// Apply the function `f` on the value `a` in `Left(a)` or `Both(a, _)` variants if it is - /// present. - pub fn left_and_then<F, L>(self, f: F) -> EitherOrBoth<L, B> - where - F: FnOnce(A) -> EitherOrBoth<L, B>, - { - match self { - Left(a) | Both(a, _) => f(a), - Right(b) => Right(b), - } - } - - /// Apply the function `f` on the value `b` - /// in `Right(b)` or `Both(_, b)` variants if it is present. - pub fn right_and_then<F, R>(self, f: F) -> EitherOrBoth<A, R> - where - F: FnOnce(B) -> EitherOrBoth<A, R>, - { - match self { - Left(a) => Left(a), - Right(b) | Both(_, b) => f(b), - } - } - - /// Returns a tuple consisting of the `l` and `r` in `Both(l, r)`, if present. - /// Otherwise, returns the wrapped value for the present element, and the supplied - /// value for the other. The first (`l`) argument is used for a missing `Left` - /// value. The second (`r`) argument is used for a missing `Right` value. - /// - /// Arguments passed to `or` are eagerly evaluated; if you are passing - /// the result of a function call, it is recommended to use [`or_else`], - /// which is lazily evaluated. - /// - /// [`or_else`]: EitherOrBoth::or_else - /// - /// # Examples - /// - /// ``` - /// # use itertools::EitherOrBoth; - /// assert_eq!(EitherOrBoth::Both("tree", 1).or("stone", 5), ("tree", 1)); - /// assert_eq!(EitherOrBoth::Left("tree").or("stone", 5), ("tree", 5)); - /// assert_eq!(EitherOrBoth::Right(1).or("stone", 5), ("stone", 1)); - /// ``` - pub fn or(self, l: A, r: B) -> (A, B) { - match self { - Left(inner_l) => (inner_l, r), - Right(inner_r) => (l, inner_r), - Both(inner_l, inner_r) => (inner_l, inner_r), - } - } - - /// Returns a tuple consisting of the `l` and `r` in `Both(l, r)`, if present. - /// Otherwise, returns the wrapped value for the present element, and the [`default`](Default::default) - /// for the other. - pub fn or_default(self) -> (A, B) - where - A: Default, - B: Default, - { - match self { - Left(l) => (l, B::default()), - Right(r) => (A::default(), r), - Both(l, r) => (l, r), - } - } - - /// Returns a tuple consisting of the `l` and `r` in `Both(l, r)`, if present. - /// Otherwise, returns the wrapped value for the present element, and computes the - /// missing value with the supplied closure. The first argument (`l`) is used for a - /// missing `Left` value. The second argument (`r`) is used for a missing `Right` value. - /// - /// # Examples - /// - /// ``` - /// # use itertools::EitherOrBoth; - /// let k = 10; - /// assert_eq!(EitherOrBoth::Both("tree", 1).or_else(|| "stone", || 2 * k), ("tree", 1)); - /// assert_eq!(EitherOrBoth::Left("tree").or_else(|| "stone", || 2 * k), ("tree", 20)); - /// assert_eq!(EitherOrBoth::Right(1).or_else(|| "stone", || 2 * k), ("stone", 1)); - /// ``` - pub fn or_else<L: FnOnce() -> A, R: FnOnce() -> B>(self, l: L, r: R) -> (A, B) { - match self { - Left(inner_l) => (inner_l, r()), - Right(inner_r) => (l(), inner_r), - Both(inner_l, inner_r) => (inner_l, inner_r), - } - } - - /// Returns a mutable reference to the left value. If the left value is not present, - /// it is replaced with `val`. - pub fn left_or_insert(&mut self, val: A) -> &mut A { - self.left_or_insert_with(|| val) - } - - /// Returns a mutable reference to the right value. If the right value is not present, - /// it is replaced with `val`. - pub fn right_or_insert(&mut self, val: B) -> &mut B { - self.right_or_insert_with(|| val) - } - - /// If the left value is not present, replace it the value computed by the closure `f`. - /// Returns a mutable reference to the now-present left value. - pub fn left_or_insert_with<F>(&mut self, f: F) -> &mut A - where - F: FnOnce() -> A, - { - match self { - Left(left) | Both(left, _) => left, - Right(_) => self.insert_left(f()), - } - } - - /// If the right value is not present, replace it the value computed by the closure `f`. - /// Returns a mutable reference to the now-present right value. - pub fn right_or_insert_with<F>(&mut self, f: F) -> &mut B - where - F: FnOnce() -> B, - { - match self { - Right(right) | Both(_, right) => right, - Left(_) => self.insert_right(f()), - } - } - - /// Sets the `left` value of this instance, and returns a mutable reference to it. - /// Does not affect the `right` value. - /// - /// # Examples - /// ``` - /// # use itertools::{EitherOrBoth, EitherOrBoth::{Left, Right, Both}}; - /// - /// // Overwriting a pre-existing value. - /// let mut either: EitherOrBoth<_, ()> = Left(0_u32); - /// assert_eq!(*either.insert_left(69), 69); - /// - /// // Inserting a second value. - /// let mut either = Right("no"); - /// assert_eq!(*either.insert_left("yes"), "yes"); - /// assert_eq!(either, Both("yes", "no")); - /// ``` - pub fn insert_left(&mut self, val: A) -> &mut A { - match self { - Left(left) | Both(left, _) => { - *left = val; - left - } - Right(right) => { - // This is like a map in place operation. We move out of the reference, - // change the value, and then move back into the reference. - unsafe { - // SAFETY: We know this pointer is valid for reading since we got it from a reference. - let right = std::ptr::read(right as *mut _); - // SAFETY: Again, we know the pointer is valid since we got it from a reference. - std::ptr::write(self as *mut _, Both(val, right)); - } - - if let Both(left, _) = self { - left - } else { - // SAFETY: The above pattern will always match, since we just - // set `self` equal to `Both`. - unsafe { std::hint::unreachable_unchecked() } - } - } - } - } - - /// Sets the `right` value of this instance, and returns a mutable reference to it. - /// Does not affect the `left` value. - /// - /// # Examples - /// ``` - /// # use itertools::{EitherOrBoth, EitherOrBoth::{Left, Both}}; - /// // Overwriting a pre-existing value. - /// let mut either: EitherOrBoth<_, ()> = Left(0_u32); - /// assert_eq!(*either.insert_left(69), 69); - /// - /// // Inserting a second value. - /// let mut either = Left("what's"); - /// assert_eq!(*either.insert_right(9 + 10), 21 - 2); - /// assert_eq!(either, Both("what's", 9+10)); - /// ``` - pub fn insert_right(&mut self, val: B) -> &mut B { - match self { - Right(right) | Both(_, right) => { - *right = val; - right - } - Left(left) => { - // This is like a map in place operation. We move out of the reference, - // change the value, and then move back into the reference. - unsafe { - // SAFETY: We know this pointer is valid for reading since we got it from a reference. - let left = std::ptr::read(left as *mut _); - // SAFETY: Again, we know the pointer is valid since we got it from a reference. - std::ptr::write(self as *mut _, Both(left, val)); - } - if let Both(_, right) = self { - right - } else { - // SAFETY: The above pattern will always match, since we just - // set `self` equal to `Both`. - unsafe { std::hint::unreachable_unchecked() } - } - } - } - } - - /// Set `self` to `Both(..)`, containing the specified left and right values, - /// and returns a mutable reference to those values. - pub fn insert_both(&mut self, left: A, right: B) -> (&mut A, &mut B) { - *self = Both(left, right); - if let Both(left, right) = self { - (left, right) - } else { - // SAFETY: The above pattern will always match, since we just - // set `self` equal to `Both`. - unsafe { std::hint::unreachable_unchecked() } - } - } -} - -impl<T> EitherOrBoth<T, T> { - /// Return either value of left, right, or apply a function `f` to both values if both are present. - /// The input function has to return the same type as both Right and Left carry. - /// - /// This function can be used to preferrably extract the left resp. right value, - /// but fall back to the other (i.e. right resp. left) if the preferred one is not present. - /// - /// # Examples - /// ``` - /// # use itertools::EitherOrBoth; - /// assert_eq!(EitherOrBoth::Both(3, 7).reduce(u32::max), 7); - /// assert_eq!(EitherOrBoth::Left(3).reduce(u32::max), 3); - /// assert_eq!(EitherOrBoth::Right(7).reduce(u32::max), 7); - /// - /// // Extract the left value if present, fall back to the right otherwise. - /// assert_eq!(EitherOrBoth::Left("left").reduce(|l, _r| l), "left"); - /// assert_eq!(EitherOrBoth::Right("right").reduce(|l, _r| l), "right"); - /// assert_eq!(EitherOrBoth::Both("left", "right").reduce(|l, _r| l), "left"); - /// ``` - pub fn reduce<F>(self, f: F) -> T - where - F: FnOnce(T, T) -> T, - { - match self { - Left(a) => a, - Right(b) => b, - Both(a, b) => f(a, b), - } - } -} - -impl<A, B> From<EitherOrBoth<A, B>> for Option<Either<A, B>> { - fn from(value: EitherOrBoth<A, B>) -> Self { - match value { - Left(l) => Some(Either::Left(l)), - Right(r) => Some(Either::Right(r)), - Both(..) => None, - } - } -} - -impl<A, B> From<Either<A, B>> for EitherOrBoth<A, B> { - fn from(either: Either<A, B>) -> Self { - match either { - Either::Left(l) => Left(l), - Either::Right(l) => Right(l), - } - } -} diff --git a/vendor/itertools/src/exactly_one_err.rs b/vendor/itertools/src/exactly_one_err.rs deleted file mode 100644 index 19b9e191..00000000 --- a/vendor/itertools/src/exactly_one_err.rs +++ /dev/null @@ -1,125 +0,0 @@ -#[cfg(feature = "use_std")] -use std::error::Error; -use std::fmt::{Debug, Display, Formatter, Result as FmtResult}; - -use std::iter::ExactSizeIterator; - -use either::Either; - -use crate::size_hint; - -/// Iterator returned for the error case of `Itertools::exactly_one()` -/// This iterator yields exactly the same elements as the input iterator. -/// -/// During the execution of `exactly_one` the iterator must be mutated. This wrapper -/// effectively "restores" the state of the input iterator when it's handed back. -/// -/// This is very similar to `PutBackN` except this iterator only supports 0-2 elements and does not -/// use a `Vec`. -#[derive(Clone)] -pub struct ExactlyOneError<I> -where - I: Iterator, -{ - first_two: Option<Either<[I::Item; 2], I::Item>>, - inner: I, -} - -impl<I> ExactlyOneError<I> -where - I: Iterator, -{ - /// Creates a new `ExactlyOneErr` iterator. - pub(crate) fn new(first_two: Option<Either<[I::Item; 2], I::Item>>, inner: I) -> Self { - Self { first_two, inner } - } - - fn additional_len(&self) -> usize { - match self.first_two { - Some(Either::Left(_)) => 2, - Some(Either::Right(_)) => 1, - None => 0, - } - } -} - -impl<I> Iterator for ExactlyOneError<I> -where - I: Iterator, -{ - type Item = I::Item; - - fn next(&mut self) -> Option<Self::Item> { - match self.first_two.take() { - Some(Either::Left([first, second])) => { - self.first_two = Some(Either::Right(second)); - Some(first) - } - Some(Either::Right(second)) => Some(second), - None => self.inner.next(), - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - size_hint::add_scalar(self.inner.size_hint(), self.additional_len()) - } - - fn fold<B, F>(self, mut init: B, mut f: F) -> B - where - F: FnMut(B, Self::Item) -> B, - { - match self.first_two { - Some(Either::Left([first, second])) => { - init = f(init, first); - init = f(init, second); - } - Some(Either::Right(second)) => init = f(init, second), - None => {} - } - self.inner.fold(init, f) - } -} - -impl<I> ExactSizeIterator for ExactlyOneError<I> where I: ExactSizeIterator {} - -impl<I> Display for ExactlyOneError<I> -where - I: Iterator, -{ - fn fmt(&self, f: &mut Formatter) -> FmtResult { - let additional = self.additional_len(); - if additional > 0 { - write!(f, "got at least 2 elements when exactly one was expected") - } else { - write!(f, "got zero elements when exactly one was expected") - } - } -} - -impl<I> Debug for ExactlyOneError<I> -where - I: Iterator + Debug, - I::Item: Debug, -{ - fn fmt(&self, f: &mut Formatter) -> FmtResult { - let mut dbg = f.debug_struct("ExactlyOneError"); - match &self.first_two { - Some(Either::Left([first, second])) => { - dbg.field("first", first).field("second", second); - } - Some(Either::Right(second)) => { - dbg.field("second", second); - } - None => {} - } - dbg.field("inner", &self.inner).finish() - } -} - -#[cfg(feature = "use_std")] -impl<I> Error for ExactlyOneError<I> -where - I: Iterator + Debug, - I::Item: Debug, -{ -} diff --git a/vendor/itertools/src/extrema_set.rs b/vendor/itertools/src/extrema_set.rs deleted file mode 100644 index 7d353821..00000000 --- a/vendor/itertools/src/extrema_set.rs +++ /dev/null @@ -1,49 +0,0 @@ -use alloc::{vec, vec::Vec}; -use std::cmp::Ordering; - -/// Implementation guts for `min_set`, `min_set_by`, and `min_set_by_key`. -pub fn min_set_impl<I, K, F, Compare>( - mut it: I, - mut key_for: F, - mut compare: Compare, -) -> Vec<I::Item> -where - I: Iterator, - F: FnMut(&I::Item) -> K, - Compare: FnMut(&I::Item, &I::Item, &K, &K) -> Ordering, -{ - match it.next() { - None => Vec::new(), - Some(element) => { - let mut current_key = key_for(&element); - let mut result = vec![element]; - it.for_each(|element| { - let key = key_for(&element); - match compare(&element, &result[0], &key, ¤t_key) { - Ordering::Less => { - result.clear(); - result.push(element); - current_key = key; - } - Ordering::Equal => { - result.push(element); - } - Ordering::Greater => {} - } - }); - result - } - } -} - -/// Implementation guts for `ax_set`, `max_set_by`, and `max_set_by_key`. -pub fn max_set_impl<I, K, F, Compare>(it: I, key_for: F, mut compare: Compare) -> Vec<I::Item> -where - I: Iterator, - F: FnMut(&I::Item) -> K, - Compare: FnMut(&I::Item, &I::Item, &K, &K) -> Ordering, -{ - min_set_impl(it, key_for, |it1, it2, key1, key2| { - compare(it2, it1, key2, key1) - }) -} diff --git a/vendor/itertools/src/flatten_ok.rs b/vendor/itertools/src/flatten_ok.rs deleted file mode 100644 index 48f1e90a..00000000 --- a/vendor/itertools/src/flatten_ok.rs +++ /dev/null @@ -1,205 +0,0 @@ -use crate::size_hint; -use std::{ - fmt, - iter::{DoubleEndedIterator, FusedIterator}, -}; - -pub fn flatten_ok<I, T, E>(iter: I) -> FlattenOk<I, T, E> -where - I: Iterator<Item = Result<T, E>>, - T: IntoIterator, -{ - FlattenOk { - iter, - inner_front: None, - inner_back: None, - } -} - -/// An iterator adaptor that flattens `Result::Ok` values and -/// allows `Result::Err` values through unchanged. -/// -/// See [`.flatten_ok()`](crate::Itertools::flatten_ok) for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct FlattenOk<I, T, E> -where - I: Iterator<Item = Result<T, E>>, - T: IntoIterator, -{ - iter: I, - inner_front: Option<T::IntoIter>, - inner_back: Option<T::IntoIter>, -} - -impl<I, T, E> Iterator for FlattenOk<I, T, E> -where - I: Iterator<Item = Result<T, E>>, - T: IntoIterator, -{ - type Item = Result<T::Item, E>; - - fn next(&mut self) -> Option<Self::Item> { - loop { - // Handle the front inner iterator. - if let Some(inner) = &mut self.inner_front { - if let Some(item) = inner.next() { - return Some(Ok(item)); - } - - // This is necessary for the iterator to implement `FusedIterator` - // with only the original iterator being fused. - self.inner_front = None; - } - - match self.iter.next() { - Some(Ok(ok)) => self.inner_front = Some(ok.into_iter()), - Some(Err(e)) => return Some(Err(e)), - None => { - // Handle the back inner iterator. - if let Some(inner) = &mut self.inner_back { - if let Some(item) = inner.next() { - return Some(Ok(item)); - } - - // This is necessary for the iterator to implement `FusedIterator` - // with only the original iterator being fused. - self.inner_back = None; - } else { - return None; - } - } - } - } - } - - fn fold<B, F>(self, init: B, mut f: F) -> B - where - Self: Sized, - F: FnMut(B, Self::Item) -> B, - { - // Front - let mut acc = match self.inner_front { - Some(x) => x.fold(init, |a, o| f(a, Ok(o))), - None => init, - }; - - acc = self.iter.fold(acc, |acc, x| match x { - Ok(it) => it.into_iter().fold(acc, |a, o| f(a, Ok(o))), - Err(e) => f(acc, Err(e)), - }); - - // Back - match self.inner_back { - Some(x) => x.fold(acc, |a, o| f(a, Ok(o))), - None => acc, - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - let inner_hint = |inner: &Option<T::IntoIter>| { - inner - .as_ref() - .map(Iterator::size_hint) - .unwrap_or((0, Some(0))) - }; - let inner_front = inner_hint(&self.inner_front); - let inner_back = inner_hint(&self.inner_back); - // The outer iterator `Ok` case could be (0, None) as we don't know its size_hint yet. - let outer = match self.iter.size_hint() { - (0, Some(0)) => (0, Some(0)), - _ => (0, None), - }; - - size_hint::add(size_hint::add(inner_front, inner_back), outer) - } -} - -impl<I, T, E> DoubleEndedIterator for FlattenOk<I, T, E> -where - I: DoubleEndedIterator<Item = Result<T, E>>, - T: IntoIterator, - T::IntoIter: DoubleEndedIterator, -{ - fn next_back(&mut self) -> Option<Self::Item> { - loop { - // Handle the back inner iterator. - if let Some(inner) = &mut self.inner_back { - if let Some(item) = inner.next_back() { - return Some(Ok(item)); - } - - // This is necessary for the iterator to implement `FusedIterator` - // with only the original iterator being fused. - self.inner_back = None; - } - - match self.iter.next_back() { - Some(Ok(ok)) => self.inner_back = Some(ok.into_iter()), - Some(Err(e)) => return Some(Err(e)), - None => { - // Handle the front inner iterator. - if let Some(inner) = &mut self.inner_front { - if let Some(item) = inner.next_back() { - return Some(Ok(item)); - } - - // This is necessary for the iterator to implement `FusedIterator` - // with only the original iterator being fused. - self.inner_front = None; - } else { - return None; - } - } - } - } - } - - fn rfold<B, F>(self, init: B, mut f: F) -> B - where - Self: Sized, - F: FnMut(B, Self::Item) -> B, - { - // Back - let mut acc = match self.inner_back { - Some(x) => x.rfold(init, |a, o| f(a, Ok(o))), - None => init, - }; - - acc = self.iter.rfold(acc, |acc, x| match x { - Ok(it) => it.into_iter().rfold(acc, |a, o| f(a, Ok(o))), - Err(e) => f(acc, Err(e)), - }); - - // Front - match self.inner_front { - Some(x) => x.rfold(acc, |a, o| f(a, Ok(o))), - None => acc, - } - } -} - -impl<I, T, E> Clone for FlattenOk<I, T, E> -where - I: Iterator<Item = Result<T, E>> + Clone, - T: IntoIterator, - T::IntoIter: Clone, -{ - clone_fields!(iter, inner_front, inner_back); -} - -impl<I, T, E> fmt::Debug for FlattenOk<I, T, E> -where - I: Iterator<Item = Result<T, E>> + fmt::Debug, - T: IntoIterator, - T::IntoIter: fmt::Debug, -{ - debug_fmt_fields!(FlattenOk, iter, inner_front, inner_back); -} - -/// Only the iterator being flattened needs to implement [`FusedIterator`]. -impl<I, T, E> FusedIterator for FlattenOk<I, T, E> -where - I: FusedIterator<Item = Result<T, E>>, - T: IntoIterator, -{ -} diff --git a/vendor/itertools/src/format.rs b/vendor/itertools/src/format.rs deleted file mode 100644 index 3abdda36..00000000 --- a/vendor/itertools/src/format.rs +++ /dev/null @@ -1,178 +0,0 @@ -use std::cell::Cell; -use std::fmt; - -/// Format all iterator elements lazily, separated by `sep`. -/// -/// The format value can only be formatted once, after that the iterator is -/// exhausted. -/// -/// See [`.format_with()`](crate::Itertools::format_with) for more information. -pub struct FormatWith<'a, I, F> { - sep: &'a str, - /// `FormatWith` uses interior mutability because `Display::fmt` takes `&self`. - inner: Cell<Option<(I, F)>>, -} - -/// Format all iterator elements lazily, separated by `sep`. -/// -/// The format value can only be formatted once, after that the iterator is -/// exhausted. -/// -/// See [`.format()`](crate::Itertools::format) -/// for more information. -pub struct Format<'a, I> { - sep: &'a str, - /// `Format` uses interior mutability because `Display::fmt` takes `&self`. - inner: Cell<Option<I>>, -} - -pub fn new_format<I, F>(iter: I, separator: &str, f: F) -> FormatWith<'_, I, F> -where - I: Iterator, - F: FnMut(I::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result, -{ - FormatWith { - sep: separator, - inner: Cell::new(Some((iter, f))), - } -} - -pub fn new_format_default<I>(iter: I, separator: &str) -> Format<'_, I> -where - I: Iterator, -{ - Format { - sep: separator, - inner: Cell::new(Some(iter)), - } -} - -impl<I, F> fmt::Display for FormatWith<'_, I, F> -where - I: Iterator, - F: FnMut(I::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result, -{ - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - let (mut iter, mut format) = match self.inner.take() { - Some(t) => t, - None => panic!("FormatWith: was already formatted once"), - }; - - if let Some(fst) = iter.next() { - format(fst, &mut |disp: &dyn fmt::Display| disp.fmt(f))?; - iter.try_for_each(|elt| { - if !self.sep.is_empty() { - f.write_str(self.sep)?; - } - format(elt, &mut |disp: &dyn fmt::Display| disp.fmt(f)) - })?; - } - Ok(()) - } -} - -impl<I, F> fmt::Debug for FormatWith<'_, I, F> -where - I: Iterator, - F: FnMut(I::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result, -{ - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - fmt::Display::fmt(self, f) - } -} - -impl<I> Format<'_, I> -where - I: Iterator, -{ - fn format( - &self, - f: &mut fmt::Formatter, - cb: fn(&I::Item, &mut fmt::Formatter) -> fmt::Result, - ) -> fmt::Result { - let mut iter = match self.inner.take() { - Some(t) => t, - None => panic!("Format: was already formatted once"), - }; - - if let Some(fst) = iter.next() { - cb(&fst, f)?; - iter.try_for_each(|elt| { - if !self.sep.is_empty() { - f.write_str(self.sep)?; - } - cb(&elt, f) - })?; - } - Ok(()) - } -} - -macro_rules! impl_format { - ($($fmt_trait:ident)*) => { - $( - impl<'a, I> fmt::$fmt_trait for Format<'a, I> - where I: Iterator, - I::Item: fmt::$fmt_trait, - { - fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { - self.format(f, fmt::$fmt_trait::fmt) - } - } - )* - } -} - -impl_format! {Display Debug UpperExp LowerExp UpperHex LowerHex Octal Binary Pointer} - -impl<I, F> Clone for FormatWith<'_, I, F> -where - (I, F): Clone, -{ - fn clone(&self) -> Self { - struct PutBackOnDrop<'r, 'a, I, F> { - into: &'r FormatWith<'a, I, F>, - inner: Option<(I, F)>, - } - // This ensures we preserve the state of the original `FormatWith` if `Clone` panics - impl<I, F> Drop for PutBackOnDrop<'_, '_, I, F> { - fn drop(&mut self) { - self.into.inner.set(self.inner.take()) - } - } - let pbod = PutBackOnDrop { - inner: self.inner.take(), - into: self, - }; - Self { - inner: Cell::new(pbod.inner.clone()), - sep: self.sep, - } - } -} - -impl<I> Clone for Format<'_, I> -where - I: Clone, -{ - fn clone(&self) -> Self { - struct PutBackOnDrop<'r, 'a, I> { - into: &'r Format<'a, I>, - inner: Option<I>, - } - // This ensures we preserve the state of the original `FormatWith` if `Clone` panics - impl<I> Drop for PutBackOnDrop<'_, '_, I> { - fn drop(&mut self) { - self.into.inner.set(self.inner.take()) - } - } - let pbod = PutBackOnDrop { - inner: self.inner.take(), - into: self, - }; - Self { - inner: Cell::new(pbod.inner.clone()), - sep: self.sep, - } - } -} diff --git a/vendor/itertools/src/free.rs b/vendor/itertools/src/free.rs deleted file mode 100644 index 4c682054..00000000 --- a/vendor/itertools/src/free.rs +++ /dev/null @@ -1,319 +0,0 @@ -//! Free functions that create iterator adaptors or call iterator methods. -//! -//! The benefit of free functions is that they accept any [`IntoIterator`] as -//! argument, so the resulting code may be easier to read. - -#[cfg(feature = "use_alloc")] -use std::fmt::Display; -use std::iter::{self, Zip}; -#[cfg(feature = "use_alloc")] -type VecIntoIter<T> = alloc::vec::IntoIter<T>; - -#[cfg(feature = "use_alloc")] -use alloc::string::String; - -use crate::intersperse::{Intersperse, IntersperseWith}; -use crate::Itertools; - -pub use crate::adaptors::{interleave, put_back}; -#[cfg(feature = "use_alloc")] -pub use crate::kmerge_impl::kmerge; -pub use crate::merge_join::{merge, merge_join_by}; -#[cfg(feature = "use_alloc")] -pub use crate::multipeek_impl::multipeek; -#[cfg(feature = "use_alloc")] -pub use crate::peek_nth::peek_nth; -#[cfg(feature = "use_alloc")] -pub use crate::put_back_n_impl::put_back_n; -#[cfg(feature = "use_alloc")] -pub use crate::rciter_impl::rciter; -pub use crate::zip_eq_impl::zip_eq; - -/// Iterate `iterable` with a particular value inserted between each element. -/// -/// [`IntoIterator`] enabled version of [`Iterator::intersperse`]. -/// -/// ``` -/// use itertools::intersperse; -/// -/// itertools::assert_equal(intersperse(0..3, 8), vec![0, 8, 1, 8, 2]); -/// ``` -pub fn intersperse<I>(iterable: I, element: I::Item) -> Intersperse<I::IntoIter> -where - I: IntoIterator, - <I as IntoIterator>::Item: Clone, -{ - Itertools::intersperse(iterable.into_iter(), element) -} - -/// Iterate `iterable` with a particular value created by a function inserted -/// between each element. -/// -/// [`IntoIterator`] enabled version of [`Iterator::intersperse_with`]. -/// -/// ``` -/// use itertools::intersperse_with; -/// -/// let mut i = 10; -/// itertools::assert_equal(intersperse_with(0..3, || { i -= 1; i }), vec![0, 9, 1, 8, 2]); -/// assert_eq!(i, 8); -/// ``` -pub fn intersperse_with<I, F>(iterable: I, element: F) -> IntersperseWith<I::IntoIter, F> -where - I: IntoIterator, - F: FnMut() -> I::Item, -{ - Itertools::intersperse_with(iterable.into_iter(), element) -} - -/// Iterate `iterable` with a running index. -/// -/// [`IntoIterator`] enabled version of [`Iterator::enumerate`]. -/// -/// ``` -/// use itertools::enumerate; -/// -/// for (i, elt) in enumerate(&[1, 2, 3]) { -/// /* loop body */ -/// # let _ = (i, elt); -/// } -/// ``` -pub fn enumerate<I>(iterable: I) -> iter::Enumerate<I::IntoIter> -where - I: IntoIterator, -{ - iterable.into_iter().enumerate() -} - -/// Iterate `iterable` in reverse. -/// -/// [`IntoIterator`] enabled version of [`Iterator::rev`]. -/// -/// ``` -/// use itertools::rev; -/// -/// for elt in rev(&[1, 2, 3]) { -/// /* loop body */ -/// # let _ = elt; -/// } -/// ``` -pub fn rev<I>(iterable: I) -> iter::Rev<I::IntoIter> -where - I: IntoIterator, - I::IntoIter: DoubleEndedIterator, -{ - iterable.into_iter().rev() -} - -/// Converts the arguments to iterators and zips them. -/// -/// [`IntoIterator`] enabled version of [`Iterator::zip`]. -/// -/// ## Example -/// -/// ``` -/// use itertools::zip; -/// -/// let mut result: Vec<(i32, char)> = Vec::new(); -/// -/// for (a, b) in zip(&[1, 2, 3, 4, 5], &['a', 'b', 'c']) { -/// result.push((*a, *b)); -/// } -/// assert_eq!(result, vec![(1, 'a'),(2, 'b'),(3, 'c')]); -/// ``` -#[deprecated( - note = "Use [std::iter::zip](https://doc.rust-lang.org/std/iter/fn.zip.html) instead", - since = "0.10.4" -)] -pub fn zip<I, J>(i: I, j: J) -> Zip<I::IntoIter, J::IntoIter> -where - I: IntoIterator, - J: IntoIterator, -{ - i.into_iter().zip(j) -} - -/// Takes two iterables and creates a new iterator over both in sequence. -/// -/// [`IntoIterator`] enabled version of [`Iterator::chain`]. -/// -/// ## Example -/// ``` -/// use itertools::chain; -/// -/// let mut result:Vec<i32> = Vec::new(); -/// -/// for element in chain(&[1, 2, 3], &[4]) { -/// result.push(*element); -/// } -/// assert_eq!(result, vec![1, 2, 3, 4]); -/// ``` -pub fn chain<I, J>( - i: I, - j: J, -) -> iter::Chain<<I as IntoIterator>::IntoIter, <J as IntoIterator>::IntoIter> -where - I: IntoIterator, - J: IntoIterator<Item = I::Item>, -{ - i.into_iter().chain(j) -} - -/// Create an iterator that clones each element from `&T` to `T`. -/// -/// [`IntoIterator`] enabled version of [`Iterator::cloned`]. -/// -/// ``` -/// use itertools::cloned; -/// -/// assert_eq!(cloned(b"abc").next(), Some(b'a')); -/// ``` -pub fn cloned<'a, I, T>(iterable: I) -> iter::Cloned<I::IntoIter> -where - I: IntoIterator<Item = &'a T>, - T: Clone + 'a, -{ - iterable.into_iter().cloned() -} - -/// Perform a fold operation over the iterable. -/// -/// [`IntoIterator`] enabled version of [`Iterator::fold`]. -/// -/// ``` -/// use itertools::fold; -/// -/// assert_eq!(fold(&[1., 2., 3.], 0., |a, &b| f32::max(a, b)), 3.); -/// ``` -pub fn fold<I, B, F>(iterable: I, init: B, f: F) -> B -where - I: IntoIterator, - F: FnMut(B, I::Item) -> B, -{ - iterable.into_iter().fold(init, f) -} - -/// Test whether the predicate holds for all elements in the iterable. -/// -/// [`IntoIterator`] enabled version of [`Iterator::all`]. -/// -/// ``` -/// use itertools::all; -/// -/// assert!(all(&[1, 2, 3], |elt| *elt > 0)); -/// ``` -pub fn all<I, F>(iterable: I, f: F) -> bool -where - I: IntoIterator, - F: FnMut(I::Item) -> bool, -{ - iterable.into_iter().all(f) -} - -/// Test whether the predicate holds for any elements in the iterable. -/// -/// [`IntoIterator`] enabled version of [`Iterator::any`]. -/// -/// ``` -/// use itertools::any; -/// -/// assert!(any(&[0, -1, 2], |elt| *elt > 0)); -/// ``` -pub fn any<I, F>(iterable: I, f: F) -> bool -where - I: IntoIterator, - F: FnMut(I::Item) -> bool, -{ - iterable.into_iter().any(f) -} - -/// Return the maximum value of the iterable. -/// -/// [`IntoIterator`] enabled version of [`Iterator::max`]. -/// -/// ``` -/// use itertools::max; -/// -/// assert_eq!(max(0..10), Some(9)); -/// ``` -pub fn max<I>(iterable: I) -> Option<I::Item> -where - I: IntoIterator, - I::Item: Ord, -{ - iterable.into_iter().max() -} - -/// Return the minimum value of the iterable. -/// -/// [`IntoIterator`] enabled version of [`Iterator::min`]. -/// -/// ``` -/// use itertools::min; -/// -/// assert_eq!(min(0..10), Some(0)); -/// ``` -pub fn min<I>(iterable: I) -> Option<I::Item> -where - I: IntoIterator, - I::Item: Ord, -{ - iterable.into_iter().min() -} - -/// Combine all iterator elements into one `String`, separated by `sep`. -/// -/// [`IntoIterator`] enabled version of [`Itertools::join`]. -/// -/// ``` -/// use itertools::join; -/// -/// assert_eq!(join(&[1, 2, 3], ", "), "1, 2, 3"); -/// ``` -#[cfg(feature = "use_alloc")] -pub fn join<I>(iterable: I, sep: &str) -> String -where - I: IntoIterator, - I::Item: Display, -{ - iterable.into_iter().join(sep) -} - -/// Sort all iterator elements into a new iterator in ascending order. -/// -/// [`IntoIterator`] enabled version of [`Itertools::sorted`]. -/// -/// ``` -/// use itertools::sorted; -/// use itertools::assert_equal; -/// -/// assert_equal(sorted("rust".chars()), "rstu".chars()); -/// ``` -#[cfg(feature = "use_alloc")] -pub fn sorted<I>(iterable: I) -> VecIntoIter<I::Item> -where - I: IntoIterator, - I::Item: Ord, -{ - iterable.into_iter().sorted() -} - -/// Sort all iterator elements into a new iterator in ascending order. -/// This sort is unstable (i.e., may reorder equal elements). -/// -/// [`IntoIterator`] enabled version of [`Itertools::sorted_unstable`]. -/// -/// ``` -/// use itertools::sorted_unstable; -/// use itertools::assert_equal; -/// -/// assert_equal(sorted_unstable("rust".chars()), "rstu".chars()); -/// ``` -#[cfg(feature = "use_alloc")] -pub fn sorted_unstable<I>(iterable: I) -> VecIntoIter<I::Item> -where - I: IntoIterator, - I::Item: Ord, -{ - iterable.into_iter().sorted_unstable() -} diff --git a/vendor/itertools/src/group_map.rs b/vendor/itertools/src/group_map.rs deleted file mode 100644 index 3dcee83a..00000000 --- a/vendor/itertools/src/group_map.rs +++ /dev/null @@ -1,32 +0,0 @@ -#![cfg(feature = "use_std")] - -use std::collections::HashMap; -use std::hash::Hash; -use std::iter::Iterator; - -/// Return a `HashMap` of keys mapped to a list of their corresponding values. -/// -/// See [`.into_group_map()`](crate::Itertools::into_group_map) -/// for more information. -pub fn into_group_map<I, K, V>(iter: I) -> HashMap<K, Vec<V>> -where - I: Iterator<Item = (K, V)>, - K: Hash + Eq, -{ - let mut lookup = HashMap::new(); - - iter.for_each(|(key, val)| { - lookup.entry(key).or_insert_with(Vec::new).push(val); - }); - - lookup -} - -pub fn into_group_map_by<I, K, V, F>(iter: I, mut f: F) -> HashMap<K, Vec<V>> -where - I: Iterator<Item = V>, - K: Hash + Eq, - F: FnMut(&V) -> K, -{ - into_group_map(iter.map(|v| (f(&v), v))) -} diff --git a/vendor/itertools/src/groupbylazy.rs b/vendor/itertools/src/groupbylazy.rs deleted file mode 100644 index 5847c8f7..00000000 --- a/vendor/itertools/src/groupbylazy.rs +++ /dev/null @@ -1,613 +0,0 @@ -use alloc::vec::{self, Vec}; -use std::cell::{Cell, RefCell}; - -/// A trait to unify `FnMut` for `ChunkBy` with the chunk key in `IntoChunks` -trait KeyFunction<A> { - type Key; - fn call_mut(&mut self, arg: A) -> Self::Key; -} - -impl<A, K, F> KeyFunction<A> for F -where - F: FnMut(A) -> K + ?Sized, -{ - type Key = K; - #[inline] - fn call_mut(&mut self, arg: A) -> Self::Key { - (*self)(arg) - } -} - -/// `ChunkIndex` acts like the grouping key function for `IntoChunks` -#[derive(Debug, Clone)] -struct ChunkIndex { - size: usize, - index: usize, - key: usize, -} - -impl ChunkIndex { - #[inline(always)] - fn new(size: usize) -> Self { - Self { - size, - index: 0, - key: 0, - } - } -} - -impl<A> KeyFunction<A> for ChunkIndex { - type Key = usize; - #[inline(always)] - fn call_mut(&mut self, _arg: A) -> Self::Key { - if self.index == self.size { - self.key += 1; - self.index = 0; - } - self.index += 1; - self.key - } -} - -#[derive(Clone)] -struct GroupInner<K, I, F> -where - I: Iterator, -{ - key: F, - iter: I, - current_key: Option<K>, - current_elt: Option<I::Item>, - /// flag set if iterator is exhausted - done: bool, - /// Index of group we are currently buffering or visiting - top_group: usize, - /// Least index for which we still have elements buffered - oldest_buffered_group: usize, - /// Group index for `buffer[0]` -- the slots - /// `bottom_group..oldest_buffered_group` are unused and will be erased when - /// that range is large enough. - bottom_group: usize, - /// Buffered groups, from `bottom_group` (index 0) to `top_group`. - buffer: Vec<vec::IntoIter<I::Item>>, - /// index of last group iter that was dropped, - /// `usize::MAX` initially when no group was dropped - dropped_group: usize, -} - -impl<K, I, F> GroupInner<K, I, F> -where - I: Iterator, - F: for<'a> KeyFunction<&'a I::Item, Key = K>, - K: PartialEq, -{ - /// `client`: Index of group that requests next element - #[inline(always)] - fn step(&mut self, client: usize) -> Option<I::Item> { - /* - println!("client={}, bottom_group={}, oldest_buffered_group={}, top_group={}, buffers=[{}]", - client, self.bottom_group, self.oldest_buffered_group, - self.top_group, - self.buffer.iter().map(|elt| elt.len()).format(", ")); - */ - if client < self.oldest_buffered_group { - None - } else if client < self.top_group - || (client == self.top_group && self.buffer.len() > self.top_group - self.bottom_group) - { - self.lookup_buffer(client) - } else if self.done { - None - } else if self.top_group == client { - self.step_current() - } else { - self.step_buffering(client) - } - } - - #[inline(never)] - fn lookup_buffer(&mut self, client: usize) -> Option<I::Item> { - // if `bufidx` doesn't exist in self.buffer, it might be empty - let bufidx = client - self.bottom_group; - if client < self.oldest_buffered_group { - return None; - } - let elt = self.buffer.get_mut(bufidx).and_then(|queue| queue.next()); - if elt.is_none() && client == self.oldest_buffered_group { - // FIXME: VecDeque is unfortunately not zero allocation when empty, - // so we do this job manually. - // `bottom_group..oldest_buffered_group` is unused, and if it's large enough, erase it. - self.oldest_buffered_group += 1; - // skip forward further empty queues too - while self - .buffer - .get(self.oldest_buffered_group - self.bottom_group) - .map_or(false, |buf| buf.len() == 0) - { - self.oldest_buffered_group += 1; - } - - let nclear = self.oldest_buffered_group - self.bottom_group; - if nclear > 0 && nclear >= self.buffer.len() / 2 { - let mut i = 0; - self.buffer.retain(|buf| { - i += 1; - debug_assert!(buf.len() == 0 || i > nclear); - i > nclear - }); - self.bottom_group = self.oldest_buffered_group; - } - } - elt - } - - /// Take the next element from the iterator, and set the done - /// flag if exhausted. Must not be called after done. - #[inline(always)] - fn next_element(&mut self) -> Option<I::Item> { - debug_assert!(!self.done); - match self.iter.next() { - None => { - self.done = true; - None - } - otherwise => otherwise, - } - } - - #[inline(never)] - fn step_buffering(&mut self, client: usize) -> Option<I::Item> { - // requested a later group -- walk through the current group up to - // the requested group index, and buffer the elements (unless - // the group is marked as dropped). - // Because the `Groups` iterator is always the first to request - // each group index, client is the next index efter top_group. - debug_assert!(self.top_group + 1 == client); - let mut group = Vec::new(); - - if let Some(elt) = self.current_elt.take() { - if self.top_group != self.dropped_group { - group.push(elt); - } - } - let mut first_elt = None; // first element of the next group - - while let Some(elt) = self.next_element() { - let key = self.key.call_mut(&elt); - match self.current_key.take() { - None => {} - Some(old_key) => { - if old_key != key { - self.current_key = Some(key); - first_elt = Some(elt); - break; - } - } - } - self.current_key = Some(key); - if self.top_group != self.dropped_group { - group.push(elt); - } - } - - if self.top_group != self.dropped_group { - self.push_next_group(group); - } - if first_elt.is_some() { - self.top_group += 1; - debug_assert!(self.top_group == client); - } - first_elt - } - - fn push_next_group(&mut self, group: Vec<I::Item>) { - // When we add a new buffered group, fill up slots between oldest_buffered_group and top_group - while self.top_group - self.bottom_group > self.buffer.len() { - if self.buffer.is_empty() { - self.bottom_group += 1; - self.oldest_buffered_group += 1; - } else { - self.buffer.push(Vec::new().into_iter()); - } - } - self.buffer.push(group.into_iter()); - debug_assert!(self.top_group + 1 - self.bottom_group == self.buffer.len()); - } - - /// This is the immediate case, where we use no buffering - #[inline] - fn step_current(&mut self) -> Option<I::Item> { - debug_assert!(!self.done); - if let elt @ Some(..) = self.current_elt.take() { - return elt; - } - match self.next_element() { - None => None, - Some(elt) => { - let key = self.key.call_mut(&elt); - match self.current_key.take() { - None => {} - Some(old_key) => { - if old_key != key { - self.current_key = Some(key); - self.current_elt = Some(elt); - self.top_group += 1; - return None; - } - } - } - self.current_key = Some(key); - Some(elt) - } - } - } - - /// Request the just started groups' key. - /// - /// `client`: Index of group - /// - /// **Panics** if no group key is available. - fn group_key(&mut self, client: usize) -> K { - // This can only be called after we have just returned the first - // element of a group. - // Perform this by simply buffering one more element, grabbing the - // next key. - debug_assert!(!self.done); - debug_assert!(client == self.top_group); - debug_assert!(self.current_key.is_some()); - debug_assert!(self.current_elt.is_none()); - let old_key = self.current_key.take().unwrap(); - if let Some(elt) = self.next_element() { - let key = self.key.call_mut(&elt); - if old_key != key { - self.top_group += 1; - } - self.current_key = Some(key); - self.current_elt = Some(elt); - } - old_key - } -} - -impl<K, I, F> GroupInner<K, I, F> -where - I: Iterator, -{ - /// Called when a group is dropped - fn drop_group(&mut self, client: usize) { - // It's only useful to track the maximal index - if self.dropped_group == !0 || client > self.dropped_group { - self.dropped_group = client; - } - } -} - -#[deprecated(note = "Use `ChunkBy` instead", since = "0.13.0")] -/// See [`ChunkBy`](crate::structs::ChunkBy). -pub type GroupBy<K, I, F> = ChunkBy<K, I, F>; - -/// `ChunkBy` is the storage for the lazy grouping operation. -/// -/// If the groups are consumed in their original order, or if each -/// group is dropped without keeping it around, then `ChunkBy` uses -/// no allocations. It needs allocations only if several group iterators -/// are alive at the same time. -/// -/// This type implements [`IntoIterator`] (it is **not** an iterator -/// itself), because the group iterators need to borrow from this -/// value. It should be stored in a local variable or temporary and -/// iterated. -/// -/// See [`.chunk_by()`](crate::Itertools::chunk_by) for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct ChunkBy<K, I, F> -where - I: Iterator, -{ - inner: RefCell<GroupInner<K, I, F>>, - // the group iterator's current index. Keep this in the main value - // so that simultaneous iterators all use the same state. - index: Cell<usize>, -} - -/// Create a new -pub fn new<K, J, F>(iter: J, f: F) -> ChunkBy<K, J::IntoIter, F> -where - J: IntoIterator, - F: FnMut(&J::Item) -> K, -{ - ChunkBy { - inner: RefCell::new(GroupInner { - key: f, - iter: iter.into_iter(), - current_key: None, - current_elt: None, - done: false, - top_group: 0, - oldest_buffered_group: 0, - bottom_group: 0, - buffer: Vec::new(), - dropped_group: !0, - }), - index: Cell::new(0), - } -} - -impl<K, I, F> ChunkBy<K, I, F> -where - I: Iterator, -{ - /// `client`: Index of group that requests next element - fn step(&self, client: usize) -> Option<I::Item> - where - F: FnMut(&I::Item) -> K, - K: PartialEq, - { - self.inner.borrow_mut().step(client) - } - - /// `client`: Index of group - fn drop_group(&self, client: usize) { - self.inner.borrow_mut().drop_group(client); - } -} - -impl<'a, K, I, F> IntoIterator for &'a ChunkBy<K, I, F> -where - I: Iterator, - I::Item: 'a, - F: FnMut(&I::Item) -> K, - K: PartialEq, -{ - type Item = (K, Group<'a, K, I, F>); - type IntoIter = Groups<'a, K, I, F>; - - fn into_iter(self) -> Self::IntoIter { - Groups { parent: self } - } -} - -/// An iterator that yields the Group iterators. -/// -/// Iterator element type is `(K, Group)`: -/// the group's key `K` and the group's iterator. -/// -/// See [`.chunk_by()`](crate::Itertools::chunk_by) for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct Groups<'a, K, I, F> -where - I: Iterator + 'a, - I::Item: 'a, - K: 'a, - F: 'a, -{ - parent: &'a ChunkBy<K, I, F>, -} - -impl<'a, K, I, F> Iterator for Groups<'a, K, I, F> -where - I: Iterator, - I::Item: 'a, - F: FnMut(&I::Item) -> K, - K: PartialEq, -{ - type Item = (K, Group<'a, K, I, F>); - - #[inline] - fn next(&mut self) -> Option<Self::Item> { - let index = self.parent.index.get(); - self.parent.index.set(index + 1); - let inner = &mut *self.parent.inner.borrow_mut(); - inner.step(index).map(|elt| { - let key = inner.group_key(index); - ( - key, - Group { - parent: self.parent, - index, - first: Some(elt), - }, - ) - }) - } -} - -/// An iterator for the elements in a single group. -/// -/// Iterator element type is `I::Item`. -pub struct Group<'a, K, I, F> -where - I: Iterator + 'a, - I::Item: 'a, - K: 'a, - F: 'a, -{ - parent: &'a ChunkBy<K, I, F>, - index: usize, - first: Option<I::Item>, -} - -impl<'a, K, I, F> Drop for Group<'a, K, I, F> -where - I: Iterator, - I::Item: 'a, -{ - fn drop(&mut self) { - self.parent.drop_group(self.index); - } -} - -impl<'a, K, I, F> Iterator for Group<'a, K, I, F> -where - I: Iterator, - I::Item: 'a, - F: FnMut(&I::Item) -> K, - K: PartialEq, -{ - type Item = I::Item; - #[inline] - fn next(&mut self) -> Option<Self::Item> { - if let elt @ Some(..) = self.first.take() { - return elt; - } - self.parent.step(self.index) - } -} - -///// IntoChunks ///// - -/// Create a new -pub fn new_chunks<J>(iter: J, size: usize) -> IntoChunks<J::IntoIter> -where - J: IntoIterator, -{ - IntoChunks { - inner: RefCell::new(GroupInner { - key: ChunkIndex::new(size), - iter: iter.into_iter(), - current_key: None, - current_elt: None, - done: false, - top_group: 0, - oldest_buffered_group: 0, - bottom_group: 0, - buffer: Vec::new(), - dropped_group: !0, - }), - index: Cell::new(0), - } -} - -/// `ChunkLazy` is the storage for a lazy chunking operation. -/// -/// `IntoChunks` behaves just like `ChunkBy`: it is iterable, and -/// it only buffers if several chunk iterators are alive at the same time. -/// -/// This type implements [`IntoIterator`] (it is **not** an iterator -/// itself), because the chunk iterators need to borrow from this -/// value. It should be stored in a local variable or temporary and -/// iterated. -/// -/// Iterator element type is `Chunk`, each chunk's iterator. -/// -/// See [`.chunks()`](crate::Itertools::chunks) for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct IntoChunks<I> -where - I: Iterator, -{ - inner: RefCell<GroupInner<usize, I, ChunkIndex>>, - // the chunk iterator's current index. Keep this in the main value - // so that simultaneous iterators all use the same state. - index: Cell<usize>, -} - -impl<I> Clone for IntoChunks<I> -where - I: Clone + Iterator, - I::Item: Clone, -{ - clone_fields!(inner, index); -} - -impl<I> IntoChunks<I> -where - I: Iterator, -{ - /// `client`: Index of chunk that requests next element - fn step(&self, client: usize) -> Option<I::Item> { - self.inner.borrow_mut().step(client) - } - - /// `client`: Index of chunk - fn drop_group(&self, client: usize) { - self.inner.borrow_mut().drop_group(client); - } -} - -impl<'a, I> IntoIterator for &'a IntoChunks<I> -where - I: Iterator, - I::Item: 'a, -{ - type Item = Chunk<'a, I>; - type IntoIter = Chunks<'a, I>; - - fn into_iter(self) -> Self::IntoIter { - Chunks { parent: self } - } -} - -/// An iterator that yields the Chunk iterators. -/// -/// Iterator element type is `Chunk`. -/// -/// See [`.chunks()`](crate::Itertools::chunks) for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -#[derive(Clone)] -pub struct Chunks<'a, I> -where - I: Iterator + 'a, - I::Item: 'a, -{ - parent: &'a IntoChunks<I>, -} - -impl<'a, I> Iterator for Chunks<'a, I> -where - I: Iterator, - I::Item: 'a, -{ - type Item = Chunk<'a, I>; - - #[inline] - fn next(&mut self) -> Option<Self::Item> { - let index = self.parent.index.get(); - self.parent.index.set(index + 1); - let inner = &mut *self.parent.inner.borrow_mut(); - inner.step(index).map(|elt| Chunk { - parent: self.parent, - index, - first: Some(elt), - }) - } -} - -/// An iterator for the elements in a single chunk. -/// -/// Iterator element type is `I::Item`. -pub struct Chunk<'a, I> -where - I: Iterator + 'a, - I::Item: 'a, -{ - parent: &'a IntoChunks<I>, - index: usize, - first: Option<I::Item>, -} - -impl<'a, I> Drop for Chunk<'a, I> -where - I: Iterator, - I::Item: 'a, -{ - fn drop(&mut self) { - self.parent.drop_group(self.index); - } -} - -impl<'a, I> Iterator for Chunk<'a, I> -where - I: Iterator, - I::Item: 'a, -{ - type Item = I::Item; - #[inline] - fn next(&mut self) -> Option<Self::Item> { - if let elt @ Some(..) = self.first.take() { - return elt; - } - self.parent.step(self.index) - } -} diff --git a/vendor/itertools/src/grouping_map.rs b/vendor/itertools/src/grouping_map.rs deleted file mode 100644 index 86cb55dc..00000000 --- a/vendor/itertools/src/grouping_map.rs +++ /dev/null @@ -1,612 +0,0 @@ -use crate::{ - adaptors::map::{MapSpecialCase, MapSpecialCaseFn}, - MinMaxResult, -}; -use std::cmp::Ordering; -use std::collections::HashMap; -use std::hash::Hash; -use std::iter::Iterator; -use std::ops::{Add, Mul}; - -/// A wrapper to allow for an easy [`into_grouping_map_by`](crate::Itertools::into_grouping_map_by) -pub type MapForGrouping<I, F> = MapSpecialCase<I, GroupingMapFn<F>>; - -#[derive(Clone)] -pub struct GroupingMapFn<F>(F); - -impl<F> std::fmt::Debug for GroupingMapFn<F> { - debug_fmt_fields!(GroupingMapFn,); -} - -impl<V, K, F: FnMut(&V) -> K> MapSpecialCaseFn<V> for GroupingMapFn<F> { - type Out = (K, V); - fn call(&mut self, v: V) -> Self::Out { - ((self.0)(&v), v) - } -} - -pub(crate) fn new_map_for_grouping<K, I: Iterator, F: FnMut(&I::Item) -> K>( - iter: I, - key_mapper: F, -) -> MapForGrouping<I, F> { - MapSpecialCase { - iter, - f: GroupingMapFn(key_mapper), - } -} - -/// Creates a new `GroupingMap` from `iter` -pub fn new<I, K, V>(iter: I) -> GroupingMap<I> -where - I: Iterator<Item = (K, V)>, - K: Hash + Eq, -{ - GroupingMap { iter } -} - -/// `GroupingMapBy` is an intermediate struct for efficient group-and-fold operations. -/// -/// See [`GroupingMap`] for more informations. -pub type GroupingMapBy<I, F> = GroupingMap<MapForGrouping<I, F>>; - -/// `GroupingMap` is an intermediate struct for efficient group-and-fold operations. -/// It groups elements by their key and at the same time fold each group -/// using some aggregating operation. -/// -/// No method on this struct performs temporary allocations. -#[derive(Clone, Debug)] -#[must_use = "GroupingMap is lazy and do nothing unless consumed"] -pub struct GroupingMap<I> { - iter: I, -} - -impl<I, K, V> GroupingMap<I> -where - I: Iterator<Item = (K, V)>, - K: Hash + Eq, -{ - /// This is the generic way to perform any operation on a `GroupingMap`. - /// It's suggested to use this method only to implement custom operations - /// when the already provided ones are not enough. - /// - /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements - /// of each group sequentially, passing the previously accumulated value, a reference to the key - /// and the current element as arguments, and stores the results in an `HashMap`. - /// - /// The `operation` function is invoked on each element with the following parameters: - /// - the current value of the accumulator of the group if there is currently one; - /// - a reference to the key of the group this element belongs to; - /// - the element from the source being aggregated; - /// - /// If `operation` returns `Some(element)` then the accumulator is updated with `element`, - /// otherwise the previous accumulation is discarded. - /// - /// Return a `HashMap` associating the key of each group with the result of aggregation of - /// that group's elements. If the aggregation of the last element of a group discards the - /// accumulator then there won't be an entry associated to that group's key. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = vec![2, 8, 5, 7, 9, 0, 4, 10]; - /// let lookup = data.into_iter() - /// .into_grouping_map_by(|&n| n % 4) - /// .aggregate(|acc, _key, val| { - /// if val == 0 || val == 10 { - /// None - /// } else { - /// Some(acc.unwrap_or(0) + val) - /// } - /// }); - /// - /// assert_eq!(lookup[&0], 4); // 0 resets the accumulator so only 4 is summed - /// assert_eq!(lookup[&1], 5 + 9); - /// assert_eq!(lookup.get(&2), None); // 10 resets the accumulator and nothing is summed afterward - /// assert_eq!(lookup[&3], 7); - /// assert_eq!(lookup.len(), 3); // The final keys are only 0, 1 and 2 - /// ``` - pub fn aggregate<FO, R>(self, mut operation: FO) -> HashMap<K, R> - where - FO: FnMut(Option<R>, &K, V) -> Option<R>, - { - let mut destination_map = HashMap::new(); - - self.iter.for_each(|(key, val)| { - let acc = destination_map.remove(&key); - if let Some(op_res) = operation(acc, &key, val) { - destination_map.insert(key, op_res); - } - }); - - destination_map - } - - /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements - /// of each group sequentially, passing the previously accumulated value, a reference to the key - /// and the current element as arguments, and stores the results in a new map. - /// - /// `init` is called to obtain the initial value of each accumulator. - /// - /// `operation` is a function that is invoked on each element with the following parameters: - /// - the current value of the accumulator of the group; - /// - a reference to the key of the group this element belongs to; - /// - the element from the source being accumulated. - /// - /// Return a `HashMap` associating the key of each group with the result of folding that group's elements. - /// - /// ``` - /// use itertools::Itertools; - /// - /// #[derive(Debug, Default)] - /// struct Accumulator { - /// acc: usize, - /// } - /// - /// let lookup = (1..=7) - /// .into_grouping_map_by(|&n| n % 3) - /// .fold_with(|_key, _val| Default::default(), |Accumulator { acc }, _key, val| { - /// let acc = acc + val; - /// Accumulator { acc } - /// }); - /// - /// assert_eq!(lookup[&0].acc, 3 + 6); - /// assert_eq!(lookup[&1].acc, 1 + 4 + 7); - /// assert_eq!(lookup[&2].acc, 2 + 5); - /// assert_eq!(lookup.len(), 3); - /// ``` - pub fn fold_with<FI, FO, R>(self, mut init: FI, mut operation: FO) -> HashMap<K, R> - where - FI: FnMut(&K, &V) -> R, - FO: FnMut(R, &K, V) -> R, - { - self.aggregate(|acc, key, val| { - let acc = acc.unwrap_or_else(|| init(key, &val)); - Some(operation(acc, key, val)) - }) - } - - /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements - /// of each group sequentially, passing the previously accumulated value, a reference to the key - /// and the current element as arguments, and stores the results in a new map. - /// - /// `init` is the value from which will be cloned the initial value of each accumulator. - /// - /// `operation` is a function that is invoked on each element with the following parameters: - /// - the current value of the accumulator of the group; - /// - a reference to the key of the group this element belongs to; - /// - the element from the source being accumulated. - /// - /// Return a `HashMap` associating the key of each group with the result of folding that group's elements. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let lookup = (1..=7) - /// .into_grouping_map_by(|&n| n % 3) - /// .fold(0, |acc, _key, val| acc + val); - /// - /// assert_eq!(lookup[&0], 3 + 6); - /// assert_eq!(lookup[&1], 1 + 4 + 7); - /// assert_eq!(lookup[&2], 2 + 5); - /// assert_eq!(lookup.len(), 3); - /// ``` - pub fn fold<FO, R>(self, init: R, operation: FO) -> HashMap<K, R> - where - R: Clone, - FO: FnMut(R, &K, V) -> R, - { - self.fold_with(|_, _| init.clone(), operation) - } - - /// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements - /// of each group sequentially, passing the previously accumulated value, a reference to the key - /// and the current element as arguments, and stores the results in a new map. - /// - /// This is similar to [`fold`] but the initial value of the accumulator is the first element of the group. - /// - /// `operation` is a function that is invoked on each element with the following parameters: - /// - the current value of the accumulator of the group; - /// - a reference to the key of the group this element belongs to; - /// - the element from the source being accumulated. - /// - /// Return a `HashMap` associating the key of each group with the result of folding that group's elements. - /// - /// [`fold`]: GroupingMap::fold - /// - /// ``` - /// use itertools::Itertools; - /// - /// let lookup = (1..=7) - /// .into_grouping_map_by(|&n| n % 3) - /// .reduce(|acc, _key, val| acc + val); - /// - /// assert_eq!(lookup[&0], 3 + 6); - /// assert_eq!(lookup[&1], 1 + 4 + 7); - /// assert_eq!(lookup[&2], 2 + 5); - /// assert_eq!(lookup.len(), 3); - /// ``` - pub fn reduce<FO>(self, mut operation: FO) -> HashMap<K, V> - where - FO: FnMut(V, &K, V) -> V, - { - self.aggregate(|acc, key, val| { - Some(match acc { - Some(acc) => operation(acc, key, val), - None => val, - }) - }) - } - - /// See [`.reduce()`](GroupingMap::reduce). - #[deprecated(note = "Use .reduce() instead", since = "0.13.0")] - pub fn fold_first<FO>(self, operation: FO) -> HashMap<K, V> - where - FO: FnMut(V, &K, V) -> V, - { - self.reduce(operation) - } - - /// Groups elements from the `GroupingMap` source by key and collects the elements of each group in - /// an instance of `C`. The iteration order is preserved when inserting elements. - /// - /// Return a `HashMap` associating the key of each group with the collection containing that group's elements. - /// - /// ``` - /// use itertools::Itertools; - /// use std::collections::HashSet; - /// - /// let lookup = vec![0, 1, 2, 3, 4, 5, 6, 2, 3, 6].into_iter() - /// .into_grouping_map_by(|&n| n % 3) - /// .collect::<HashSet<_>>(); - /// - /// assert_eq!(lookup[&0], vec![0, 3, 6].into_iter().collect::<HashSet<_>>()); - /// assert_eq!(lookup[&1], vec![1, 4].into_iter().collect::<HashSet<_>>()); - /// assert_eq!(lookup[&2], vec![2, 5].into_iter().collect::<HashSet<_>>()); - /// assert_eq!(lookup.len(), 3); - /// ``` - pub fn collect<C>(self) -> HashMap<K, C> - where - C: Default + Extend<V>, - { - let mut destination_map = HashMap::new(); - - self.iter.for_each(|(key, val)| { - destination_map - .entry(key) - .or_insert_with(C::default) - .extend(Some(val)); - }); - - destination_map - } - - /// Groups elements from the `GroupingMap` source by key and finds the maximum of each group. - /// - /// If several elements are equally maximum, the last element is picked. - /// - /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() - /// .into_grouping_map_by(|&n| n % 3) - /// .max(); - /// - /// assert_eq!(lookup[&0], 12); - /// assert_eq!(lookup[&1], 7); - /// assert_eq!(lookup[&2], 8); - /// assert_eq!(lookup.len(), 3); - /// ``` - pub fn max(self) -> HashMap<K, V> - where - V: Ord, - { - self.max_by(|_, v1, v2| V::cmp(v1, v2)) - } - - /// Groups elements from the `GroupingMap` source by key and finds the maximum of each group - /// with respect to the specified comparison function. - /// - /// If several elements are equally maximum, the last element is picked. - /// - /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() - /// .into_grouping_map_by(|&n| n % 3) - /// .max_by(|_key, x, y| y.cmp(x)); - /// - /// assert_eq!(lookup[&0], 3); - /// assert_eq!(lookup[&1], 1); - /// assert_eq!(lookup[&2], 5); - /// assert_eq!(lookup.len(), 3); - /// ``` - pub fn max_by<F>(self, mut compare: F) -> HashMap<K, V> - where - F: FnMut(&K, &V, &V) -> Ordering, - { - self.reduce(|acc, key, val| match compare(key, &acc, &val) { - Ordering::Less | Ordering::Equal => val, - Ordering::Greater => acc, - }) - } - - /// Groups elements from the `GroupingMap` source by key and finds the element of each group - /// that gives the maximum from the specified function. - /// - /// If several elements are equally maximum, the last element is picked. - /// - /// Returns a `HashMap` associating the key of each group with the maximum of that group's elements. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() - /// .into_grouping_map_by(|&n| n % 3) - /// .max_by_key(|_key, &val| val % 4); - /// - /// assert_eq!(lookup[&0], 3); - /// assert_eq!(lookup[&1], 7); - /// assert_eq!(lookup[&2], 5); - /// assert_eq!(lookup.len(), 3); - /// ``` - pub fn max_by_key<F, CK>(self, mut f: F) -> HashMap<K, V> - where - F: FnMut(&K, &V) -> CK, - CK: Ord, - { - self.max_by(|key, v1, v2| f(key, v1).cmp(&f(key, v2))) - } - - /// Groups elements from the `GroupingMap` source by key and finds the minimum of each group. - /// - /// If several elements are equally minimum, the first element is picked. - /// - /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() - /// .into_grouping_map_by(|&n| n % 3) - /// .min(); - /// - /// assert_eq!(lookup[&0], 3); - /// assert_eq!(lookup[&1], 1); - /// assert_eq!(lookup[&2], 5); - /// assert_eq!(lookup.len(), 3); - /// ``` - pub fn min(self) -> HashMap<K, V> - where - V: Ord, - { - self.min_by(|_, v1, v2| V::cmp(v1, v2)) - } - - /// Groups elements from the `GroupingMap` source by key and finds the minimum of each group - /// with respect to the specified comparison function. - /// - /// If several elements are equally minimum, the first element is picked. - /// - /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() - /// .into_grouping_map_by(|&n| n % 3) - /// .min_by(|_key, x, y| y.cmp(x)); - /// - /// assert_eq!(lookup[&0], 12); - /// assert_eq!(lookup[&1], 7); - /// assert_eq!(lookup[&2], 8); - /// assert_eq!(lookup.len(), 3); - /// ``` - pub fn min_by<F>(self, mut compare: F) -> HashMap<K, V> - where - F: FnMut(&K, &V, &V) -> Ordering, - { - self.reduce(|acc, key, val| match compare(key, &acc, &val) { - Ordering::Less | Ordering::Equal => acc, - Ordering::Greater => val, - }) - } - - /// Groups elements from the `GroupingMap` source by key and finds the element of each group - /// that gives the minimum from the specified function. - /// - /// If several elements are equally minimum, the first element is picked. - /// - /// Returns a `HashMap` associating the key of each group with the minimum of that group's elements. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() - /// .into_grouping_map_by(|&n| n % 3) - /// .min_by_key(|_key, &val| val % 4); - /// - /// assert_eq!(lookup[&0], 12); - /// assert_eq!(lookup[&1], 4); - /// assert_eq!(lookup[&2], 8); - /// assert_eq!(lookup.len(), 3); - /// ``` - pub fn min_by_key<F, CK>(self, mut f: F) -> HashMap<K, V> - where - F: FnMut(&K, &V) -> CK, - CK: Ord, - { - self.min_by(|key, v1, v2| f(key, v1).cmp(&f(key, v2))) - } - - /// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of - /// each group. - /// - /// If several elements are equally maximum, the last element is picked. - /// If several elements are equally minimum, the first element is picked. - /// - /// See [`Itertools::minmax`](crate::Itertools::minmax) for the non-grouping version. - /// - /// Differences from the non grouping version: - /// - It never produces a `MinMaxResult::NoElements` - /// - It doesn't have any speedup - /// - /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements. - /// - /// ``` - /// use itertools::Itertools; - /// use itertools::MinMaxResult::{OneElement, MinMax}; - /// - /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter() - /// .into_grouping_map_by(|&n| n % 3) - /// .minmax(); - /// - /// assert_eq!(lookup[&0], MinMax(3, 12)); - /// assert_eq!(lookup[&1], MinMax(1, 7)); - /// assert_eq!(lookup[&2], OneElement(5)); - /// assert_eq!(lookup.len(), 3); - /// ``` - pub fn minmax(self) -> HashMap<K, MinMaxResult<V>> - where - V: Ord, - { - self.minmax_by(|_, v1, v2| V::cmp(v1, v2)) - } - - /// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of - /// each group with respect to the specified comparison function. - /// - /// If several elements are equally maximum, the last element is picked. - /// If several elements are equally minimum, the first element is picked. - /// - /// It has the same differences from the non-grouping version as `minmax`. - /// - /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements. - /// - /// ``` - /// use itertools::Itertools; - /// use itertools::MinMaxResult::{OneElement, MinMax}; - /// - /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter() - /// .into_grouping_map_by(|&n| n % 3) - /// .minmax_by(|_key, x, y| y.cmp(x)); - /// - /// assert_eq!(lookup[&0], MinMax(12, 3)); - /// assert_eq!(lookup[&1], MinMax(7, 1)); - /// assert_eq!(lookup[&2], OneElement(5)); - /// assert_eq!(lookup.len(), 3); - /// ``` - pub fn minmax_by<F>(self, mut compare: F) -> HashMap<K, MinMaxResult<V>> - where - F: FnMut(&K, &V, &V) -> Ordering, - { - self.aggregate(|acc, key, val| { - Some(match acc { - Some(MinMaxResult::OneElement(e)) => { - if compare(key, &val, &e) == Ordering::Less { - MinMaxResult::MinMax(val, e) - } else { - MinMaxResult::MinMax(e, val) - } - } - Some(MinMaxResult::MinMax(min, max)) => { - if compare(key, &val, &min) == Ordering::Less { - MinMaxResult::MinMax(val, max) - } else if compare(key, &val, &max) != Ordering::Less { - MinMaxResult::MinMax(min, val) - } else { - MinMaxResult::MinMax(min, max) - } - } - None => MinMaxResult::OneElement(val), - Some(MinMaxResult::NoElements) => unreachable!(), - }) - }) - } - - /// Groups elements from the `GroupingMap` source by key and find the elements of each group - /// that gives the minimum and maximum from the specified function. - /// - /// If several elements are equally maximum, the last element is picked. - /// If several elements are equally minimum, the first element is picked. - /// - /// It has the same differences from the non-grouping version as `minmax`. - /// - /// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements. - /// - /// ``` - /// use itertools::Itertools; - /// use itertools::MinMaxResult::{OneElement, MinMax}; - /// - /// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter() - /// .into_grouping_map_by(|&n| n % 3) - /// .minmax_by_key(|_key, &val| val % 4); - /// - /// assert_eq!(lookup[&0], MinMax(12, 3)); - /// assert_eq!(lookup[&1], MinMax(4, 7)); - /// assert_eq!(lookup[&2], OneElement(5)); - /// assert_eq!(lookup.len(), 3); - /// ``` - pub fn minmax_by_key<F, CK>(self, mut f: F) -> HashMap<K, MinMaxResult<V>> - where - F: FnMut(&K, &V) -> CK, - CK: Ord, - { - self.minmax_by(|key, v1, v2| f(key, v1).cmp(&f(key, v2))) - } - - /// Groups elements from the `GroupingMap` source by key and sums them. - /// - /// This is just a shorthand for `self.reduce(|acc, _, val| acc + val)`. - /// It is more limited than `Iterator::sum` since it doesn't use the `Sum` trait. - /// - /// Returns a `HashMap` associating the key of each group with the sum of that group's elements. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() - /// .into_grouping_map_by(|&n| n % 3) - /// .sum(); - /// - /// assert_eq!(lookup[&0], 3 + 9 + 12); - /// assert_eq!(lookup[&1], 1 + 4 + 7); - /// assert_eq!(lookup[&2], 5 + 8); - /// assert_eq!(lookup.len(), 3); - /// ``` - pub fn sum(self) -> HashMap<K, V> - where - V: Add<V, Output = V>, - { - self.reduce(|acc, _, val| acc + val) - } - - /// Groups elements from the `GroupingMap` source by key and multiply them. - /// - /// This is just a shorthand for `self.reduce(|acc, _, val| acc * val)`. - /// It is more limited than `Iterator::product` since it doesn't use the `Product` trait. - /// - /// Returns a `HashMap` associating the key of each group with the product of that group's elements. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter() - /// .into_grouping_map_by(|&n| n % 3) - /// .product(); - /// - /// assert_eq!(lookup[&0], 3 * 9 * 12); - /// assert_eq!(lookup[&1], 1 * 4 * 7); - /// assert_eq!(lookup[&2], 5 * 8); - /// assert_eq!(lookup.len(), 3); - /// ``` - pub fn product(self) -> HashMap<K, V> - where - V: Mul<V, Output = V>, - { - self.reduce(|acc, _, val| acc * val) - } -} diff --git a/vendor/itertools/src/impl_macros.rs b/vendor/itertools/src/impl_macros.rs deleted file mode 100644 index 3db5ba02..00000000 --- a/vendor/itertools/src/impl_macros.rs +++ /dev/null @@ -1,34 +0,0 @@ -//! -//! Implementation's internal macros - -macro_rules! debug_fmt_fields { - ($tyname:ident, $($($field:tt/*TODO ideally we would accept ident or tuple element here*/).+),*) => { - fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { - f.debug_struct(stringify!($tyname)) - $( - .field(stringify!($($field).+), &self.$($field).+) - )* - .finish() - } - } -} - -macro_rules! clone_fields { - ($($field:ident),*) => { - #[inline] // TODO is this sensible? - fn clone(&self) -> Self { - Self { - $($field: self.$field.clone(),)* - } - } - } -} - -macro_rules! ignore_ident{ - ($id:ident, $($t:tt)*) => {$($t)*}; -} - -macro_rules! count_ident { - () => {0}; - ($i0:ident $($i:ident)*) => {1 + count_ident!($($i)*)}; -} diff --git a/vendor/itertools/src/intersperse.rs b/vendor/itertools/src/intersperse.rs deleted file mode 100644 index 5f4f7938..00000000 --- a/vendor/itertools/src/intersperse.rs +++ /dev/null @@ -1,142 +0,0 @@ -use super::size_hint; -use std::iter::{Fuse, FusedIterator}; - -pub trait IntersperseElement<Item> { - fn generate(&mut self) -> Item; -} - -#[derive(Debug, Clone)] -pub struct IntersperseElementSimple<Item>(Item); - -impl<Item: Clone> IntersperseElement<Item> for IntersperseElementSimple<Item> { - fn generate(&mut self) -> Item { - self.0.clone() - } -} - -/// An iterator adaptor to insert a particular value -/// between each element of the adapted iterator. -/// -/// Iterator element type is `I::Item` -/// -/// This iterator is *fused*. -/// -/// See [`.intersperse()`](crate::Itertools::intersperse) for more information. -pub type Intersperse<I> = IntersperseWith<I, IntersperseElementSimple<<I as Iterator>::Item>>; - -/// Create a new Intersperse iterator -pub fn intersperse<I>(iter: I, elt: I::Item) -> Intersperse<I> -where - I: Iterator, -{ - intersperse_with(iter, IntersperseElementSimple(elt)) -} - -impl<Item, F: FnMut() -> Item> IntersperseElement<Item> for F { - fn generate(&mut self) -> Item { - self() - } -} - -/// An iterator adaptor to insert a particular value created by a function -/// between each element of the adapted iterator. -/// -/// Iterator element type is `I::Item` -/// -/// This iterator is *fused*. -/// -/// See [`.intersperse_with()`](crate::Itertools::intersperse_with) for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -#[derive(Clone, Debug)] -pub struct IntersperseWith<I, ElemF> -where - I: Iterator, -{ - element: ElemF, - iter: Fuse<I>, - /// `peek` is None while no item have been taken out of `iter` (at definition). - /// Then `peek` will alternatively be `Some(None)` and `Some(Some(item))`, - /// where `None` indicates it's time to generate from `element` (unless `iter` is empty). - peek: Option<Option<I::Item>>, -} - -/// Create a new `IntersperseWith` iterator -pub fn intersperse_with<I, ElemF>(iter: I, elt: ElemF) -> IntersperseWith<I, ElemF> -where - I: Iterator, -{ - IntersperseWith { - peek: None, - iter: iter.fuse(), - element: elt, - } -} - -impl<I, ElemF> Iterator for IntersperseWith<I, ElemF> -where - I: Iterator, - ElemF: IntersperseElement<I::Item>, -{ - type Item = I::Item; - #[inline] - fn next(&mut self) -> Option<Self::Item> { - let Self { - element, - iter, - peek, - } = self; - match peek { - Some(item @ Some(_)) => item.take(), - Some(None) => match iter.next() { - new @ Some(_) => { - *peek = Some(new); - Some(element.generate()) - } - None => None, - }, - None => { - *peek = Some(None); - iter.next() - } - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - let mut sh = self.iter.size_hint(); - sh = size_hint::add(sh, sh); - match self.peek { - Some(Some(_)) => size_hint::add_scalar(sh, 1), - Some(None) => sh, - None => size_hint::sub_scalar(sh, 1), - } - } - - fn fold<B, F>(self, init: B, mut f: F) -> B - where - Self: Sized, - F: FnMut(B, Self::Item) -> B, - { - let Self { - mut element, - mut iter, - peek, - } = self; - let mut accum = init; - - if let Some(x) = peek.unwrap_or_else(|| iter.next()) { - accum = f(accum, x); - } - - iter.fold(accum, |accum, x| { - let accum = f(accum, element.generate()); - f(accum, x) - }) - } -} - -impl<I, ElemF> FusedIterator for IntersperseWith<I, ElemF> -where - I: Iterator, - ElemF: IntersperseElement<I::Item>, -{ -} diff --git a/vendor/itertools/src/iter_index.rs b/vendor/itertools/src/iter_index.rs deleted file mode 100644 index aadaa72a..00000000 --- a/vendor/itertools/src/iter_index.rs +++ /dev/null @@ -1,116 +0,0 @@ -use core::iter::{Skip, Take}; -use core::ops::{Range, RangeFrom, RangeFull, RangeInclusive, RangeTo, RangeToInclusive}; - -#[cfg(doc)] -use crate::Itertools; - -mod private_iter_index { - use core::ops; - - pub trait Sealed {} - - impl Sealed for ops::Range<usize> {} - impl Sealed for ops::RangeInclusive<usize> {} - impl Sealed for ops::RangeTo<usize> {} - impl Sealed for ops::RangeToInclusive<usize> {} - impl Sealed for ops::RangeFrom<usize> {} - impl Sealed for ops::RangeFull {} -} - -/// Used by [`Itertools::get`] to know which iterator -/// to turn different ranges into. -pub trait IteratorIndex<I>: private_iter_index::Sealed -where - I: Iterator, -{ - /// The type returned for this type of index. - type Output: Iterator<Item = I::Item>; - - /// Returns an adapted iterator for the current index. - /// - /// Prefer calling [`Itertools::get`] instead - /// of calling this directly. - fn index(self, from: I) -> Self::Output; -} - -impl<I> IteratorIndex<I> for Range<usize> -where - I: Iterator, -{ - type Output = Skip<Take<I>>; - - fn index(self, iter: I) -> Self::Output { - iter.take(self.end).skip(self.start) - } -} - -impl<I> IteratorIndex<I> for RangeInclusive<usize> -where - I: Iterator, -{ - type Output = Take<Skip<I>>; - - fn index(self, iter: I) -> Self::Output { - // end - start + 1 without overflowing if possible - let length = if *self.end() == usize::MAX { - assert_ne!(*self.start(), 0); - self.end() - self.start() + 1 - } else { - (self.end() + 1).saturating_sub(*self.start()) - }; - iter.skip(*self.start()).take(length) - } -} - -impl<I> IteratorIndex<I> for RangeTo<usize> -where - I: Iterator, -{ - type Output = Take<I>; - - fn index(self, iter: I) -> Self::Output { - iter.take(self.end) - } -} - -impl<I> IteratorIndex<I> for RangeToInclusive<usize> -where - I: Iterator, -{ - type Output = Take<I>; - - fn index(self, iter: I) -> Self::Output { - assert_ne!(self.end, usize::MAX); - iter.take(self.end + 1) - } -} - -impl<I> IteratorIndex<I> for RangeFrom<usize> -where - I: Iterator, -{ - type Output = Skip<I>; - - fn index(self, iter: I) -> Self::Output { - iter.skip(self.start) - } -} - -impl<I> IteratorIndex<I> for RangeFull -where - I: Iterator, -{ - type Output = I; - - fn index(self, iter: I) -> Self::Output { - iter - } -} - -pub fn get<I, R>(iter: I, index: R) -> R::Output -where - I: IntoIterator, - R: IteratorIndex<I::IntoIter>, -{ - index.index(iter.into_iter()) -} diff --git a/vendor/itertools/src/k_smallest.rs b/vendor/itertools/src/k_smallest.rs deleted file mode 100644 index 7e4ace26..00000000 --- a/vendor/itertools/src/k_smallest.rs +++ /dev/null @@ -1,138 +0,0 @@ -use alloc::vec::Vec; -use core::cmp::Ordering; - -/// Consumes a given iterator, returning the minimum elements in **ascending** order. -pub(crate) fn k_smallest_general<I, F>(iter: I, k: usize, mut comparator: F) -> Vec<I::Item> -where - I: Iterator, - F: FnMut(&I::Item, &I::Item) -> Ordering, -{ - /// Sift the element currently at `origin` away from the root until it is properly ordered. - /// - /// This will leave **larger** elements closer to the root of the heap. - fn sift_down<T, F>(heap: &mut [T], is_less_than: &mut F, mut origin: usize) - where - F: FnMut(&T, &T) -> bool, - { - #[inline] - fn children_of(n: usize) -> (usize, usize) { - (2 * n + 1, 2 * n + 2) - } - - while origin < heap.len() { - let (left_idx, right_idx) = children_of(origin); - if left_idx >= heap.len() { - return; - } - - let replacement_idx = - if right_idx < heap.len() && is_less_than(&heap[left_idx], &heap[right_idx]) { - right_idx - } else { - left_idx - }; - - if is_less_than(&heap[origin], &heap[replacement_idx]) { - heap.swap(origin, replacement_idx); - origin = replacement_idx; - } else { - return; - } - } - } - - if k == 0 { - iter.last(); - return Vec::new(); - } - if k == 1 { - return iter.min_by(comparator).into_iter().collect(); - } - let mut iter = iter.fuse(); - let mut storage: Vec<I::Item> = iter.by_ref().take(k).collect(); - - let mut is_less_than = move |a: &_, b: &_| comparator(a, b) == Ordering::Less; - - // Rearrange the storage into a valid heap by reordering from the second-bottom-most layer up to the root. - // Slightly faster than ordering on each insert, but only by a factor of lg(k). - // The resulting heap has the **largest** item on top. - for i in (0..=(storage.len() / 2)).rev() { - sift_down(&mut storage, &mut is_less_than, i); - } - - iter.for_each(|val| { - debug_assert_eq!(storage.len(), k); - if is_less_than(&val, &storage[0]) { - // Treating this as an push-and-pop saves having to write a sift-up implementation. - // https://en.wikipedia.org/wiki/Binary_heap#Insert_then_extract - storage[0] = val; - // We retain the smallest items we've seen so far, but ordered largest first so we can drop the largest efficiently. - sift_down(&mut storage, &mut is_less_than, 0); - } - }); - - // Ultimately the items need to be in least-first, strict order, but the heap is currently largest-first. - // To achieve this, repeatedly, - // 1) "pop" the largest item off the heap into the tail slot of the underlying storage, - // 2) shrink the logical size of the heap by 1, - // 3) restore the heap property over the remaining items. - let mut heap = &mut storage[..]; - while heap.len() > 1 { - let last_idx = heap.len() - 1; - heap.swap(0, last_idx); - // Sifting over a truncated slice means that the sifting will not disturb already popped elements. - heap = &mut heap[..last_idx]; - sift_down(heap, &mut is_less_than, 0); - } - - storage -} - -pub(crate) fn k_smallest_relaxed_general<I, F>(iter: I, k: usize, mut comparator: F) -> Vec<I::Item> -where - I: Iterator, - F: FnMut(&I::Item, &I::Item) -> Ordering, -{ - if k == 0 { - iter.last(); - return Vec::new(); - } - - let mut iter = iter.fuse(); - let mut buf = iter.by_ref().take(2 * k).collect::<Vec<_>>(); - - if buf.len() < k { - buf.sort_unstable_by(&mut comparator); - return buf; - } - - buf.select_nth_unstable_by(k - 1, &mut comparator); - buf.truncate(k); - - iter.for_each(|val| { - if comparator(&val, &buf[k - 1]) != Ordering::Less { - return; - } - - assert_ne!(buf.len(), buf.capacity()); - buf.push(val); - - if buf.len() == 2 * k { - buf.select_nth_unstable_by(k - 1, &mut comparator); - buf.truncate(k); - } - }); - - buf.sort_unstable_by(&mut comparator); - buf.truncate(k); - buf -} - -#[inline] -pub(crate) fn key_to_cmp<T, K, F>(mut key: F) -> impl FnMut(&T, &T) -> Ordering -where - F: FnMut(&T) -> K, - K: Ord, -{ - move |a, b| key(a).cmp(&key(b)) -} diff --git a/vendor/itertools/src/kmerge_impl.rs b/vendor/itertools/src/kmerge_impl.rs deleted file mode 100644 index 9ea73f9e..00000000 --- a/vendor/itertools/src/kmerge_impl.rs +++ /dev/null @@ -1,239 +0,0 @@ -use crate::size_hint; - -use alloc::vec::Vec; -use std::fmt; -use std::iter::FusedIterator; -use std::mem::replace; - -/// Head element and Tail iterator pair -/// -/// `PartialEq`, `Eq`, `PartialOrd` and `Ord` are implemented by comparing sequences based on -/// first items (which are guaranteed to exist). -/// -/// The meanings of `PartialOrd` and `Ord` are reversed so as to turn the heap used in -/// `KMerge` into a min-heap. -#[derive(Debug)] -struct HeadTail<I> -where - I: Iterator, -{ - head: I::Item, - tail: I, -} - -impl<I> HeadTail<I> -where - I: Iterator, -{ - /// Constructs a `HeadTail` from an `Iterator`. Returns `None` if the `Iterator` is empty. - fn new(mut it: I) -> Option<Self> { - let head = it.next(); - head.map(|h| Self { head: h, tail: it }) - } - - /// Get the next element and update `head`, returning the old head in `Some`. - /// - /// Returns `None` when the tail is exhausted (only `head` then remains). - fn next(&mut self) -> Option<I::Item> { - if let Some(next) = self.tail.next() { - Some(replace(&mut self.head, next)) - } else { - None - } - } - - /// Hints at the size of the sequence, same as the `Iterator` method. - fn size_hint(&self) -> (usize, Option<usize>) { - size_hint::add_scalar(self.tail.size_hint(), 1) - } -} - -impl<I> Clone for HeadTail<I> -where - I: Iterator + Clone, - I::Item: Clone, -{ - clone_fields!(head, tail); -} - -/// Make `data` a heap (min-heap w.r.t the sorting). -fn heapify<T, S>(data: &mut [T], mut less_than: S) -where - S: FnMut(&T, &T) -> bool, -{ - for i in (0..data.len() / 2).rev() { - sift_down(data, i, &mut less_than); - } -} - -/// Sift down element at `index` (`heap` is a min-heap wrt the ordering) -fn sift_down<T, S>(heap: &mut [T], index: usize, mut less_than: S) -where - S: FnMut(&T, &T) -> bool, -{ - debug_assert!(index <= heap.len()); - let mut pos = index; - let mut child = 2 * pos + 1; - // Require the right child to be present - // This allows to find the index of the smallest child without a branch - // that wouldn't be predicted if present - while child + 1 < heap.len() { - // pick the smaller of the two children - // use arithmetic to avoid an unpredictable branch - child += less_than(&heap[child + 1], &heap[child]) as usize; - - // sift down is done if we are already in order - if !less_than(&heap[child], &heap[pos]) { - return; - } - heap.swap(pos, child); - pos = child; - child = 2 * pos + 1; - } - // Check if the last (left) child was an only child - // if it is then it has to be compared with the parent - if child + 1 == heap.len() && less_than(&heap[child], &heap[pos]) { - heap.swap(pos, child); - } -} - -/// An iterator adaptor that merges an abitrary number of base iterators in ascending order. -/// If all base iterators are sorted (ascending), the result is sorted. -/// -/// Iterator element type is `I::Item`. -/// -/// See [`.kmerge()`](crate::Itertools::kmerge) for more information. -pub type KMerge<I> = KMergeBy<I, KMergeByLt>; - -pub trait KMergePredicate<T> { - fn kmerge_pred(&mut self, a: &T, b: &T) -> bool; -} - -#[derive(Clone, Debug)] -pub struct KMergeByLt; - -impl<T: PartialOrd> KMergePredicate<T> for KMergeByLt { - fn kmerge_pred(&mut self, a: &T, b: &T) -> bool { - a < b - } -} - -impl<T, F: FnMut(&T, &T) -> bool> KMergePredicate<T> for F { - fn kmerge_pred(&mut self, a: &T, b: &T) -> bool { - self(a, b) - } -} - -/// Create an iterator that merges elements of the contained iterators using -/// the ordering function. -/// -/// [`IntoIterator`] enabled version of [`Itertools::kmerge`](crate::Itertools::kmerge). -/// -/// ``` -/// use itertools::kmerge; -/// -/// for elt in kmerge(vec![vec![0, 2, 4], vec![1, 3, 5], vec![6, 7]]) { -/// /* loop body */ -/// # let _ = elt; -/// } -/// ``` -pub fn kmerge<I>(iterable: I) -> KMerge<<I::Item as IntoIterator>::IntoIter> -where - I: IntoIterator, - I::Item: IntoIterator, - <<I as IntoIterator>::Item as IntoIterator>::Item: PartialOrd, -{ - kmerge_by(iterable, KMergeByLt) -} - -/// An iterator adaptor that merges an abitrary number of base iterators -/// according to an ordering function. -/// -/// Iterator element type is `I::Item`. -/// -/// See [`.kmerge_by()`](crate::Itertools::kmerge_by) for more -/// information. -#[must_use = "this iterator adaptor is not lazy but does nearly nothing unless consumed"] -pub struct KMergeBy<I, F> -where - I: Iterator, -{ - heap: Vec<HeadTail<I>>, - less_than: F, -} - -impl<I, F> fmt::Debug for KMergeBy<I, F> -where - I: Iterator + fmt::Debug, - I::Item: fmt::Debug, -{ - debug_fmt_fields!(KMergeBy, heap); -} - -/// Create an iterator that merges elements of the contained iterators. -/// -/// [`IntoIterator`] enabled version of [`Itertools::kmerge_by`](crate::Itertools::kmerge_by). -pub fn kmerge_by<I, F>( - iterable: I, - mut less_than: F, -) -> KMergeBy<<I::Item as IntoIterator>::IntoIter, F> -where - I: IntoIterator, - I::Item: IntoIterator, - F: KMergePredicate<<<I as IntoIterator>::Item as IntoIterator>::Item>, -{ - let iter = iterable.into_iter(); - let (lower, _) = iter.size_hint(); - let mut heap: Vec<_> = Vec::with_capacity(lower); - heap.extend(iter.filter_map(|it| HeadTail::new(it.into_iter()))); - heapify(&mut heap, |a, b| less_than.kmerge_pred(&a.head, &b.head)); - KMergeBy { heap, less_than } -} - -impl<I, F> Clone for KMergeBy<I, F> -where - I: Iterator + Clone, - I::Item: Clone, - F: Clone, -{ - clone_fields!(heap, less_than); -} - -impl<I, F> Iterator for KMergeBy<I, F> -where - I: Iterator, - F: KMergePredicate<I::Item>, -{ - type Item = I::Item; - - fn next(&mut self) -> Option<Self::Item> { - if self.heap.is_empty() { - return None; - } - let result = if let Some(next) = self.heap[0].next() { - next - } else { - self.heap.swap_remove(0).head - }; - let less_than = &mut self.less_than; - sift_down(&mut self.heap, 0, |a, b| { - less_than.kmerge_pred(&a.head, &b.head) - }); - Some(result) - } - - fn size_hint(&self) -> (usize, Option<usize>) { - self.heap - .iter() - .map(|i| i.size_hint()) - .reduce(size_hint::add) - .unwrap_or((0, Some(0))) - } -} - -impl<I, F> FusedIterator for KMergeBy<I, F> -where - I: Iterator, - F: KMergePredicate<I::Item>, -{ -} diff --git a/vendor/itertools/src/lazy_buffer.rs b/vendor/itertools/src/lazy_buffer.rs deleted file mode 100644 index fafa5f72..00000000 --- a/vendor/itertools/src/lazy_buffer.rs +++ /dev/null @@ -1,79 +0,0 @@ -use alloc::vec::Vec; -use std::iter::Fuse; -use std::ops::Index; - -use crate::size_hint::{self, SizeHint}; - -#[derive(Debug, Clone)] -pub struct LazyBuffer<I: Iterator> { - it: Fuse<I>, - buffer: Vec<I::Item>, -} - -impl<I> LazyBuffer<I> -where - I: Iterator, -{ - pub fn new(it: I) -> Self { - Self { - it: it.fuse(), - buffer: Vec::new(), - } - } - - pub fn len(&self) -> usize { - self.buffer.len() - } - - pub fn size_hint(&self) -> SizeHint { - size_hint::add_scalar(self.it.size_hint(), self.len()) - } - - pub fn count(self) -> usize { - self.len() + self.it.count() - } - - pub fn get_next(&mut self) -> bool { - if let Some(x) = self.it.next() { - self.buffer.push(x); - true - } else { - false - } - } - - pub fn prefill(&mut self, len: usize) { - let buffer_len = self.buffer.len(); - if len > buffer_len { - let delta = len - buffer_len; - self.buffer.extend(self.it.by_ref().take(delta)); - } - } -} - -impl<I> LazyBuffer<I> -where - I: Iterator, - I::Item: Clone, -{ - pub fn get_at(&self, indices: &[usize]) -> Vec<I::Item> { - indices.iter().map(|i| self.buffer[*i].clone()).collect() - } - - pub fn get_array<const K: usize>(&self, indices: [usize; K]) -> [I::Item; K] { - indices.map(|i| self.buffer[i].clone()) - } -} - -impl<I, J> Index<J> for LazyBuffer<I> -where - I: Iterator, - I::Item: Sized, - Vec<I::Item>: Index<J>, -{ - type Output = <Vec<I::Item> as Index<J>>::Output; - - fn index(&self, index: J) -> &Self::Output { - self.buffer.index(index) - } -} diff --git a/vendor/itertools/src/lib.rs b/vendor/itertools/src/lib.rs deleted file mode 100644 index 20226d88..00000000 --- a/vendor/itertools/src/lib.rs +++ /dev/null @@ -1,4713 +0,0 @@ -#![warn(missing_docs, clippy::default_numeric_fallback)] -#![crate_name = "itertools"] -#![cfg_attr(not(feature = "use_std"), no_std)] -#![doc(test(attr(deny(warnings), allow(deprecated, unstable_name_collisions))))] - -//! Extra iterator adaptors, functions and macros. -//! -//! To extend [`Iterator`] with methods in this crate, import -//! the [`Itertools`] trait: -//! -//! ``` -//! # #[allow(unused_imports)] -//! use itertools::Itertools; -//! ``` -//! -//! Now, new methods like [`interleave`](Itertools::interleave) -//! are available on all iterators: -//! -//! ``` -//! use itertools::Itertools; -//! -//! let it = (1..3).interleave(vec![-1, -2]); -//! itertools::assert_equal(it, vec![1, -1, 2, -2]); -//! ``` -//! -//! Most iterator methods are also provided as functions (with the benefit -//! that they convert parameters using [`IntoIterator`]): -//! -//! ``` -//! use itertools::interleave; -//! -//! for elt in interleave(&[1, 2, 3], &[2, 3, 4]) { -//! /* loop body */ -//! # let _ = elt; -//! } -//! ``` -//! -//! ## Crate Features -//! -//! - `use_std` -//! - Enabled by default. -//! - Disable to compile itertools using `#![no_std]`. This disables -//! any item that depend on allocations (see the `use_alloc` feature) -//! and hash maps (like `unique`, `counts`, `into_grouping_map` and more). -//! - `use_alloc` -//! - Enabled by default. -//! - Enables any item that depend on allocations (like `chunk_by`, -//! `kmerge`, `join` and many more). -//! -//! ## Rust Version -//! -//! This version of itertools requires Rust 1.63.0 or later. - -#[cfg(not(feature = "use_std"))] -extern crate core as std; - -#[cfg(feature = "use_alloc")] -extern crate alloc; - -#[cfg(feature = "use_alloc")] -use alloc::{collections::VecDeque, string::String, vec::Vec}; - -pub use either::Either; - -use core::borrow::Borrow; -use std::cmp::Ordering; -#[cfg(feature = "use_std")] -use std::collections::HashMap; -#[cfg(feature = "use_std")] -use std::collections::HashSet; -use std::fmt; -#[cfg(feature = "use_alloc")] -use std::fmt::Write; -#[cfg(feature = "use_std")] -use std::hash::Hash; -use std::iter::{once, IntoIterator}; -#[cfg(feature = "use_alloc")] -type VecDequeIntoIter<T> = alloc::collections::vec_deque::IntoIter<T>; -#[cfg(feature = "use_alloc")] -type VecIntoIter<T> = alloc::vec::IntoIter<T>; -use std::iter::FromIterator; - -#[macro_use] -mod impl_macros; - -// for compatibility with no std and macros -#[doc(hidden)] -pub use std::iter as __std_iter; - -/// The concrete iterator types. -pub mod structs { - #[cfg(feature = "use_alloc")] - pub use crate::adaptors::MultiProduct; - pub use crate::adaptors::{ - Batching, Coalesce, Dedup, DedupBy, DedupByWithCount, DedupWithCount, FilterMapOk, - FilterOk, Interleave, InterleaveShortest, MapInto, MapOk, Positions, Product, PutBack, - TakeWhileRef, TupleCombinations, Update, WhileSome, - }; - #[cfg(feature = "use_alloc")] - pub use crate::combinations::{ArrayCombinations, Combinations}; - #[cfg(feature = "use_alloc")] - pub use crate::combinations_with_replacement::CombinationsWithReplacement; - pub use crate::cons_tuples_impl::ConsTuples; - #[cfg(feature = "use_std")] - pub use crate::duplicates_impl::{Duplicates, DuplicatesBy}; - pub use crate::exactly_one_err::ExactlyOneError; - pub use crate::flatten_ok::FlattenOk; - pub use crate::format::{Format, FormatWith}; - #[allow(deprecated)] - #[cfg(feature = "use_alloc")] - pub use crate::groupbylazy::GroupBy; - #[cfg(feature = "use_alloc")] - pub use crate::groupbylazy::{Chunk, ChunkBy, Chunks, Group, Groups, IntoChunks}; - #[cfg(feature = "use_std")] - pub use crate::grouping_map::{GroupingMap, GroupingMapBy}; - pub use crate::intersperse::{Intersperse, IntersperseWith}; - #[cfg(feature = "use_alloc")] - pub use crate::kmerge_impl::{KMerge, KMergeBy}; - pub use crate::merge_join::{Merge, MergeBy, MergeJoinBy}; - #[cfg(feature = "use_alloc")] - pub use crate::multipeek_impl::MultiPeek; - pub use crate::pad_tail::PadUsing; - #[cfg(feature = "use_alloc")] - pub use crate::peek_nth::PeekNth; - pub use crate::peeking_take_while::PeekingTakeWhile; - #[cfg(feature = "use_alloc")] - pub use crate::permutations::Permutations; - #[cfg(feature = "use_alloc")] - pub use crate::powerset::Powerset; - pub use crate::process_results_impl::ProcessResults; - #[cfg(feature = "use_alloc")] - pub use crate::put_back_n_impl::PutBackN; - #[cfg(feature = "use_alloc")] - pub use crate::rciter_impl::RcIter; - pub use crate::repeatn::RepeatN; - #[allow(deprecated)] - pub use crate::sources::{Iterate, Unfold}; - pub use crate::take_while_inclusive::TakeWhileInclusive; - #[cfg(feature = "use_alloc")] - pub use crate::tee::Tee; - pub use crate::tuple_impl::{CircularTupleWindows, TupleBuffer, TupleWindows, Tuples}; - #[cfg(feature = "use_std")] - pub use crate::unique_impl::{Unique, UniqueBy}; - pub use crate::with_position::WithPosition; - pub use crate::zip_eq_impl::ZipEq; - pub use crate::zip_longest::ZipLongest; - pub use crate::ziptuple::Zip; -} - -/// Traits helpful for using certain `Itertools` methods in generic contexts. -pub mod traits { - pub use crate::iter_index::IteratorIndex; - pub use crate::tuple_impl::HomogeneousTuple; -} - -pub use crate::concat_impl::concat; -pub use crate::cons_tuples_impl::cons_tuples; -pub use crate::diff::diff_with; -pub use crate::diff::Diff; -#[cfg(feature = "use_alloc")] -pub use crate::kmerge_impl::kmerge_by; -pub use crate::minmax::MinMaxResult; -pub use crate::peeking_take_while::PeekingNext; -pub use crate::process_results_impl::process_results; -pub use crate::repeatn::repeat_n; -#[allow(deprecated)] -pub use crate::sources::{iterate, unfold}; -#[allow(deprecated)] -pub use crate::structs::*; -pub use crate::unziptuple::{multiunzip, MultiUnzip}; -pub use crate::with_position::Position; -pub use crate::ziptuple::multizip; -mod adaptors; -mod either_or_both; -pub use crate::either_or_both::EitherOrBoth; -#[doc(hidden)] -pub mod free; -#[doc(inline)] -pub use crate::free::*; -#[cfg(feature = "use_alloc")] -mod combinations; -#[cfg(feature = "use_alloc")] -mod combinations_with_replacement; -mod concat_impl; -mod cons_tuples_impl; -mod diff; -#[cfg(feature = "use_std")] -mod duplicates_impl; -mod exactly_one_err; -#[cfg(feature = "use_alloc")] -mod extrema_set; -mod flatten_ok; -mod format; -#[cfg(feature = "use_alloc")] -mod group_map; -#[cfg(feature = "use_alloc")] -mod groupbylazy; -#[cfg(feature = "use_std")] -mod grouping_map; -mod intersperse; -mod iter_index; -#[cfg(feature = "use_alloc")] -mod k_smallest; -#[cfg(feature = "use_alloc")] -mod kmerge_impl; -#[cfg(feature = "use_alloc")] -mod lazy_buffer; -mod merge_join; -mod minmax; -#[cfg(feature = "use_alloc")] -mod multipeek_impl; -mod next_array; -mod pad_tail; -#[cfg(feature = "use_alloc")] -mod peek_nth; -mod peeking_take_while; -#[cfg(feature = "use_alloc")] -mod permutations; -#[cfg(feature = "use_alloc")] -mod powerset; -mod process_results_impl; -#[cfg(feature = "use_alloc")] -mod put_back_n_impl; -#[cfg(feature = "use_alloc")] -mod rciter_impl; -mod repeatn; -mod size_hint; -mod sources; -mod take_while_inclusive; -#[cfg(feature = "use_alloc")] -mod tee; -mod tuple_impl; -#[cfg(feature = "use_std")] -mod unique_impl; -mod unziptuple; -mod with_position; -mod zip_eq_impl; -mod zip_longest; -mod ziptuple; - -#[macro_export] -/// Create an iterator over the “cartesian product” of iterators. -/// -/// Iterator element type is like `(A, B, ..., E)` if formed -/// from iterators `(I, J, ..., M)` with element types `I::Item = A`, `J::Item = B`, etc. -/// -/// ``` -/// # use itertools::iproduct; -/// # -/// # fn main() { -/// // Iterate over the coordinates of a 4 x 4 x 4 grid -/// // from (0, 0, 0), (0, 0, 1), .., (0, 1, 0), (0, 1, 1), .. etc until (3, 3, 3) -/// for (i, j, k) in iproduct!(0..4, 0..4, 0..4) { -/// // .. -/// # let _ = (i, j, k); -/// } -/// # } -/// ``` -macro_rules! iproduct { - (@flatten $I:expr,) => ( - $I - ); - (@flatten $I:expr, $J:expr, $($K:expr,)*) => ( - $crate::iproduct!(@flatten $crate::cons_tuples($crate::iproduct!($I, $J)), $($K,)*) - ); - () => ( - $crate::__std_iter::once(()) - ); - ($I:expr $(,)?) => ( - $crate::__std_iter::Iterator::map( - $crate::__std_iter::IntoIterator::into_iter($I), - |elt| (elt,) - ) - ); - ($I:expr, $J:expr $(,)?) => ( - $crate::Itertools::cartesian_product( - $crate::__std_iter::IntoIterator::into_iter($I), - $crate::__std_iter::IntoIterator::into_iter($J), - ) - ); - ($I:expr, $J:expr, $($K:expr),+ $(,)?) => ( - $crate::iproduct!(@flatten $crate::iproduct!($I, $J), $($K,)+) - ); -} - -#[macro_export] -/// Create an iterator running multiple iterators in lockstep. -/// -/// The `izip!` iterator yields elements until any subiterator -/// returns `None`. -/// -/// This is a version of the standard ``.zip()`` that's supporting more than -/// two iterators. The iterator element type is a tuple with one element -/// from each of the input iterators. Just like ``.zip()``, the iteration stops -/// when the shortest of the inputs reaches its end. -/// -/// **Note:** The result of this macro is in the general case an iterator -/// composed of repeated `.zip()` and a `.map()`; it has an anonymous type. -/// The special cases of one and two arguments produce the equivalent of -/// `$a.into_iter()` and `$a.into_iter().zip($b)` respectively. -/// -/// Prefer this macro `izip!()` over [`multizip`] for the performance benefits -/// of using the standard library `.zip()`. -/// -/// ``` -/// # use itertools::izip; -/// # -/// # fn main() { -/// -/// // iterate over three sequences side-by-side -/// let mut results = [0, 0, 0, 0]; -/// let inputs = [3, 7, 9, 6]; -/// -/// for (r, index, input) in izip!(&mut results, 0..10, &inputs) { -/// *r = index * 10 + input; -/// } -/// -/// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]); -/// # } -/// ``` -macro_rules! izip { - // @closure creates a tuple-flattening closure for .map() call. usage: - // @closure partial_pattern => partial_tuple , rest , of , iterators - // eg. izip!( @closure ((a, b), c) => (a, b, c) , dd , ee ) - ( @closure $p:pat => $tup:expr ) => { - |$p| $tup - }; - - // The "b" identifier is a different identifier on each recursion level thanks to hygiene. - ( @closure $p:pat => ( $($tup:tt)* ) , $_iter:expr $( , $tail:expr )* ) => { - $crate::izip!(@closure ($p, b) => ( $($tup)*, b ) $( , $tail )*) - }; - - // unary - ($first:expr $(,)*) => { - $crate::__std_iter::IntoIterator::into_iter($first) - }; - - // binary - ($first:expr, $second:expr $(,)*) => { - $crate::__std_iter::Iterator::zip( - $crate::__std_iter::IntoIterator::into_iter($first), - $second, - ) - }; - - // n-ary where n > 2 - ( $first:expr $( , $rest:expr )* $(,)* ) => { - { - let iter = $crate::__std_iter::IntoIterator::into_iter($first); - $( - let iter = $crate::__std_iter::Iterator::zip(iter, $rest); - )* - $crate::__std_iter::Iterator::map( - iter, - $crate::izip!(@closure a => (a) $( , $rest )*) - ) - } - }; -} - -#[macro_export] -/// [Chain][`chain`] zero or more iterators together into one sequence. -/// -/// The comma-separated arguments must implement [`IntoIterator`]. -/// The final argument may be followed by a trailing comma. -/// -/// [`chain`]: Iterator::chain -/// -/// # Examples -/// -/// Empty invocations of `chain!` expand to an invocation of [`std::iter::empty`]: -/// ``` -/// use std::iter; -/// use itertools::chain; -/// -/// let _: iter::Empty<()> = chain!(); -/// let _: iter::Empty<i8> = chain!(); -/// ``` -/// -/// Invocations of `chain!` with one argument expand to [`arg.into_iter()`](IntoIterator): -/// ``` -/// use std::ops::Range; -/// use itertools::chain; -/// let _: <Range<_> as IntoIterator>::IntoIter = chain!(2..6,); // trailing comma optional! -/// let _: <&[_] as IntoIterator>::IntoIter = chain!(&[2, 3, 4]); -/// ``` -/// -/// Invocations of `chain!` with multiple arguments [`.into_iter()`](IntoIterator) each -/// argument, and then [`chain`] them together: -/// ``` -/// use std::{iter::*, slice}; -/// use itertools::{assert_equal, chain}; -/// -/// // e.g., this: -/// let with_macro: Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> = -/// chain![once(&0), repeat(&1).take(2), &[2, 3, 5],]; -/// -/// // ...is equivalent to this: -/// let with_method: Chain<Chain<Once<_>, Take<Repeat<_>>>, slice::Iter<_>> = -/// once(&0) -/// .chain(repeat(&1).take(2)) -/// .chain(&[2, 3, 5]); -/// -/// assert_equal(with_macro, with_method); -/// ``` -macro_rules! chain { - () => { - $crate::__std_iter::empty() - }; - ($first:expr $(, $rest:expr )* $(,)?) => { - { - let iter = $crate::__std_iter::IntoIterator::into_iter($first); - $( - let iter = - $crate::__std_iter::Iterator::chain( - iter, - $crate::__std_iter::IntoIterator::into_iter($rest)); - )* - iter - } - }; -} - -/// An [`Iterator`] blanket implementation that provides extra adaptors and -/// methods. -/// -/// This trait defines a number of methods. They are divided into two groups: -/// -/// * *Adaptors* take an iterator and parameter as input, and return -/// a new iterator value. These are listed first in the trait. An example -/// of an adaptor is [`.interleave()`](Itertools::interleave) -/// -/// * *Regular methods* are those that don't return iterators and instead -/// return a regular value of some other kind. -/// [`.next_tuple()`](Itertools::next_tuple) is an example and the first regular -/// method in the list. -pub trait Itertools: Iterator { - // adaptors - - /// Alternate elements from two iterators until both have run out. - /// - /// Iterator element type is `Self::Item`. - /// - /// This iterator is *fused*. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let it = (1..7).interleave(vec![-1, -2]); - /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3, 4, 5, 6]); - /// ``` - fn interleave<J>(self, other: J) -> Interleave<Self, J::IntoIter> - where - J: IntoIterator<Item = Self::Item>, - Self: Sized, - { - interleave(self, other) - } - - /// Alternate elements from two iterators until at least one of them has run - /// out. - /// - /// Iterator element type is `Self::Item`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let it = (1..7).interleave_shortest(vec![-1, -2]); - /// itertools::assert_equal(it, vec![1, -1, 2, -2, 3]); - /// ``` - fn interleave_shortest<J>(self, other: J) -> InterleaveShortest<Self, J::IntoIter> - where - J: IntoIterator<Item = Self::Item>, - Self: Sized, - { - adaptors::interleave_shortest(self, other.into_iter()) - } - - /// An iterator adaptor to insert a particular value - /// between each element of the adapted iterator. - /// - /// Iterator element type is `Self::Item`. - /// - /// This iterator is *fused*. - /// - /// ``` - /// use itertools::Itertools; - /// - /// itertools::assert_equal((0..3).intersperse(8), vec![0, 8, 1, 8, 2]); - /// ``` - fn intersperse(self, element: Self::Item) -> Intersperse<Self> - where - Self: Sized, - Self::Item: Clone, - { - intersperse::intersperse(self, element) - } - - /// An iterator adaptor to insert a particular value created by a function - /// between each element of the adapted iterator. - /// - /// Iterator element type is `Self::Item`. - /// - /// This iterator is *fused*. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let mut i = 10; - /// itertools::assert_equal((0..3).intersperse_with(|| { i -= 1; i }), vec![0, 9, 1, 8, 2]); - /// assert_eq!(i, 8); - /// ``` - fn intersperse_with<F>(self, element: F) -> IntersperseWith<Self, F> - where - Self: Sized, - F: FnMut() -> Self::Item, - { - intersperse::intersperse_with(self, element) - } - - /// Returns an iterator over a subsection of the iterator. - /// - /// Works similarly to [`slice::get`](https://doc.rust-lang.org/std/primitive.slice.html#method.get). - /// - /// **Panics** for ranges `..=usize::MAX` and `0..=usize::MAX`. - /// - /// It's a generalisation of [`Iterator::take`] and [`Iterator::skip`], - /// and uses these under the hood. - /// Therefore, the resulting iterator is: - /// - [`ExactSizeIterator`] if the adapted iterator is [`ExactSizeIterator`]. - /// - [`DoubleEndedIterator`] if the adapted iterator is [`DoubleEndedIterator`] and [`ExactSizeIterator`]. - /// - /// # Unspecified Behavior - /// The result of indexing with an exhausted [`core::ops::RangeInclusive`] is unspecified. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// - /// let vec = vec![3, 1, 4, 1, 5]; - /// - /// let mut range: Vec<_> = - /// vec.iter().get(1..=3).copied().collect(); - /// assert_eq!(&range, &[1, 4, 1]); - /// - /// // It works with other types of ranges, too - /// range = vec.iter().get(..2).copied().collect(); - /// assert_eq!(&range, &[3, 1]); - /// - /// range = vec.iter().get(0..1).copied().collect(); - /// assert_eq!(&range, &[3]); - /// - /// range = vec.iter().get(2..).copied().collect(); - /// assert_eq!(&range, &[4, 1, 5]); - /// - /// range = vec.iter().get(..=2).copied().collect(); - /// assert_eq!(&range, &[3, 1, 4]); - /// - /// range = vec.iter().get(..).copied().collect(); - /// assert_eq!(range, vec); - /// ``` - fn get<R>(self, index: R) -> R::Output - where - Self: Sized, - R: traits::IteratorIndex<Self>, - { - iter_index::get(self, index) - } - - /// Create an iterator which iterates over both this and the specified - /// iterator simultaneously, yielding pairs of two optional elements. - /// - /// This iterator is *fused*. - /// - /// As long as neither input iterator is exhausted yet, it yields two values - /// via `EitherOrBoth::Both`. - /// - /// When the parameter iterator is exhausted, it only yields a value from the - /// `self` iterator via `EitherOrBoth::Left`. - /// - /// When the `self` iterator is exhausted, it only yields a value from the - /// parameter iterator via `EitherOrBoth::Right`. - /// - /// When both iterators return `None`, all further invocations of `.next()` - /// will return `None`. - /// - /// Iterator element type is - /// [`EitherOrBoth<Self::Item, J::Item>`](EitherOrBoth). - /// - /// ```rust - /// use itertools::EitherOrBoth::{Both, Right}; - /// use itertools::Itertools; - /// let it = (0..1).zip_longest(1..3); - /// itertools::assert_equal(it, vec![Both(0, 1), Right(2)]); - /// ``` - #[inline] - fn zip_longest<J>(self, other: J) -> ZipLongest<Self, J::IntoIter> - where - J: IntoIterator, - Self: Sized, - { - zip_longest::zip_longest(self, other.into_iter()) - } - - /// Create an iterator which iterates over both this and the specified - /// iterator simultaneously, yielding pairs of elements. - /// - /// **Panics** if the iterators reach an end and they are not of equal - /// lengths. - #[inline] - fn zip_eq<J>(self, other: J) -> ZipEq<Self, J::IntoIter> - where - J: IntoIterator, - Self: Sized, - { - zip_eq(self, other) - } - - /// A “meta iterator adaptor”. Its closure receives a reference to the - /// iterator and may pick off as many elements as it likes, to produce the - /// next iterator element. - /// - /// Iterator element type is `B`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // An adaptor that gathers elements in pairs - /// let pit = (0..4).batching(|it| { - /// match it.next() { - /// None => None, - /// Some(x) => match it.next() { - /// None => None, - /// Some(y) => Some((x, y)), - /// } - /// } - /// }); - /// - /// itertools::assert_equal(pit, vec![(0, 1), (2, 3)]); - /// ``` - /// - fn batching<B, F>(self, f: F) -> Batching<Self, F> - where - F: FnMut(&mut Self) -> Option<B>, - Self: Sized, - { - adaptors::batching(self, f) - } - - /// Return an *iterable* that can group iterator elements. - /// Consecutive elements that map to the same key (“runs”), are assigned - /// to the same group. - /// - /// `ChunkBy` is the storage for the lazy grouping operation. - /// - /// If the groups are consumed in order, or if each group's iterator is - /// dropped without keeping it around, then `ChunkBy` uses no - /// allocations. It needs allocations only if several group iterators - /// are alive at the same time. - /// - /// This type implements [`IntoIterator`] (it is **not** an iterator - /// itself), because the group iterators need to borrow from this - /// value. It should be stored in a local variable or temporary and - /// iterated. - /// - /// Iterator element type is `(K, Group)`: the group's key and the - /// group iterator. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // chunk data into runs of larger than zero or not. - /// let data = vec![1, 3, -2, -2, 1, 0, 1, 2]; - /// // chunks: |---->|------>|--------->| - /// - /// // Note: The `&` is significant here, `ChunkBy` is iterable - /// // only by reference. You can also call `.into_iter()` explicitly. - /// let mut data_grouped = Vec::new(); - /// for (key, chunk) in &data.into_iter().chunk_by(|elt| *elt >= 0) { - /// data_grouped.push((key, chunk.collect())); - /// } - /// assert_eq!(data_grouped, vec![(true, vec![1, 3]), (false, vec![-2, -2]), (true, vec![1, 0, 1, 2])]); - /// ``` - #[cfg(feature = "use_alloc")] - fn chunk_by<K, F>(self, key: F) -> ChunkBy<K, Self, F> - where - Self: Sized, - F: FnMut(&Self::Item) -> K, - K: PartialEq, - { - groupbylazy::new(self, key) - } - - /// See [`.chunk_by()`](Itertools::chunk_by). - #[deprecated(note = "Use .chunk_by() instead", since = "0.13.0")] - #[cfg(feature = "use_alloc")] - fn group_by<K, F>(self, key: F) -> ChunkBy<K, Self, F> - where - Self: Sized, - F: FnMut(&Self::Item) -> K, - K: PartialEq, - { - self.chunk_by(key) - } - - /// Return an *iterable* that can chunk the iterator. - /// - /// Yield subiterators (chunks) that each yield a fixed number elements, - /// determined by `size`. The last chunk will be shorter if there aren't - /// enough elements. - /// - /// `IntoChunks` is based on `ChunkBy`: it is iterable (implements - /// `IntoIterator`, **not** `Iterator`), and it only buffers if several - /// chunk iterators are alive at the same time. - /// - /// Iterator element type is `Chunk`, each chunk's iterator. - /// - /// **Panics** if `size` is 0. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = vec![1, 1, 2, -2, 6, 0, 3, 1]; - /// //chunk size=3 |------->|-------->|--->| - /// - /// // Note: The `&` is significant here, `IntoChunks` is iterable - /// // only by reference. You can also call `.into_iter()` explicitly. - /// for chunk in &data.into_iter().chunks(3) { - /// // Check that the sum of each chunk is 4. - /// assert_eq!(4, chunk.sum()); - /// } - /// ``` - #[cfg(feature = "use_alloc")] - fn chunks(self, size: usize) -> IntoChunks<Self> - where - Self: Sized, - { - assert!(size != 0); - groupbylazy::new_chunks(self, size) - } - - /// Return an iterator over all contiguous windows producing tuples of - /// a specific size (up to 12). - /// - /// `tuple_windows` clones the iterator elements so that they can be - /// part of successive windows, this makes it most suited for iterators - /// of references and other values that are cheap to copy. - /// - /// ``` - /// use itertools::Itertools; - /// let mut v = Vec::new(); - /// - /// // pairwise iteration - /// for (a, b) in (1..5).tuple_windows() { - /// v.push((a, b)); - /// } - /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4)]); - /// - /// let mut it = (1..5).tuple_windows(); - /// assert_eq!(Some((1, 2, 3)), it.next()); - /// assert_eq!(Some((2, 3, 4)), it.next()); - /// assert_eq!(None, it.next()); - /// - /// // this requires a type hint - /// let it = (1..5).tuple_windows::<(_, _, _)>(); - /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]); - /// - /// // you can also specify the complete type - /// use itertools::TupleWindows; - /// use std::ops::Range; - /// - /// let it: TupleWindows<Range<u32>, (u32, u32, u32)> = (1..5).tuple_windows(); - /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4)]); - /// ``` - fn tuple_windows<T>(self) -> TupleWindows<Self, T> - where - Self: Sized + Iterator<Item = T::Item>, - T: traits::HomogeneousTuple, - T::Item: Clone, - { - tuple_impl::tuple_windows(self) - } - - /// Return an iterator over all windows, wrapping back to the first - /// elements when the window would otherwise exceed the length of the - /// iterator, producing tuples of a specific size (up to 12). - /// - /// `circular_tuple_windows` clones the iterator elements so that they can be - /// part of successive windows, this makes it most suited for iterators - /// of references and other values that are cheap to copy. - /// - /// ``` - /// use itertools::Itertools; - /// let mut v = Vec::new(); - /// for (a, b) in (1..5).circular_tuple_windows() { - /// v.push((a, b)); - /// } - /// assert_eq!(v, vec![(1, 2), (2, 3), (3, 4), (4, 1)]); - /// - /// let mut it = (1..5).circular_tuple_windows(); - /// assert_eq!(Some((1, 2, 3)), it.next()); - /// assert_eq!(Some((2, 3, 4)), it.next()); - /// assert_eq!(Some((3, 4, 1)), it.next()); - /// assert_eq!(Some((4, 1, 2)), it.next()); - /// assert_eq!(None, it.next()); - /// - /// // this requires a type hint - /// let it = (1..5).circular_tuple_windows::<(_, _, _)>(); - /// itertools::assert_equal(it, vec![(1, 2, 3), (2, 3, 4), (3, 4, 1), (4, 1, 2)]); - /// ``` - fn circular_tuple_windows<T>(self) -> CircularTupleWindows<Self, T> - where - Self: Sized + Clone + Iterator<Item = T::Item> + ExactSizeIterator, - T: tuple_impl::TupleCollect + Clone, - T::Item: Clone, - { - tuple_impl::circular_tuple_windows(self) - } - /// Return an iterator that groups the items in tuples of a specific size - /// (up to 12). - /// - /// See also the method [`.next_tuple()`](Itertools::next_tuple). - /// - /// ``` - /// use itertools::Itertools; - /// let mut v = Vec::new(); - /// for (a, b) in (1..5).tuples() { - /// v.push((a, b)); - /// } - /// assert_eq!(v, vec![(1, 2), (3, 4)]); - /// - /// let mut it = (1..7).tuples(); - /// assert_eq!(Some((1, 2, 3)), it.next()); - /// assert_eq!(Some((4, 5, 6)), it.next()); - /// assert_eq!(None, it.next()); - /// - /// // this requires a type hint - /// let it = (1..7).tuples::<(_, _, _)>(); - /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]); - /// - /// // you can also specify the complete type - /// use itertools::Tuples; - /// use std::ops::Range; - /// - /// let it: Tuples<Range<u32>, (u32, u32, u32)> = (1..7).tuples(); - /// itertools::assert_equal(it, vec![(1, 2, 3), (4, 5, 6)]); - /// ``` - /// - /// See also [`Tuples::into_buffer`]. - fn tuples<T>(self) -> Tuples<Self, T> - where - Self: Sized + Iterator<Item = T::Item>, - T: traits::HomogeneousTuple, - { - tuple_impl::tuples(self) - } - - /// Split into an iterator pair that both yield all elements from - /// the original iterator. - /// - /// **Note:** If the iterator is clonable, prefer using that instead - /// of using this method. Cloning is likely to be more efficient. - /// - /// Iterator element type is `Self::Item`. - /// - /// ``` - /// use itertools::Itertools; - /// let xs = vec![0, 1, 2, 3]; - /// - /// let (mut t1, t2) = xs.into_iter().tee(); - /// itertools::assert_equal(t1.next(), Some(0)); - /// itertools::assert_equal(t2, 0..4); - /// itertools::assert_equal(t1, 1..4); - /// ``` - #[cfg(feature = "use_alloc")] - fn tee(self) -> (Tee<Self>, Tee<Self>) - where - Self: Sized, - Self::Item: Clone, - { - tee::new(self) - } - - /// Convert each item of the iterator using the [`Into`] trait. - /// - /// ```rust - /// use itertools::Itertools; - /// - /// (1i32..42i32).map_into::<f64>().collect_vec(); - /// ``` - fn map_into<R>(self) -> MapInto<Self, R> - where - Self: Sized, - Self::Item: Into<R>, - { - adaptors::map_into(self) - } - - /// Return an iterator adaptor that applies the provided closure - /// to every `Result::Ok` value. `Result::Err` values are - /// unchanged. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let input = vec![Ok(41), Err(false), Ok(11)]; - /// let it = input.into_iter().map_ok(|i| i + 1); - /// itertools::assert_equal(it, vec![Ok(42), Err(false), Ok(12)]); - /// ``` - fn map_ok<F, T, U, E>(self, f: F) -> MapOk<Self, F> - where - Self: Iterator<Item = Result<T, E>> + Sized, - F: FnMut(T) -> U, - { - adaptors::map_ok(self, f) - } - - /// Return an iterator adaptor that filters every `Result::Ok` - /// value with the provided closure. `Result::Err` values are - /// unchanged. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let input = vec![Ok(22), Err(false), Ok(11)]; - /// let it = input.into_iter().filter_ok(|&i| i > 20); - /// itertools::assert_equal(it, vec![Ok(22), Err(false)]); - /// ``` - fn filter_ok<F, T, E>(self, f: F) -> FilterOk<Self, F> - where - Self: Iterator<Item = Result<T, E>> + Sized, - F: FnMut(&T) -> bool, - { - adaptors::filter_ok(self, f) - } - - /// Return an iterator adaptor that filters and transforms every - /// `Result::Ok` value with the provided closure. `Result::Err` - /// values are unchanged. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let input = vec![Ok(22), Err(false), Ok(11)]; - /// let it = input.into_iter().filter_map_ok(|i| if i > 20 { Some(i * 2) } else { None }); - /// itertools::assert_equal(it, vec![Ok(44), Err(false)]); - /// ``` - fn filter_map_ok<F, T, U, E>(self, f: F) -> FilterMapOk<Self, F> - where - Self: Iterator<Item = Result<T, E>> + Sized, - F: FnMut(T) -> Option<U>, - { - adaptors::filter_map_ok(self, f) - } - - /// Return an iterator adaptor that flattens every `Result::Ok` value into - /// a series of `Result::Ok` values. `Result::Err` values are unchanged. - /// - /// This is useful when you have some common error type for your crate and - /// need to propagate it upwards, but the `Result::Ok` case needs to be flattened. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let input = vec![Ok(0..2), Err(false), Ok(2..4)]; - /// let it = input.iter().cloned().flatten_ok(); - /// itertools::assert_equal(it.clone(), vec![Ok(0), Ok(1), Err(false), Ok(2), Ok(3)]); - /// - /// // This can also be used to propagate errors when collecting. - /// let output_result: Result<Vec<i32>, bool> = it.collect(); - /// assert_eq!(output_result, Err(false)); - /// ``` - fn flatten_ok<T, E>(self) -> FlattenOk<Self, T, E> - where - Self: Iterator<Item = Result<T, E>> + Sized, - T: IntoIterator, - { - flatten_ok::flatten_ok(self) - } - - /// “Lift” a function of the values of the current iterator so as to process - /// an iterator of `Result` values instead. - /// - /// `processor` is a closure that receives an adapted version of the iterator - /// as the only argument — the adapted iterator produces elements of type `T`, - /// as long as the original iterator produces `Ok` values. - /// - /// If the original iterable produces an error at any point, the adapted - /// iterator ends and it will return the error iself. - /// - /// Otherwise, the return value from the closure is returned wrapped - /// inside `Ok`. - /// - /// # Example - /// - /// ``` - /// use itertools::Itertools; - /// - /// type Item = Result<i32, &'static str>; - /// - /// let first_values: Vec<Item> = vec![Ok(1), Ok(0), Ok(3)]; - /// let second_values: Vec<Item> = vec![Ok(2), Ok(1), Err("overflow")]; - /// - /// // “Lift” the iterator .max() method to work on the Ok-values. - /// let first_max = first_values.into_iter().process_results(|iter| iter.max().unwrap_or(0)); - /// let second_max = second_values.into_iter().process_results(|iter| iter.max().unwrap_or(0)); - /// - /// assert_eq!(first_max, Ok(3)); - /// assert!(second_max.is_err()); - /// ``` - fn process_results<F, T, E, R>(self, processor: F) -> Result<R, E> - where - Self: Iterator<Item = Result<T, E>> + Sized, - F: FnOnce(ProcessResults<Self, E>) -> R, - { - process_results(self, processor) - } - - /// Return an iterator adaptor that merges the two base iterators in - /// ascending order. If both base iterators are sorted (ascending), the - /// result is sorted. - /// - /// Iterator element type is `Self::Item`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let a = (0..11).step_by(3); - /// let b = (0..11).step_by(5); - /// let it = a.merge(b); - /// itertools::assert_equal(it, vec![0, 0, 3, 5, 6, 9, 10]); - /// ``` - fn merge<J>(self, other: J) -> Merge<Self, J::IntoIter> - where - Self: Sized, - Self::Item: PartialOrd, - J: IntoIterator<Item = Self::Item>, - { - merge(self, other) - } - - /// Return an iterator adaptor that merges the two base iterators in order. - /// This is much like [`.merge()`](Itertools::merge) but allows for a custom ordering. - /// - /// This can be especially useful for sequences of tuples. - /// - /// Iterator element type is `Self::Item`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let a = (0..).zip("bc".chars()); - /// let b = (0..).zip("ad".chars()); - /// let it = a.merge_by(b, |x, y| x.1 <= y.1); - /// itertools::assert_equal(it, vec![(0, 'a'), (0, 'b'), (1, 'c'), (1, 'd')]); - /// ``` - fn merge_by<J, F>(self, other: J, is_first: F) -> MergeBy<Self, J::IntoIter, F> - where - Self: Sized, - J: IntoIterator<Item = Self::Item>, - F: FnMut(&Self::Item, &Self::Item) -> bool, - { - merge_join::merge_by_new(self, other, is_first) - } - - /// Create an iterator that merges items from both this and the specified - /// iterator in ascending order. - /// - /// The function can either return an `Ordering` variant or a boolean. - /// - /// If `cmp_fn` returns `Ordering`, - /// it chooses whether to pair elements based on the `Ordering` returned by the - /// specified compare function. At any point, inspecting the tip of the - /// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type - /// `J::Item` respectively, the resulting iterator will: - /// - /// - Emit `EitherOrBoth::Left(i)` when `i < j`, - /// and remove `i` from its source iterator - /// - Emit `EitherOrBoth::Right(j)` when `i > j`, - /// and remove `j` from its source iterator - /// - Emit `EitherOrBoth::Both(i, j)` when `i == j`, - /// and remove both `i` and `j` from their respective source iterators - /// - /// ``` - /// use itertools::Itertools; - /// use itertools::EitherOrBoth::{Left, Right, Both}; - /// - /// let a = vec![0, 2, 4, 6, 1].into_iter(); - /// let b = (0..10).step_by(3); - /// - /// itertools::assert_equal( - /// // This performs a diff in the style of the Unix command comm(1), - /// // generalized to arbitrary types rather than text. - /// a.merge_join_by(b, Ord::cmp), - /// vec![Both(0, 0), Left(2), Right(3), Left(4), Both(6, 6), Left(1), Right(9)] - /// ); - /// ``` - /// - /// If `cmp_fn` returns `bool`, - /// it chooses whether to pair elements based on the boolean returned by the - /// specified function. At any point, inspecting the tip of the - /// iterators `I` and `J` as items `i` of type `I::Item` and `j` of type - /// `J::Item` respectively, the resulting iterator will: - /// - /// - Emit `Either::Left(i)` when `true`, - /// and remove `i` from its source iterator - /// - Emit `Either::Right(j)` when `false`, - /// and remove `j` from its source iterator - /// - /// It is similar to the `Ordering` case if the first argument is considered - /// "less" than the second argument. - /// - /// ``` - /// use itertools::Itertools; - /// use itertools::Either::{Left, Right}; - /// - /// let a = vec![0, 2, 4, 6, 1].into_iter(); - /// let b = (0..10).step_by(3); - /// - /// itertools::assert_equal( - /// a.merge_join_by(b, |i, j| i <= j), - /// vec![Left(0), Right(0), Left(2), Right(3), Left(4), Left(6), Left(1), Right(6), Right(9)] - /// ); - /// ``` - #[inline] - #[doc(alias = "comm")] - fn merge_join_by<J, F, T>(self, other: J, cmp_fn: F) -> MergeJoinBy<Self, J::IntoIter, F> - where - J: IntoIterator, - F: FnMut(&Self::Item, &J::Item) -> T, - Self: Sized, - { - merge_join_by(self, other, cmp_fn) - } - - /// Return an iterator adaptor that flattens an iterator of iterators by - /// merging them in ascending order. - /// - /// If all base iterators are sorted (ascending), the result is sorted. - /// - /// Iterator element type is `Self::Item`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let a = (0..6).step_by(3); - /// let b = (1..6).step_by(3); - /// let c = (2..6).step_by(3); - /// let it = vec![a, b, c].into_iter().kmerge(); - /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5]); - /// ``` - #[cfg(feature = "use_alloc")] - fn kmerge(self) -> KMerge<<Self::Item as IntoIterator>::IntoIter> - where - Self: Sized, - Self::Item: IntoIterator, - <Self::Item as IntoIterator>::Item: PartialOrd, - { - kmerge(self) - } - - /// Return an iterator adaptor that flattens an iterator of iterators by - /// merging them according to the given closure. - /// - /// The closure `first` is called with two elements *a*, *b* and should - /// return `true` if *a* is ordered before *b*. - /// - /// If all base iterators are sorted according to `first`, the result is - /// sorted. - /// - /// Iterator element type is `Self::Item`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let a = vec![-1f64, 2., 3., -5., 6., -7.]; - /// let b = vec![0., 2., -4.]; - /// let mut it = vec![a, b].into_iter().kmerge_by(|a, b| a.abs() < b.abs()); - /// assert_eq!(it.next(), Some(0.)); - /// assert_eq!(it.last(), Some(-7.)); - /// ``` - #[cfg(feature = "use_alloc")] - fn kmerge_by<F>(self, first: F) -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F> - where - Self: Sized, - Self::Item: IntoIterator, - F: FnMut(&<Self::Item as IntoIterator>::Item, &<Self::Item as IntoIterator>::Item) -> bool, - { - kmerge_by(self, first) - } - - /// Return an iterator adaptor that iterates over the cartesian product of - /// the element sets of two iterators `self` and `J`. - /// - /// Iterator element type is `(Self::Item, J::Item)`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let it = (0..2).cartesian_product("αβ".chars()); - /// itertools::assert_equal(it, vec![(0, 'α'), (0, 'β'), (1, 'α'), (1, 'β')]); - /// ``` - fn cartesian_product<J>(self, other: J) -> Product<Self, J::IntoIter> - where - Self: Sized, - Self::Item: Clone, - J: IntoIterator, - J::IntoIter: Clone, - { - adaptors::cartesian_product(self, other.into_iter()) - } - - /// Return an iterator adaptor that iterates over the cartesian product of - /// all subiterators returned by meta-iterator `self`. - /// - /// All provided iterators must yield the same `Item` type. To generate - /// the product of iterators yielding multiple types, use the - /// [`iproduct`] macro instead. - /// - /// The iterator element type is `Vec<T>`, where `T` is the iterator element - /// of the subiterators. - /// - /// Note that the iterator is fused. - /// - /// ``` - /// use itertools::Itertools; - /// let mut multi_prod = (0..3).map(|i| (i * 2)..(i * 2 + 2)) - /// .multi_cartesian_product(); - /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 4])); - /// assert_eq!(multi_prod.next(), Some(vec![0, 2, 5])); - /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 4])); - /// assert_eq!(multi_prod.next(), Some(vec![0, 3, 5])); - /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 4])); - /// assert_eq!(multi_prod.next(), Some(vec![1, 2, 5])); - /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 4])); - /// assert_eq!(multi_prod.next(), Some(vec![1, 3, 5])); - /// assert_eq!(multi_prod.next(), None); - /// ``` - /// - /// If the adapted iterator is empty, the result is an iterator yielding a single empty vector. - /// This is known as the [nullary cartesian product](https://en.wikipedia.org/wiki/Empty_product#Nullary_Cartesian_product). - /// - /// ``` - /// use itertools::Itertools; - /// let mut nullary_cartesian_product = (0..0).map(|i| (i * 2)..(i * 2 + 2)).multi_cartesian_product(); - /// assert_eq!(nullary_cartesian_product.next(), Some(vec![])); - /// assert_eq!(nullary_cartesian_product.next(), None); - /// ``` - #[cfg(feature = "use_alloc")] - fn multi_cartesian_product(self) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter> - where - Self: Sized, - Self::Item: IntoIterator, - <Self::Item as IntoIterator>::IntoIter: Clone, - <Self::Item as IntoIterator>::Item: Clone, - { - adaptors::multi_cartesian_product(self) - } - - /// Return an iterator adaptor that uses the passed-in closure to - /// optionally merge together consecutive elements. - /// - /// The closure `f` is passed two elements, `previous` and `current` and may - /// return either (1) `Ok(combined)` to merge the two values or - /// (2) `Err((previous', current'))` to indicate they can't be merged. - /// In (2), the value `previous'` is emitted by the iterator. - /// Either (1) `combined` or (2) `current'` becomes the previous value - /// when coalesce continues with the next pair of elements to merge. The - /// value that remains at the end is also emitted by the iterator. - /// - /// Iterator element type is `Self::Item`. - /// - /// This iterator is *fused*. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // sum same-sign runs together - /// let data = vec![-1., -2., -3., 3., 1., 0., -1.]; - /// itertools::assert_equal(data.into_iter().coalesce(|x, y| - /// if (x >= 0.) == (y >= 0.) { - /// Ok(x + y) - /// } else { - /// Err((x, y)) - /// }), - /// vec![-6., 4., -1.]); - /// ``` - fn coalesce<F>(self, f: F) -> Coalesce<Self, F> - where - Self: Sized, - F: FnMut(Self::Item, Self::Item) -> Result<Self::Item, (Self::Item, Self::Item)>, - { - adaptors::coalesce(self, f) - } - - /// Remove duplicates from sections of consecutive identical elements. - /// If the iterator is sorted, all elements will be unique. - /// - /// Iterator element type is `Self::Item`. - /// - /// This iterator is *fused*. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = vec![1., 1., 2., 3., 3., 2., 2.]; - /// itertools::assert_equal(data.into_iter().dedup(), - /// vec![1., 2., 3., 2.]); - /// ``` - fn dedup(self) -> Dedup<Self> - where - Self: Sized, - Self::Item: PartialEq, - { - adaptors::dedup(self) - } - - /// Remove duplicates from sections of consecutive identical elements, - /// determining equality using a comparison function. - /// If the iterator is sorted, all elements will be unique. - /// - /// Iterator element type is `Self::Item`. - /// - /// This iterator is *fused*. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = vec![(0, 1.), (1, 1.), (0, 2.), (0, 3.), (1, 3.), (1, 2.), (2, 2.)]; - /// itertools::assert_equal(data.into_iter().dedup_by(|x, y| x.1 == y.1), - /// vec![(0, 1.), (0, 2.), (0, 3.), (1, 2.)]); - /// ``` - fn dedup_by<Cmp>(self, cmp: Cmp) -> DedupBy<Self, Cmp> - where - Self: Sized, - Cmp: FnMut(&Self::Item, &Self::Item) -> bool, - { - adaptors::dedup_by(self, cmp) - } - - /// Remove duplicates from sections of consecutive identical elements, while keeping a count of - /// how many repeated elements were present. - /// If the iterator is sorted, all elements will be unique. - /// - /// Iterator element type is `(usize, Self::Item)`. - /// - /// This iterator is *fused*. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = vec!['a', 'a', 'b', 'c', 'c', 'b', 'b']; - /// itertools::assert_equal(data.into_iter().dedup_with_count(), - /// vec![(2, 'a'), (1, 'b'), (2, 'c'), (2, 'b')]); - /// ``` - fn dedup_with_count(self) -> DedupWithCount<Self> - where - Self: Sized, - { - adaptors::dedup_with_count(self) - } - - /// Remove duplicates from sections of consecutive identical elements, while keeping a count of - /// how many repeated elements were present. - /// This will determine equality using a comparison function. - /// If the iterator is sorted, all elements will be unique. - /// - /// Iterator element type is `(usize, Self::Item)`. - /// - /// This iterator is *fused*. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = vec![(0, 'a'), (1, 'a'), (0, 'b'), (0, 'c'), (1, 'c'), (1, 'b'), (2, 'b')]; - /// itertools::assert_equal(data.into_iter().dedup_by_with_count(|x, y| x.1 == y.1), - /// vec![(2, (0, 'a')), (1, (0, 'b')), (2, (0, 'c')), (2, (1, 'b'))]); - /// ``` - fn dedup_by_with_count<Cmp>(self, cmp: Cmp) -> DedupByWithCount<Self, Cmp> - where - Self: Sized, - Cmp: FnMut(&Self::Item, &Self::Item) -> bool, - { - adaptors::dedup_by_with_count(self, cmp) - } - - /// Return an iterator adaptor that produces elements that appear more than once during the - /// iteration. Duplicates are detected using hash and equality. - /// - /// The iterator is stable, returning the duplicate items in the order in which they occur in - /// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more - /// than twice, the second item is the item retained and the rest are discarded. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = vec![10, 20, 30, 20, 40, 10, 50]; - /// itertools::assert_equal(data.into_iter().duplicates(), - /// vec![20, 10]); - /// ``` - #[cfg(feature = "use_std")] - fn duplicates(self) -> Duplicates<Self> - where - Self: Sized, - Self::Item: Eq + Hash, - { - duplicates_impl::duplicates(self) - } - - /// Return an iterator adaptor that produces elements that appear more than once during the - /// iteration. Duplicates are detected using hash and equality. - /// - /// Duplicates are detected by comparing the key they map to with the keying function `f` by - /// hash and equality. The keys are stored in a hash map in the iterator. - /// - /// The iterator is stable, returning the duplicate items in the order in which they occur in - /// the adapted iterator. Each duplicate item is returned exactly once. If an item appears more - /// than twice, the second item is the item retained and the rest are discarded. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = vec!["a", "bb", "aa", "c", "ccc"]; - /// itertools::assert_equal(data.into_iter().duplicates_by(|s| s.len()), - /// vec!["aa", "c"]); - /// ``` - #[cfg(feature = "use_std")] - fn duplicates_by<V, F>(self, f: F) -> DuplicatesBy<Self, V, F> - where - Self: Sized, - V: Eq + Hash, - F: FnMut(&Self::Item) -> V, - { - duplicates_impl::duplicates_by(self, f) - } - - /// Return an iterator adaptor that filters out elements that have - /// already been produced once during the iteration. Duplicates - /// are detected using hash and equality. - /// - /// Clones of visited elements are stored in a hash set in the - /// iterator. - /// - /// The iterator is stable, returning the non-duplicate items in the order - /// in which they occur in the adapted iterator. In a set of duplicate - /// items, the first item encountered is the item retained. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = vec![10, 20, 30, 20, 40, 10, 50]; - /// itertools::assert_equal(data.into_iter().unique(), - /// vec![10, 20, 30, 40, 50]); - /// ``` - #[cfg(feature = "use_std")] - fn unique(self) -> Unique<Self> - where - Self: Sized, - Self::Item: Clone + Eq + Hash, - { - unique_impl::unique(self) - } - - /// Return an iterator adaptor that filters out elements that have - /// already been produced once during the iteration. - /// - /// Duplicates are detected by comparing the key they map to - /// with the keying function `f` by hash and equality. - /// The keys are stored in a hash set in the iterator. - /// - /// The iterator is stable, returning the non-duplicate items in the order - /// in which they occur in the adapted iterator. In a set of duplicate - /// items, the first item encountered is the item retained. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = vec!["a", "bb", "aa", "c", "ccc"]; - /// itertools::assert_equal(data.into_iter().unique_by(|s| s.len()), - /// vec!["a", "bb", "ccc"]); - /// ``` - #[cfg(feature = "use_std")] - fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F> - where - Self: Sized, - V: Eq + Hash, - F: FnMut(&Self::Item) -> V, - { - unique_impl::unique_by(self, f) - } - - /// Return an iterator adaptor that borrows from this iterator and - /// takes items while the closure `accept` returns `true`. - /// - /// This adaptor can only be used on iterators that implement `PeekingNext` - /// like `.peekable()`, `put_back` and a few other collection iterators. - /// - /// The last and rejected element (first `false`) is still available when - /// `peeking_take_while` is done. - /// - /// - /// See also [`.take_while_ref()`](Itertools::take_while_ref) - /// which is a similar adaptor. - fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<Self, F> - where - Self: Sized + PeekingNext, - F: FnMut(&Self::Item) -> bool, - { - peeking_take_while::peeking_take_while(self, accept) - } - - /// Return an iterator adaptor that borrows from a `Clone`-able iterator - /// to only pick off elements while the predicate `accept` returns `true`. - /// - /// It uses the `Clone` trait to restore the original iterator so that the - /// last and rejected element (first `false`) is still available when - /// `take_while_ref` is done. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let mut hexadecimals = "0123456789abcdef".chars(); - /// - /// let decimals = hexadecimals.take_while_ref(|c| c.is_numeric()) - /// .collect::<String>(); - /// assert_eq!(decimals, "0123456789"); - /// assert_eq!(hexadecimals.next(), Some('a')); - /// - /// ``` - fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<Self, F> - where - Self: Clone, - F: FnMut(&Self::Item) -> bool, - { - adaptors::take_while_ref(self, accept) - } - - /// Returns an iterator adaptor that consumes elements while the given - /// predicate is `true`, *including* the element for which the predicate - /// first returned `false`. - /// - /// The [`.take_while()`][std::iter::Iterator::take_while] adaptor is useful - /// when you want items satisfying a predicate, but to know when to stop - /// taking elements, we have to consume that first element that doesn't - /// satisfy the predicate. This adaptor includes that element where - /// [`.take_while()`][std::iter::Iterator::take_while] would drop it. - /// - /// The [`.take_while_ref()`][crate::Itertools::take_while_ref] adaptor - /// serves a similar purpose, but this adaptor doesn't require [`Clone`]ing - /// the underlying elements. - /// - /// ```rust - /// # use itertools::Itertools; - /// let items = vec![1, 2, 3, 4, 5]; - /// let filtered: Vec<_> = items - /// .into_iter() - /// .take_while_inclusive(|&n| n % 3 != 0) - /// .collect(); - /// - /// assert_eq!(filtered, vec![1, 2, 3]); - /// ``` - /// - /// ```rust - /// # use itertools::Itertools; - /// let items = vec![1, 2, 3, 4, 5]; - /// - /// let take_while_inclusive_result: Vec<_> = items - /// .iter() - /// .copied() - /// .take_while_inclusive(|&n| n % 3 != 0) - /// .collect(); - /// let take_while_result: Vec<_> = items - /// .into_iter() - /// .take_while(|&n| n % 3 != 0) - /// .collect(); - /// - /// assert_eq!(take_while_inclusive_result, vec![1, 2, 3]); - /// assert_eq!(take_while_result, vec![1, 2]); - /// // both iterators have the same items remaining at this point---the 3 - /// // is lost from the `take_while` vec - /// ``` - /// - /// ```rust - /// # use itertools::Itertools; - /// #[derive(Debug, PartialEq)] - /// struct NoCloneImpl(i32); - /// - /// let non_clonable_items: Vec<_> = vec![1, 2, 3, 4, 5] - /// .into_iter() - /// .map(NoCloneImpl) - /// .collect(); - /// let filtered: Vec<_> = non_clonable_items - /// .into_iter() - /// .take_while_inclusive(|n| n.0 % 3 != 0) - /// .collect(); - /// let expected: Vec<_> = vec![1, 2, 3].into_iter().map(NoCloneImpl).collect(); - /// assert_eq!(filtered, expected); - #[doc(alias = "take_until")] - fn take_while_inclusive<F>(self, accept: F) -> TakeWhileInclusive<Self, F> - where - Self: Sized, - F: FnMut(&Self::Item) -> bool, - { - take_while_inclusive::TakeWhileInclusive::new(self, accept) - } - - /// Return an iterator adaptor that filters `Option<A>` iterator elements - /// and produces `A`. Stops on the first `None` encountered. - /// - /// Iterator element type is `A`, the unwrapped element. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // List all hexadecimal digits - /// itertools::assert_equal( - /// (0..).map(|i| std::char::from_digit(i, 16)).while_some(), - /// "0123456789abcdef".chars()); - /// - /// ``` - fn while_some<A>(self) -> WhileSome<Self> - where - Self: Sized + Iterator<Item = Option<A>>, - { - adaptors::while_some(self) - } - - /// Return an iterator adaptor that iterates over the combinations of the - /// elements from an iterator. - /// - /// Iterator element can be any homogeneous tuple of type `Self::Item` with - /// size up to 12. - /// - /// # Guarantees - /// - /// If the adapted iterator is deterministic, - /// this iterator adapter yields items in a reliable order. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let mut v = Vec::new(); - /// for (a, b) in (1..5).tuple_combinations() { - /// v.push((a, b)); - /// } - /// assert_eq!(v, vec![(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)]); - /// - /// let mut it = (1..5).tuple_combinations(); - /// assert_eq!(Some((1, 2, 3)), it.next()); - /// assert_eq!(Some((1, 2, 4)), it.next()); - /// assert_eq!(Some((1, 3, 4)), it.next()); - /// assert_eq!(Some((2, 3, 4)), it.next()); - /// assert_eq!(None, it.next()); - /// - /// // this requires a type hint - /// let it = (1..5).tuple_combinations::<(_, _, _)>(); - /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]); - /// - /// // you can also specify the complete type - /// use itertools::TupleCombinations; - /// use std::ops::Range; - /// - /// let it: TupleCombinations<Range<u32>, (u32, u32, u32)> = (1..5).tuple_combinations(); - /// itertools::assert_equal(it, vec![(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]); - /// ``` - fn tuple_combinations<T>(self) -> TupleCombinations<Self, T> - where - Self: Sized + Clone, - Self::Item: Clone, - T: adaptors::HasCombination<Self>, - { - adaptors::tuple_combinations(self) - } - - /// Return an iterator adaptor that iterates over the combinations of the - /// elements from an iterator. - /// - /// Iterator element type is [Self::Item; K]. The iterator produces a new - /// array per iteration, and clones the iterator elements. - /// - /// # Guarantees - /// - /// If the adapted iterator is deterministic, - /// this iterator adapter yields items in a reliable order. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let mut v = Vec::new(); - /// for [a, b] in (1..5).array_combinations() { - /// v.push([a, b]); - /// } - /// assert_eq!(v, vec![[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]); - /// - /// let mut it = (1..5).array_combinations(); - /// assert_eq!(Some([1, 2, 3]), it.next()); - /// assert_eq!(Some([1, 2, 4]), it.next()); - /// assert_eq!(Some([1, 3, 4]), it.next()); - /// assert_eq!(Some([2, 3, 4]), it.next()); - /// assert_eq!(None, it.next()); - /// - /// // this requires a type hint - /// let it = (1..5).array_combinations::<3>(); - /// itertools::assert_equal(it, vec![[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]); - /// - /// // you can also specify the complete type - /// use itertools::ArrayCombinations; - /// use std::ops::Range; - /// - /// let it: ArrayCombinations<Range<u32>, 3> = (1..5).array_combinations(); - /// itertools::assert_equal(it, vec![[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]); - /// ``` - #[cfg(feature = "use_alloc")] - fn array_combinations<const K: usize>(self) -> ArrayCombinations<Self, K> - where - Self: Sized + Clone, - Self::Item: Clone, - { - combinations::array_combinations(self) - } - - /// Return an iterator adaptor that iterates over the `k`-length combinations of - /// the elements from an iterator. - /// - /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new `Vec` per iteration, - /// and clones the iterator elements. - /// - /// # Guarantees - /// - /// If the adapted iterator is deterministic, - /// this iterator adapter yields items in a reliable order. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let it = (1..5).combinations(3); - /// itertools::assert_equal(it, vec![ - /// vec![1, 2, 3], - /// vec![1, 2, 4], - /// vec![1, 3, 4], - /// vec![2, 3, 4], - /// ]); - /// ``` - /// - /// Note: Combinations does not take into account the equality of the iterated values. - /// ``` - /// use itertools::Itertools; - /// - /// let it = vec![1, 2, 2].into_iter().combinations(2); - /// itertools::assert_equal(it, vec![ - /// vec![1, 2], // Note: these are the same - /// vec![1, 2], // Note: these are the same - /// vec![2, 2], - /// ]); - /// ``` - #[cfg(feature = "use_alloc")] - fn combinations(self, k: usize) -> Combinations<Self> - where - Self: Sized, - Self::Item: Clone, - { - combinations::combinations(self, k) - } - - /// Return an iterator that iterates over the `k`-length combinations of - /// the elements from an iterator, with replacement. - /// - /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new `Vec` per iteration, - /// and clones the iterator elements. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let it = (1..4).combinations_with_replacement(2); - /// itertools::assert_equal(it, vec![ - /// vec![1, 1], - /// vec![1, 2], - /// vec![1, 3], - /// vec![2, 2], - /// vec![2, 3], - /// vec![3, 3], - /// ]); - /// ``` - #[cfg(feature = "use_alloc")] - fn combinations_with_replacement(self, k: usize) -> CombinationsWithReplacement<Self> - where - Self: Sized, - Self::Item: Clone, - { - combinations_with_replacement::combinations_with_replacement(self, k) - } - - /// Return an iterator adaptor that iterates over all k-permutations of the - /// elements from an iterator. - /// - /// Iterator element type is `Vec<Self::Item>` with length `k`. The iterator - /// produces a new `Vec` per iteration, and clones the iterator elements. - /// - /// If `k` is greater than the length of the input iterator, the resultant - /// iterator adaptor will be empty. - /// - /// If you are looking for permutations with replacements, - /// use `repeat_n(iter, k).multi_cartesian_product()` instead. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let perms = (5..8).permutations(2); - /// itertools::assert_equal(perms, vec![ - /// vec![5, 6], - /// vec![5, 7], - /// vec![6, 5], - /// vec![6, 7], - /// vec![7, 5], - /// vec![7, 6], - /// ]); - /// ``` - /// - /// Note: Permutations does not take into account the equality of the iterated values. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let it = vec![2, 2].into_iter().permutations(2); - /// itertools::assert_equal(it, vec![ - /// vec![2, 2], // Note: these are the same - /// vec![2, 2], // Note: these are the same - /// ]); - /// ``` - /// - /// Note: The source iterator is collected lazily, and will not be - /// re-iterated if the permutations adaptor is completed and re-iterated. - #[cfg(feature = "use_alloc")] - fn permutations(self, k: usize) -> Permutations<Self> - where - Self: Sized, - Self::Item: Clone, - { - permutations::permutations(self, k) - } - - /// Return an iterator that iterates through the powerset of the elements from an - /// iterator. - /// - /// Iterator element type is `Vec<Self::Item>`. The iterator produces a new `Vec` - /// per iteration, and clones the iterator elements. - /// - /// The powerset of a set contains all subsets including the empty set and the full - /// input set. A powerset has length _2^n_ where _n_ is the length of the input - /// set. - /// - /// Each `Vec` produced by this iterator represents a subset of the elements - /// produced by the source iterator. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let sets = (1..4).powerset().collect::<Vec<_>>(); - /// itertools::assert_equal(sets, vec![ - /// vec![], - /// vec![1], - /// vec![2], - /// vec![3], - /// vec![1, 2], - /// vec![1, 3], - /// vec![2, 3], - /// vec![1, 2, 3], - /// ]); - /// ``` - #[cfg(feature = "use_alloc")] - fn powerset(self) -> Powerset<Self> - where - Self: Sized, - Self::Item: Clone, - { - powerset::powerset(self) - } - - /// Return an iterator adaptor that pads the sequence to a minimum length of - /// `min` by filling missing elements using a closure `f`. - /// - /// Iterator element type is `Self::Item`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let it = (0..5).pad_using(10, |i| 2*i); - /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 10, 12, 14, 16, 18]); - /// - /// let it = (0..10).pad_using(5, |i| 2*i); - /// itertools::assert_equal(it, vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]); - /// - /// let it = (0..5).pad_using(10, |i| 2*i).rev(); - /// itertools::assert_equal(it, vec![18, 16, 14, 12, 10, 4, 3, 2, 1, 0]); - /// ``` - fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F> - where - Self: Sized, - F: FnMut(usize) -> Self::Item, - { - pad_tail::pad_using(self, min, f) - } - - /// Return an iterator adaptor that combines each element with a `Position` to - /// ease special-case handling of the first or last elements. - /// - /// Iterator element type is - /// [`(Position, Self::Item)`](Position) - /// - /// ``` - /// use itertools::{Itertools, Position}; - /// - /// let it = (0..4).with_position(); - /// itertools::assert_equal(it, - /// vec![(Position::First, 0), - /// (Position::Middle, 1), - /// (Position::Middle, 2), - /// (Position::Last, 3)]); - /// - /// let it = (0..1).with_position(); - /// itertools::assert_equal(it, vec![(Position::Only, 0)]); - /// ``` - fn with_position(self) -> WithPosition<Self> - where - Self: Sized, - { - with_position::with_position(self) - } - - /// Return an iterator adaptor that yields the indices of all elements - /// satisfying a predicate, counted from the start of the iterator. - /// - /// Equivalent to `iter.enumerate().filter(|(_, v)| predicate(*v)).map(|(i, _)| i)`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = vec![1, 2, 3, 3, 4, 6, 7, 9]; - /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 0), vec![1, 4, 5]); - /// - /// itertools::assert_equal(data.iter().positions(|v| v % 2 == 1).rev(), vec![7, 6, 3, 2, 0]); - /// ``` - fn positions<P>(self, predicate: P) -> Positions<Self, P> - where - Self: Sized, - P: FnMut(Self::Item) -> bool, - { - adaptors::positions(self, predicate) - } - - /// Return an iterator adaptor that applies a mutating function - /// to each element before yielding it. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let input = vec![vec![1], vec![3, 2, 1]]; - /// let it = input.into_iter().update(|v| v.push(0)); - /// itertools::assert_equal(it, vec![vec![1, 0], vec![3, 2, 1, 0]]); - /// ``` - fn update<F>(self, updater: F) -> Update<Self, F> - where - Self: Sized, - F: FnMut(&mut Self::Item), - { - adaptors::update(self, updater) - } - - // non-adaptor methods - /// Advances the iterator and returns the next items grouped in an array of - /// a specific size. - /// - /// If there are enough elements to be grouped in an array, then the array - /// is returned inside `Some`, otherwise `None` is returned. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let mut iter = 1..5; - /// - /// assert_eq!(Some([1, 2]), iter.next_array()); - /// ``` - fn next_array<const N: usize>(&mut self) -> Option<[Self::Item; N]> - where - Self: Sized, - { - next_array::next_array(self) - } - - /// Collects all items from the iterator into an array of a specific size. - /// - /// If the number of elements inside the iterator is **exactly** equal to - /// the array size, then the array is returned inside `Some`, otherwise - /// `None` is returned. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let iter = 1..3; - /// - /// if let Some([x, y]) = iter.collect_array() { - /// assert_eq!([x, y], [1, 2]) - /// } else { - /// panic!("Expected two elements") - /// } - /// ``` - fn collect_array<const N: usize>(mut self) -> Option<[Self::Item; N]> - where - Self: Sized, - { - self.next_array().filter(|_| self.next().is_none()) - } - - /// Advances the iterator and returns the next items grouped in a tuple of - /// a specific size (up to 12). - /// - /// If there are enough elements to be grouped in a tuple, then the tuple is - /// returned inside `Some`, otherwise `None` is returned. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let mut iter = 1..5; - /// - /// assert_eq!(Some((1, 2)), iter.next_tuple()); - /// ``` - fn next_tuple<T>(&mut self) -> Option<T> - where - Self: Sized + Iterator<Item = T::Item>, - T: traits::HomogeneousTuple, - { - T::collect_from_iter_no_buf(self) - } - - /// Collects all items from the iterator into a tuple of a specific size - /// (up to 12). - /// - /// If the number of elements inside the iterator is **exactly** equal to - /// the tuple size, then the tuple is returned inside `Some`, otherwise - /// `None` is returned. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let iter = 1..3; - /// - /// if let Some((x, y)) = iter.collect_tuple() { - /// assert_eq!((x, y), (1, 2)) - /// } else { - /// panic!("Expected two elements") - /// } - /// ``` - fn collect_tuple<T>(mut self) -> Option<T> - where - Self: Sized + Iterator<Item = T::Item>, - T: traits::HomogeneousTuple, - { - match self.next_tuple() { - elt @ Some(_) => match self.next() { - Some(_) => None, - None => elt, - }, - _ => None, - } - } - - /// Find the position and value of the first element satisfying a predicate. - /// - /// The iterator is not advanced past the first element found. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let text = "Hα"; - /// assert_eq!(text.chars().find_position(|ch| ch.is_lowercase()), Some((1, 'α'))); - /// ``` - fn find_position<P>(&mut self, mut pred: P) -> Option<(usize, Self::Item)> - where - P: FnMut(&Self::Item) -> bool, - { - self.enumerate().find(|(_, elt)| pred(elt)) - } - /// Find the value of the first element satisfying a predicate or return the last element, if any. - /// - /// The iterator is not advanced past the first element found. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let numbers = [1, 2, 3, 4]; - /// assert_eq!(numbers.iter().find_or_last(|&&x| x > 5), Some(&4)); - /// assert_eq!(numbers.iter().find_or_last(|&&x| x > 2), Some(&3)); - /// assert_eq!(std::iter::empty::<i32>().find_or_last(|&x| x > 5), None); - /// - /// // An iterator of Results can return the first Ok or the last Err: - /// let input = vec![Err(()), Ok(11), Err(()), Ok(22)]; - /// assert_eq!(input.into_iter().find_or_last(Result::is_ok), Some(Ok(11))); - /// - /// let input: Vec<Result<(), i32>> = vec![Err(11), Err(22)]; - /// assert_eq!(input.into_iter().find_or_last(Result::is_ok), Some(Err(22))); - /// - /// assert_eq!(std::iter::empty::<Result<(), i32>>().find_or_last(Result::is_ok), None); - /// ``` - fn find_or_last<P>(mut self, mut predicate: P) -> Option<Self::Item> - where - Self: Sized, - P: FnMut(&Self::Item) -> bool, - { - let mut prev = None; - self.find_map(|x| { - if predicate(&x) { - Some(x) - } else { - prev = Some(x); - None - } - }) - .or(prev) - } - /// Find the value of the first element satisfying a predicate or return the first element, if any. - /// - /// The iterator is not advanced past the first element found. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let numbers = [1, 2, 3, 4]; - /// assert_eq!(numbers.iter().find_or_first(|&&x| x > 5), Some(&1)); - /// assert_eq!(numbers.iter().find_or_first(|&&x| x > 2), Some(&3)); - /// assert_eq!(std::iter::empty::<i32>().find_or_first(|&x| x > 5), None); - /// - /// // An iterator of Results can return the first Ok or the first Err: - /// let input = vec![Err(()), Ok(11), Err(()), Ok(22)]; - /// assert_eq!(input.into_iter().find_or_first(Result::is_ok), Some(Ok(11))); - /// - /// let input: Vec<Result<(), i32>> = vec![Err(11), Err(22)]; - /// assert_eq!(input.into_iter().find_or_first(Result::is_ok), Some(Err(11))); - /// - /// assert_eq!(std::iter::empty::<Result<(), i32>>().find_or_first(Result::is_ok), None); - /// ``` - fn find_or_first<P>(mut self, mut predicate: P) -> Option<Self::Item> - where - Self: Sized, - P: FnMut(&Self::Item) -> bool, - { - let first = self.next()?; - Some(if predicate(&first) { - first - } else { - self.find(|x| predicate(x)).unwrap_or(first) - }) - } - /// Returns `true` if the given item is present in this iterator. - /// - /// This method is short-circuiting. If the given item is present in this - /// iterator, this method will consume the iterator up-to-and-including - /// the item. If the given item is not present in this iterator, the - /// iterator will be exhausted. - /// - /// ``` - /// use itertools::Itertools; - /// - /// #[derive(PartialEq, Debug)] - /// enum Enum { A, B, C, D, E, } - /// - /// let mut iter = vec![Enum::A, Enum::B, Enum::C, Enum::D].into_iter(); - /// - /// // search `iter` for `B` - /// assert_eq!(iter.contains(&Enum::B), true); - /// // `B` was found, so the iterator now rests at the item after `B` (i.e, `C`). - /// assert_eq!(iter.next(), Some(Enum::C)); - /// - /// // search `iter` for `E` - /// assert_eq!(iter.contains(&Enum::E), false); - /// // `E` wasn't found, so `iter` is now exhausted - /// assert_eq!(iter.next(), None); - /// ``` - fn contains<Q>(&mut self, query: &Q) -> bool - where - Self: Sized, - Self::Item: Borrow<Q>, - Q: PartialEq + ?Sized, - { - self.any(|x| x.borrow() == query) - } - - /// Check whether all elements compare equal. - /// - /// Empty iterators are considered to have equal elements: - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5]; - /// assert!(!data.iter().all_equal()); - /// assert!(data[0..3].iter().all_equal()); - /// assert!(data[3..5].iter().all_equal()); - /// assert!(data[5..8].iter().all_equal()); - /// - /// let data : Option<usize> = None; - /// assert!(data.into_iter().all_equal()); - /// ``` - fn all_equal(&mut self) -> bool - where - Self: Sized, - Self::Item: PartialEq, - { - match self.next() { - None => true, - Some(a) => self.all(|x| a == x), - } - } - - /// If there are elements and they are all equal, return a single copy of that element. - /// If there are no elements, return an Error containing None. - /// If there are elements and they are not all equal, return a tuple containing the first - /// two non-equal elements found. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = vec![1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 5]; - /// assert_eq!(data.iter().all_equal_value(), Err(Some((&1, &2)))); - /// assert_eq!(data[0..3].iter().all_equal_value(), Ok(&1)); - /// assert_eq!(data[3..5].iter().all_equal_value(), Ok(&2)); - /// assert_eq!(data[5..8].iter().all_equal_value(), Ok(&3)); - /// - /// let data : Option<usize> = None; - /// assert_eq!(data.into_iter().all_equal_value(), Err(None)); - /// ``` - #[allow(clippy::type_complexity)] - fn all_equal_value(&mut self) -> Result<Self::Item, Option<(Self::Item, Self::Item)>> - where - Self: Sized, - Self::Item: PartialEq, - { - let first = self.next().ok_or(None)?; - let other = self.find(|x| x != &first); - if let Some(other) = other { - Err(Some((first, other))) - } else { - Ok(first) - } - } - - /// Check whether all elements are unique (non equal). - /// - /// Empty iterators are considered to have unique elements: - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = vec![1, 2, 3, 4, 1, 5]; - /// assert!(!data.iter().all_unique()); - /// assert!(data[0..4].iter().all_unique()); - /// assert!(data[1..6].iter().all_unique()); - /// - /// let data : Option<usize> = None; - /// assert!(data.into_iter().all_unique()); - /// ``` - #[cfg(feature = "use_std")] - fn all_unique(&mut self) -> bool - where - Self: Sized, - Self::Item: Eq + Hash, - { - let mut used = HashSet::new(); - self.all(move |elt| used.insert(elt)) - } - - /// Consume the first `n` elements from the iterator eagerly, - /// and return the same iterator again. - /// - /// It works similarly to `.skip(n)` except it is eager and - /// preserves the iterator type. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let iter = "αβγ".chars().dropping(2); - /// itertools::assert_equal(iter, "γ".chars()); - /// ``` - /// - /// *Fusing notes: if the iterator is exhausted by dropping, - /// the result of calling `.next()` again depends on the iterator implementation.* - fn dropping(mut self, n: usize) -> Self - where - Self: Sized, - { - if n > 0 { - self.nth(n - 1); - } - self - } - - /// Consume the last `n` elements from the iterator eagerly, - /// and return the same iterator again. - /// - /// This is only possible on double ended iterators. `n` may be - /// larger than the number of elements. - /// - /// Note: This method is eager, dropping the back elements immediately and - /// preserves the iterator type. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let init = vec![0, 3, 6, 9].into_iter().dropping_back(1); - /// itertools::assert_equal(init, vec![0, 3, 6]); - /// ``` - fn dropping_back(mut self, n: usize) -> Self - where - Self: Sized + DoubleEndedIterator, - { - if n > 0 { - (&mut self).rev().nth(n - 1); - } - self - } - - /// Combine all an iterator's elements into one element by using [`Extend`]. - /// - /// This combinator will extend the first item with each of the rest of the - /// items of the iterator. If the iterator is empty, the default value of - /// `I::Item` is returned. - /// - /// ```rust - /// use itertools::Itertools; - /// - /// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]]; - /// assert_eq!(input.into_iter().concat(), - /// vec![1, 2, 3, 4, 5, 6]); - /// ``` - fn concat(self) -> Self::Item - where - Self: Sized, - Self::Item: - Extend<<<Self as Iterator>::Item as IntoIterator>::Item> + IntoIterator + Default, - { - concat(self) - } - - /// `.collect_vec()` is simply a type specialization of [`Iterator::collect`], - /// for convenience. - #[cfg(feature = "use_alloc")] - fn collect_vec(self) -> Vec<Self::Item> - where - Self: Sized, - { - self.collect() - } - - /// `.try_collect()` is more convenient way of writing - /// `.collect::<Result<_, _>>()` - /// - /// # Example - /// - /// ``` - /// use std::{fs, io}; - /// use itertools::Itertools; - /// - /// fn process_dir_entries(entries: &[fs::DirEntry]) { - /// // ... - /// # let _ = entries; - /// } - /// - /// fn do_stuff() -> io::Result<()> { - /// let entries: Vec<_> = fs::read_dir(".")?.try_collect()?; - /// process_dir_entries(&entries); - /// - /// Ok(()) - /// } - /// - /// # let _ = do_stuff; - /// ``` - fn try_collect<T, U, E>(self) -> Result<U, E> - where - Self: Sized + Iterator<Item = Result<T, E>>, - Result<U, E>: FromIterator<Result<T, E>>, - { - self.collect() - } - - /// Assign to each reference in `self` from the `from` iterator, - /// stopping at the shortest of the two iterators. - /// - /// The `from` iterator is queried for its next element before the `self` - /// iterator, and if either is exhausted the method is done. - /// - /// Return the number of elements written. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let mut xs = [0; 4]; - /// xs.iter_mut().set_from(1..); - /// assert_eq!(xs, [1, 2, 3, 4]); - /// ``` - #[inline] - fn set_from<'a, A: 'a, J>(&mut self, from: J) -> usize - where - Self: Iterator<Item = &'a mut A>, - J: IntoIterator<Item = A>, - { - from.into_iter() - .zip(self) - .map(|(new, old)| *old = new) - .count() - } - - /// Combine all iterator elements into one `String`, separated by `sep`. - /// - /// Use the `Display` implementation of each element. - /// - /// ``` - /// use itertools::Itertools; - /// - /// assert_eq!(["a", "b", "c"].iter().join(", "), "a, b, c"); - /// assert_eq!([1, 2, 3].iter().join(", "), "1, 2, 3"); - /// ``` - #[cfg(feature = "use_alloc")] - fn join(&mut self, sep: &str) -> String - where - Self::Item: std::fmt::Display, - { - match self.next() { - None => String::new(), - Some(first_elt) => { - // estimate lower bound of capacity needed - let (lower, _) = self.size_hint(); - let mut result = String::with_capacity(sep.len() * lower); - write!(&mut result, "{}", first_elt).unwrap(); - self.for_each(|elt| { - result.push_str(sep); - write!(&mut result, "{}", elt).unwrap(); - }); - result - } - } - } - - /// Format all iterator elements, separated by `sep`. - /// - /// All elements are formatted (any formatting trait) - /// with `sep` inserted between each element. - /// - /// **Panics** if the formatter helper is formatted more than once. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = [1.1, 2.71828, -3.]; - /// assert_eq!( - /// format!("{:.2}", data.iter().format(", ")), - /// "1.10, 2.72, -3.00"); - /// ``` - fn format(self, sep: &str) -> Format<Self> - where - Self: Sized, - { - format::new_format_default(self, sep) - } - - /// Format all iterator elements, separated by `sep`. - /// - /// This is a customizable version of [`.format()`](Itertools::format). - /// - /// The supplied closure `format` is called once per iterator element, - /// with two arguments: the element and a callback that takes a - /// `&Display` value, i.e. any reference to type that implements `Display`. - /// - /// Using `&format_args!(...)` is the most versatile way to apply custom - /// element formatting. The callback can be called multiple times if needed. - /// - /// **Panics** if the formatter helper is formatted more than once. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = [1.1, 2.71828, -3.]; - /// let data_formatter = data.iter().format_with(", ", |elt, f| f(&format_args!("{:.2}", elt))); - /// assert_eq!(format!("{}", data_formatter), - /// "1.10, 2.72, -3.00"); - /// - /// // .format_with() is recursively composable - /// let matrix = [[1., 2., 3.], - /// [4., 5., 6.]]; - /// let matrix_formatter = matrix.iter().format_with("\n", |row, f| { - /// f(&row.iter().format_with(", ", |elt, g| g(&elt))) - /// }); - /// assert_eq!(format!("{}", matrix_formatter), - /// "1, 2, 3\n4, 5, 6"); - /// - /// - /// ``` - fn format_with<F>(self, sep: &str, format: F) -> FormatWith<Self, F> - where - Self: Sized, - F: FnMut(Self::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result, - { - format::new_format(self, sep, format) - } - - /// Fold `Result` values from an iterator. - /// - /// Only `Ok` values are folded. If no error is encountered, the folded - /// value is returned inside `Ok`. Otherwise, the operation terminates - /// and returns the first `Err` value it encounters. No iterator elements are - /// consumed after the first error. - /// - /// The first accumulator value is the `start` parameter. - /// Each iteration passes the accumulator value and the next value inside `Ok` - /// to the fold function `f` and its return value becomes the new accumulator value. - /// - /// For example the sequence *Ok(1), Ok(2), Ok(3)* will result in a - /// computation like this: - /// - /// ```no_run - /// # let start = 0; - /// # let f = |x, y| x + y; - /// let mut accum = start; - /// accum = f(accum, 1); - /// accum = f(accum, 2); - /// accum = f(accum, 3); - /// # let _ = accum; - /// ``` - /// - /// With a `start` value of 0 and an addition as folding function, - /// this effectively results in *((0 + 1) + 2) + 3* - /// - /// ``` - /// use std::ops::Add; - /// use itertools::Itertools; - /// - /// let values = [1, 2, -2, -1, 2, 1]; - /// assert_eq!( - /// values.iter() - /// .map(Ok::<_, ()>) - /// .fold_ok(0, Add::add), - /// Ok(3) - /// ); - /// assert!( - /// values.iter() - /// .map(|&x| if x >= 0 { Ok(x) } else { Err("Negative number") }) - /// .fold_ok(0, Add::add) - /// .is_err() - /// ); - /// ``` - fn fold_ok<A, E, B, F>(&mut self, mut start: B, mut f: F) -> Result<B, E> - where - Self: Iterator<Item = Result<A, E>>, - F: FnMut(B, A) -> B, - { - for elt in self { - match elt { - Ok(v) => start = f(start, v), - Err(u) => return Err(u), - } - } - Ok(start) - } - - /// Fold `Option` values from an iterator. - /// - /// Only `Some` values are folded. If no `None` is encountered, the folded - /// value is returned inside `Some`. Otherwise, the operation terminates - /// and returns `None`. No iterator elements are consumed after the `None`. - /// - /// This is the `Option` equivalent to [`fold_ok`](Itertools::fold_ok). - /// - /// ``` - /// use std::ops::Add; - /// use itertools::Itertools; - /// - /// let mut values = vec![Some(1), Some(2), Some(-2)].into_iter(); - /// assert_eq!(values.fold_options(5, Add::add), Some(5 + 1 + 2 - 2)); - /// - /// let mut more_values = vec![Some(2), None, Some(0)].into_iter(); - /// assert!(more_values.fold_options(0, Add::add).is_none()); - /// assert_eq!(more_values.next().unwrap(), Some(0)); - /// ``` - fn fold_options<A, B, F>(&mut self, mut start: B, mut f: F) -> Option<B> - where - Self: Iterator<Item = Option<A>>, - F: FnMut(B, A) -> B, - { - for elt in self { - match elt { - Some(v) => start = f(start, v), - None => return None, - } - } - Some(start) - } - - /// Accumulator of the elements in the iterator. - /// - /// Like `.fold()`, without a base case. If the iterator is - /// empty, return `None`. With just one element, return it. - /// Otherwise elements are accumulated in sequence using the closure `f`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// assert_eq!((0..10).fold1(|x, y| x + y).unwrap_or(0), 45); - /// assert_eq!((0..0).fold1(|x, y| x * y), None); - /// ``` - #[deprecated( - note = "Use [`Iterator::reduce`](https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.reduce) instead", - since = "0.10.2" - )] - fn fold1<F>(mut self, f: F) -> Option<Self::Item> - where - F: FnMut(Self::Item, Self::Item) -> Self::Item, - Self: Sized, - { - self.next().map(move |x| self.fold(x, f)) - } - - /// Accumulate the elements in the iterator in a tree-like manner. - /// - /// You can think of it as, while there's more than one item, repeatedly - /// combining adjacent items. It does so in bottom-up-merge-sort order, - /// however, so that it needs only logarithmic stack space. - /// - /// This produces a call tree like the following (where the calls under - /// an item are done after reading that item): - /// - /// ```text - /// 1 2 3 4 5 6 7 - /// │ │ │ │ │ │ │ - /// └─f └─f └─f │ - /// │ │ │ │ - /// └───f └─f - /// │ │ - /// └─────f - /// ``` - /// - /// Which, for non-associative functions, will typically produce a different - /// result than the linear call tree used by [`Iterator::reduce`]: - /// - /// ```text - /// 1 2 3 4 5 6 7 - /// │ │ │ │ │ │ │ - /// └─f─f─f─f─f─f - /// ``` - /// - /// If `f` is associative you should also decide carefully: - /// - /// For an iterator producing `n` elements, both [`Iterator::reduce`] and `tree_reduce` will - /// call `f` `n - 1` times. However, `tree_reduce` will call `f` on earlier intermediate - /// results, which is beneficial for `f` that allocate and produce longer results for longer - /// arguments. For example if `f` combines arguments using `format!`, then `tree_reduce` will - /// operate on average on shorter arguments resulting in less bytes being allocated overall. - /// - /// Moreover, the output of `tree_reduce` is preferable to that of [`Iterator::reduce`] in - /// certain cases. For example, building a binary search tree using `tree_reduce` will result in - /// a balanced tree with height `O(ln(n))`, while [`Iterator::reduce`] will output a tree with - /// height `O(n)`, essentially a linked list. - /// - /// If `f` does not benefit from such a reordering, like `u32::wrapping_add`, prefer the - /// normal [`Iterator::reduce`] instead since it will most likely result in the generation of - /// simpler code because the compiler is able to optimize it. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let f = |a: String, b: String| { - /// format!("f({a}, {b})") - /// }; - /// - /// // The same tree as above - /// assert_eq!((1..8).map(|x| x.to_string()).tree_reduce(f), - /// Some(String::from("f(f(f(1, 2), f(3, 4)), f(f(5, 6), 7))"))); - /// - /// // Like reduce, an empty iterator produces None - /// assert_eq!((0..0).tree_reduce(|x, y| x * y), None); - /// - /// // tree_reduce matches reduce for associative operations... - /// assert_eq!((0..10).tree_reduce(|x, y| x + y), - /// (0..10).reduce(|x, y| x + y)); - /// - /// // ...but not for non-associative ones - /// assert_ne!((0..10).tree_reduce(|x, y| x - y), - /// (0..10).reduce(|x, y| x - y)); - /// - /// let mut total_len_reduce = 0; - /// let reduce_res = (1..100).map(|x| x.to_string()) - /// .reduce(|a, b| { - /// let r = f(a, b); - /// total_len_reduce += r.len(); - /// r - /// }) - /// .unwrap(); - /// - /// let mut total_len_tree_reduce = 0; - /// let tree_reduce_res = (1..100).map(|x| x.to_string()) - /// .tree_reduce(|a, b| { - /// let r = f(a, b); - /// total_len_tree_reduce += r.len(); - /// r - /// }) - /// .unwrap(); - /// - /// assert_eq!(total_len_reduce, 33299); - /// assert_eq!(total_len_tree_reduce, 4228); - /// assert_eq!(reduce_res.len(), tree_reduce_res.len()); - /// ``` - fn tree_reduce<F>(mut self, mut f: F) -> Option<Self::Item> - where - F: FnMut(Self::Item, Self::Item) -> Self::Item, - Self: Sized, - { - type State<T> = Result<T, Option<T>>; - - fn inner0<T, II, FF>(it: &mut II, f: &mut FF) -> State<T> - where - II: Iterator<Item = T>, - FF: FnMut(T, T) -> T, - { - // This function could be replaced with `it.next().ok_or(None)`, - // but half the useful tree_reduce work is combining adjacent items, - // so put that in a form that LLVM is more likely to optimize well. - - let a = if let Some(v) = it.next() { - v - } else { - return Err(None); - }; - let b = if let Some(v) = it.next() { - v - } else { - return Err(Some(a)); - }; - Ok(f(a, b)) - } - - fn inner<T, II, FF>(stop: usize, it: &mut II, f: &mut FF) -> State<T> - where - II: Iterator<Item = T>, - FF: FnMut(T, T) -> T, - { - let mut x = inner0(it, f)?; - for height in 0..stop { - // Try to get another tree the same size with which to combine it, - // creating a new tree that's twice as big for next time around. - let next = if height == 0 { - inner0(it, f) - } else { - inner(height, it, f) - }; - match next { - Ok(y) => x = f(x, y), - - // If we ran out of items, combine whatever we did manage - // to get. It's better combined with the current value - // than something in a parent frame, because the tree in - // the parent is always as least as big as this one. - Err(None) => return Err(Some(x)), - Err(Some(y)) => return Err(Some(f(x, y))), - } - } - Ok(x) - } - - match inner(usize::MAX, &mut self, &mut f) { - Err(x) => x, - _ => unreachable!(), - } - } - - /// See [`.tree_reduce()`](Itertools::tree_reduce). - #[deprecated(note = "Use .tree_reduce() instead", since = "0.13.0")] - fn tree_fold1<F>(self, f: F) -> Option<Self::Item> - where - F: FnMut(Self::Item, Self::Item) -> Self::Item, - Self: Sized, - { - self.tree_reduce(f) - } - - /// An iterator method that applies a function, producing a single, final value. - /// - /// `fold_while()` is basically equivalent to [`Iterator::fold`] but with additional support for - /// early exit via short-circuiting. - /// - /// ``` - /// use itertools::Itertools; - /// use itertools::FoldWhile::{Continue, Done}; - /// - /// let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; - /// - /// let mut result = 0; - /// - /// // for loop: - /// for i in &numbers { - /// if *i > 5 { - /// break; - /// } - /// result = result + i; - /// } - /// - /// // fold: - /// let result2 = numbers.iter().fold(0, |acc, x| { - /// if *x > 5 { acc } else { acc + x } - /// }); - /// - /// // fold_while: - /// let result3 = numbers.iter().fold_while(0, |acc, x| { - /// if *x > 5 { Done(acc) } else { Continue(acc + x) } - /// }).into_inner(); - /// - /// // they're the same - /// assert_eq!(result, result2); - /// assert_eq!(result2, result3); - /// ``` - /// - /// The big difference between the computations of `result2` and `result3` is that while - /// `fold()` called the provided closure for every item of the callee iterator, - /// `fold_while()` actually stopped iterating as soon as it encountered `Fold::Done(_)`. - fn fold_while<B, F>(&mut self, init: B, mut f: F) -> FoldWhile<B> - where - Self: Sized, - F: FnMut(B, Self::Item) -> FoldWhile<B>, - { - use Result::{Err as Break, Ok as Continue}; - - let result = self.try_fold( - init, - #[inline(always)] - |acc, v| match f(acc, v) { - FoldWhile::Continue(acc) => Continue(acc), - FoldWhile::Done(acc) => Break(acc), - }, - ); - - match result { - Continue(acc) => FoldWhile::Continue(acc), - Break(acc) => FoldWhile::Done(acc), - } - } - - /// Iterate over the entire iterator and add all the elements. - /// - /// An empty iterator returns `None`, otherwise `Some(sum)`. - /// - /// # Panics - /// - /// When calling `sum1()` and a primitive integer type is being returned, this - /// method will panic if the computation overflows and debug assertions are - /// enabled. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// - /// let empty_sum = (1..1).sum1::<i32>(); - /// assert_eq!(empty_sum, None); - /// - /// let nonempty_sum = (1..11).sum1::<i32>(); - /// assert_eq!(nonempty_sum, Some(55)); - /// ``` - fn sum1<S>(mut self) -> Option<S> - where - Self: Sized, - S: std::iter::Sum<Self::Item>, - { - self.next().map(|first| once(first).chain(self).sum()) - } - - /// Iterate over the entire iterator and multiply all the elements. - /// - /// An empty iterator returns `None`, otherwise `Some(product)`. - /// - /// # Panics - /// - /// When calling `product1()` and a primitive integer type is being returned, - /// method will panic if the computation overflows and debug assertions are - /// enabled. - /// - /// # Examples - /// ``` - /// use itertools::Itertools; - /// - /// let empty_product = (1..1).product1::<i32>(); - /// assert_eq!(empty_product, None); - /// - /// let nonempty_product = (1..11).product1::<i32>(); - /// assert_eq!(nonempty_product, Some(3628800)); - /// ``` - fn product1<P>(mut self) -> Option<P> - where - Self: Sized, - P: std::iter::Product<Self::Item>, - { - self.next().map(|first| once(first).chain(self).product()) - } - - /// Sort all iterator elements into a new iterator in ascending order. - /// - /// **Note:** This consumes the entire iterator, uses the - /// [`slice::sort_unstable`] method and returns the result as a new - /// iterator that owns its elements. - /// - /// This sort is unstable (i.e., may reorder equal elements). - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // sort the letters of the text in ascending order - /// let text = "bdacfe"; - /// itertools::assert_equal(text.chars().sorted_unstable(), - /// "abcdef".chars()); - /// ``` - #[cfg(feature = "use_alloc")] - fn sorted_unstable(self) -> VecIntoIter<Self::Item> - where - Self: Sized, - Self::Item: Ord, - { - // Use .sort_unstable() directly since it is not quite identical with - // .sort_by(Ord::cmp) - let mut v = Vec::from_iter(self); - v.sort_unstable(); - v.into_iter() - } - - /// Sort all iterator elements into a new iterator in ascending order. - /// - /// **Note:** This consumes the entire iterator, uses the - /// [`slice::sort_unstable_by`] method and returns the result as a new - /// iterator that owns its elements. - /// - /// This sort is unstable (i.e., may reorder equal elements). - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // sort people in descending order by age - /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)]; - /// - /// let oldest_people_first = people - /// .into_iter() - /// .sorted_unstable_by(|a, b| Ord::cmp(&b.1, &a.1)) - /// .map(|(person, _age)| person); - /// - /// itertools::assert_equal(oldest_people_first, - /// vec!["Jill", "Jack", "Jane", "John"]); - /// ``` - #[cfg(feature = "use_alloc")] - fn sorted_unstable_by<F>(self, cmp: F) -> VecIntoIter<Self::Item> - where - Self: Sized, - F: FnMut(&Self::Item, &Self::Item) -> Ordering, - { - let mut v = Vec::from_iter(self); - v.sort_unstable_by(cmp); - v.into_iter() - } - - /// Sort all iterator elements into a new iterator in ascending order. - /// - /// **Note:** This consumes the entire iterator, uses the - /// [`slice::sort_unstable_by_key`] method and returns the result as a new - /// iterator that owns its elements. - /// - /// This sort is unstable (i.e., may reorder equal elements). - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // sort people in descending order by age - /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 27)]; - /// - /// let oldest_people_first = people - /// .into_iter() - /// .sorted_unstable_by_key(|x| -x.1) - /// .map(|(person, _age)| person); - /// - /// itertools::assert_equal(oldest_people_first, - /// vec!["Jill", "Jack", "Jane", "John"]); - /// ``` - #[cfg(feature = "use_alloc")] - fn sorted_unstable_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item> - where - Self: Sized, - K: Ord, - F: FnMut(&Self::Item) -> K, - { - let mut v = Vec::from_iter(self); - v.sort_unstable_by_key(f); - v.into_iter() - } - - /// Sort all iterator elements into a new iterator in ascending order. - /// - /// **Note:** This consumes the entire iterator, uses the - /// [`slice::sort`] method and returns the result as a new - /// iterator that owns its elements. - /// - /// This sort is stable (i.e., does not reorder equal elements). - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // sort the letters of the text in ascending order - /// let text = "bdacfe"; - /// itertools::assert_equal(text.chars().sorted(), - /// "abcdef".chars()); - /// ``` - #[cfg(feature = "use_alloc")] - fn sorted(self) -> VecIntoIter<Self::Item> - where - Self: Sized, - Self::Item: Ord, - { - // Use .sort() directly since it is not quite identical with - // .sort_by(Ord::cmp) - let mut v = Vec::from_iter(self); - v.sort(); - v.into_iter() - } - - /// Sort all iterator elements into a new iterator in ascending order. - /// - /// **Note:** This consumes the entire iterator, uses the - /// [`slice::sort_by`] method and returns the result as a new - /// iterator that owns its elements. - /// - /// This sort is stable (i.e., does not reorder equal elements). - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // sort people in descending order by age - /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 30)]; - /// - /// let oldest_people_first = people - /// .into_iter() - /// .sorted_by(|a, b| Ord::cmp(&b.1, &a.1)) - /// .map(|(person, _age)| person); - /// - /// itertools::assert_equal(oldest_people_first, - /// vec!["Jill", "Jack", "Jane", "John"]); - /// ``` - #[cfg(feature = "use_alloc")] - fn sorted_by<F>(self, cmp: F) -> VecIntoIter<Self::Item> - where - Self: Sized, - F: FnMut(&Self::Item, &Self::Item) -> Ordering, - { - let mut v = Vec::from_iter(self); - v.sort_by(cmp); - v.into_iter() - } - - /// Sort all iterator elements into a new iterator in ascending order. - /// - /// **Note:** This consumes the entire iterator, uses the - /// [`slice::sort_by_key`] method and returns the result as a new - /// iterator that owns its elements. - /// - /// This sort is stable (i.e., does not reorder equal elements). - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // sort people in descending order by age - /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 30)]; - /// - /// let oldest_people_first = people - /// .into_iter() - /// .sorted_by_key(|x| -x.1) - /// .map(|(person, _age)| person); - /// - /// itertools::assert_equal(oldest_people_first, - /// vec!["Jill", "Jack", "Jane", "John"]); - /// ``` - #[cfg(feature = "use_alloc")] - fn sorted_by_key<K, F>(self, f: F) -> VecIntoIter<Self::Item> - where - Self: Sized, - K: Ord, - F: FnMut(&Self::Item) -> K, - { - let mut v = Vec::from_iter(self); - v.sort_by_key(f); - v.into_iter() - } - - /// Sort all iterator elements into a new iterator in ascending order. The key function is - /// called exactly once per key. - /// - /// **Note:** This consumes the entire iterator, uses the - /// [`slice::sort_by_cached_key`] method and returns the result as a new - /// iterator that owns its elements. - /// - /// This sort is stable (i.e., does not reorder equal elements). - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // sort people in descending order by age - /// let people = vec![("Jane", 20), ("John", 18), ("Jill", 30), ("Jack", 30)]; - /// - /// let oldest_people_first = people - /// .into_iter() - /// .sorted_by_cached_key(|x| -x.1) - /// .map(|(person, _age)| person); - /// - /// itertools::assert_equal(oldest_people_first, - /// vec!["Jill", "Jack", "Jane", "John"]); - /// ``` - #[cfg(feature = "use_alloc")] - fn sorted_by_cached_key<K, F>(self, f: F) -> VecIntoIter<Self::Item> - where - Self: Sized, - K: Ord, - F: FnMut(&Self::Item) -> K, - { - let mut v = Vec::from_iter(self); - v.sort_by_cached_key(f); - v.into_iter() - } - - /// Sort the k smallest elements into a new iterator, in ascending order. - /// - /// **Note:** This consumes the entire iterator, and returns the result - /// as a new iterator that owns its elements. If the input contains - /// less than k elements, the result is equivalent to `self.sorted()`. - /// - /// This is guaranteed to use `k * sizeof(Self::Item) + O(1)` memory - /// and `O(n log k)` time, with `n` the number of elements in the input. - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// **Note:** This is functionally-equivalent to `self.sorted().take(k)` - /// but much more efficient. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // A random permutation of 0..15 - /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; - /// - /// let five_smallest = numbers - /// .into_iter() - /// .k_smallest(5); - /// - /// itertools::assert_equal(five_smallest, 0..5); - /// ``` - #[cfg(feature = "use_alloc")] - fn k_smallest(self, k: usize) -> VecIntoIter<Self::Item> - where - Self: Sized, - Self::Item: Ord, - { - // The stdlib heap has optimised handling of "holes", which is not included in our heap implementation in k_smallest_general. - // While the difference is unlikely to have practical impact unless `Self::Item` is very large, this method uses the stdlib structure - // to maintain performance compared to previous versions of the crate. - use alloc::collections::BinaryHeap; - - if k == 0 { - self.last(); - return Vec::new().into_iter(); - } - if k == 1 { - return self.min().into_iter().collect_vec().into_iter(); - } - - let mut iter = self.fuse(); - let mut heap: BinaryHeap<_> = iter.by_ref().take(k).collect(); - - iter.for_each(|i| { - debug_assert_eq!(heap.len(), k); - // Equivalent to heap.push(min(i, heap.pop())) but more efficient. - // This should be done with a single `.peek_mut().unwrap()` but - // `PeekMut` sifts-down unconditionally on Rust 1.46.0 and prior. - if *heap.peek().unwrap() > i { - *heap.peek_mut().unwrap() = i; - } - }); - - heap.into_sorted_vec().into_iter() - } - - /// Sort the k smallest elements into a new iterator using the provided comparison. - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// This corresponds to `self.sorted_by(cmp).take(k)` in the same way that - /// [`k_smallest`](Itertools::k_smallest) corresponds to `self.sorted().take(k)`, - /// in both semantics and complexity. - /// - /// Particularly, a custom heap implementation ensures the comparison is not cloned. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // A random permutation of 0..15 - /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; - /// - /// let five_smallest = numbers - /// .into_iter() - /// .k_smallest_by(5, |a, b| (a % 7).cmp(&(b % 7)).then(a.cmp(b))); - /// - /// itertools::assert_equal(five_smallest, vec![0, 7, 14, 1, 8]); - /// ``` - #[cfg(feature = "use_alloc")] - fn k_smallest_by<F>(self, k: usize, cmp: F) -> VecIntoIter<Self::Item> - where - Self: Sized, - F: FnMut(&Self::Item, &Self::Item) -> Ordering, - { - k_smallest::k_smallest_general(self, k, cmp).into_iter() - } - - /// Return the elements producing the k smallest outputs of the provided function. - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// This corresponds to `self.sorted_by_key(key).take(k)` in the same way that - /// [`k_smallest`](Itertools::k_smallest) corresponds to `self.sorted().take(k)`, - /// in both semantics and complexity. - /// - /// Particularly, a custom heap implementation ensures the comparison is not cloned. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // A random permutation of 0..15 - /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; - /// - /// let five_smallest = numbers - /// .into_iter() - /// .k_smallest_by_key(5, |n| (n % 7, *n)); - /// - /// itertools::assert_equal(five_smallest, vec![0, 7, 14, 1, 8]); - /// ``` - #[cfg(feature = "use_alloc")] - fn k_smallest_by_key<F, K>(self, k: usize, key: F) -> VecIntoIter<Self::Item> - where - Self: Sized, - F: FnMut(&Self::Item) -> K, - K: Ord, - { - self.k_smallest_by(k, k_smallest::key_to_cmp(key)) - } - - /// Sort the k smallest elements into a new iterator, in ascending order, relaxing the amount of memory required. - /// - /// **Note:** This consumes the entire iterator, and returns the result - /// as a new iterator that owns its elements. If the input contains - /// less than k elements, the result is equivalent to `self.sorted()`. - /// - /// This is guaranteed to use `2 * k * sizeof(Self::Item) + O(1)` memory - /// and `O(n + k log k)` time, with `n` the number of elements in the input, - /// meaning it uses more memory than the minimum obtained by [`k_smallest`](Itertools::k_smallest) - /// but achieves linear time in the number of elements. - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// **Note:** This is functionally-equivalent to `self.sorted().take(k)` - /// but much more efficient. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // A random permutation of 0..15 - /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; - /// - /// let five_smallest = numbers - /// .into_iter() - /// .k_smallest_relaxed(5); - /// - /// itertools::assert_equal(five_smallest, 0..5); - /// ``` - #[cfg(feature = "use_alloc")] - fn k_smallest_relaxed(self, k: usize) -> VecIntoIter<Self::Item> - where - Self: Sized, - Self::Item: Ord, - { - self.k_smallest_relaxed_by(k, Ord::cmp) - } - - /// Sort the k smallest elements into a new iterator using the provided comparison, relaxing the amount of memory required. - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// This corresponds to `self.sorted_by(cmp).take(k)` in the same way that - /// [`k_smallest_relaxed`](Itertools::k_smallest_relaxed) corresponds to `self.sorted().take(k)`, - /// in both semantics and complexity. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // A random permutation of 0..15 - /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; - /// - /// let five_smallest = numbers - /// .into_iter() - /// .k_smallest_relaxed_by(5, |a, b| (a % 7).cmp(&(b % 7)).then(a.cmp(b))); - /// - /// itertools::assert_equal(five_smallest, vec![0, 7, 14, 1, 8]); - /// ``` - #[cfg(feature = "use_alloc")] - fn k_smallest_relaxed_by<F>(self, k: usize, cmp: F) -> VecIntoIter<Self::Item> - where - Self: Sized, - F: FnMut(&Self::Item, &Self::Item) -> Ordering, - { - k_smallest::k_smallest_relaxed_general(self, k, cmp).into_iter() - } - - /// Return the elements producing the k smallest outputs of the provided function, relaxing the amount of memory required. - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// This corresponds to `self.sorted_by_key(key).take(k)` in the same way that - /// [`k_smallest_relaxed`](Itertools::k_smallest_relaxed) corresponds to `self.sorted().take(k)`, - /// in both semantics and complexity. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // A random permutation of 0..15 - /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; - /// - /// let five_smallest = numbers - /// .into_iter() - /// .k_smallest_relaxed_by_key(5, |n| (n % 7, *n)); - /// - /// itertools::assert_equal(five_smallest, vec![0, 7, 14, 1, 8]); - /// ``` - #[cfg(feature = "use_alloc")] - fn k_smallest_relaxed_by_key<F, K>(self, k: usize, key: F) -> VecIntoIter<Self::Item> - where - Self: Sized, - F: FnMut(&Self::Item) -> K, - K: Ord, - { - self.k_smallest_relaxed_by(k, k_smallest::key_to_cmp(key)) - } - - /// Sort the k largest elements into a new iterator, in descending order. - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// It is semantically equivalent to [`k_smallest`](Itertools::k_smallest) - /// with a reversed `Ord`. - /// However, this is implemented with a custom binary heap which does not - /// have the same performance characteristics for very large `Self::Item`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // A random permutation of 0..15 - /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; - /// - /// let five_largest = numbers - /// .into_iter() - /// .k_largest(5); - /// - /// itertools::assert_equal(five_largest, vec![14, 13, 12, 11, 10]); - /// ``` - #[cfg(feature = "use_alloc")] - fn k_largest(self, k: usize) -> VecIntoIter<Self::Item> - where - Self: Sized, - Self::Item: Ord, - { - self.k_largest_by(k, Self::Item::cmp) - } - - /// Sort the k largest elements into a new iterator using the provided comparison. - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// Functionally equivalent to [`k_smallest_by`](Itertools::k_smallest_by) - /// with a reversed `Ord`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // A random permutation of 0..15 - /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; - /// - /// let five_largest = numbers - /// .into_iter() - /// .k_largest_by(5, |a, b| (a % 7).cmp(&(b % 7)).then(a.cmp(b))); - /// - /// itertools::assert_equal(five_largest, vec![13, 6, 12, 5, 11]); - /// ``` - #[cfg(feature = "use_alloc")] - fn k_largest_by<F>(self, k: usize, mut cmp: F) -> VecIntoIter<Self::Item> - where - Self: Sized, - F: FnMut(&Self::Item, &Self::Item) -> Ordering, - { - self.k_smallest_by(k, move |a, b| cmp(b, a)) - } - - /// Return the elements producing the k largest outputs of the provided function. - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// Functionally equivalent to [`k_smallest_by_key`](Itertools::k_smallest_by_key) - /// with a reversed `Ord`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // A random permutation of 0..15 - /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; - /// - /// let five_largest = numbers - /// .into_iter() - /// .k_largest_by_key(5, |n| (n % 7, *n)); - /// - /// itertools::assert_equal(five_largest, vec![13, 6, 12, 5, 11]); - /// ``` - #[cfg(feature = "use_alloc")] - fn k_largest_by_key<F, K>(self, k: usize, key: F) -> VecIntoIter<Self::Item> - where - Self: Sized, - F: FnMut(&Self::Item) -> K, - K: Ord, - { - self.k_largest_by(k, k_smallest::key_to_cmp(key)) - } - - /// Sort the k largest elements into a new iterator, in descending order, relaxing the amount of memory required. - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// It is semantically equivalent to [`k_smallest_relaxed`](Itertools::k_smallest_relaxed) - /// with a reversed `Ord`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // A random permutation of 0..15 - /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; - /// - /// let five_largest = numbers - /// .into_iter() - /// .k_largest_relaxed(5); - /// - /// itertools::assert_equal(five_largest, vec![14, 13, 12, 11, 10]); - /// ``` - #[cfg(feature = "use_alloc")] - fn k_largest_relaxed(self, k: usize) -> VecIntoIter<Self::Item> - where - Self: Sized, - Self::Item: Ord, - { - self.k_largest_relaxed_by(k, Self::Item::cmp) - } - - /// Sort the k largest elements into a new iterator using the provided comparison, relaxing the amount of memory required. - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// Functionally equivalent to [`k_smallest_relaxed_by`](Itertools::k_smallest_relaxed_by) - /// with a reversed `Ord`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // A random permutation of 0..15 - /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; - /// - /// let five_largest = numbers - /// .into_iter() - /// .k_largest_relaxed_by(5, |a, b| (a % 7).cmp(&(b % 7)).then(a.cmp(b))); - /// - /// itertools::assert_equal(five_largest, vec![13, 6, 12, 5, 11]); - /// ``` - #[cfg(feature = "use_alloc")] - fn k_largest_relaxed_by<F>(self, k: usize, mut cmp: F) -> VecIntoIter<Self::Item> - where - Self: Sized, - F: FnMut(&Self::Item, &Self::Item) -> Ordering, - { - self.k_smallest_relaxed_by(k, move |a, b| cmp(b, a)) - } - - /// Return the elements producing the k largest outputs of the provided function, relaxing the amount of memory required. - /// - /// The sorted iterator, if directly collected to a `Vec`, is converted - /// without any extra copying or allocation cost. - /// - /// Functionally equivalent to [`k_smallest_relaxed_by_key`](Itertools::k_smallest_relaxed_by_key) - /// with a reversed `Ord`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// // A random permutation of 0..15 - /// let numbers = vec![6, 9, 1, 14, 0, 4, 8, 7, 11, 2, 10, 3, 13, 12, 5]; - /// - /// let five_largest = numbers - /// .into_iter() - /// .k_largest_relaxed_by_key(5, |n| (n % 7, *n)); - /// - /// itertools::assert_equal(five_largest, vec![13, 6, 12, 5, 11]); - /// ``` - #[cfg(feature = "use_alloc")] - fn k_largest_relaxed_by_key<F, K>(self, k: usize, key: F) -> VecIntoIter<Self::Item> - where - Self: Sized, - F: FnMut(&Self::Item) -> K, - K: Ord, - { - self.k_largest_relaxed_by(k, k_smallest::key_to_cmp(key)) - } - - /// Consumes the iterator and return an iterator of the last `n` elements. - /// - /// The iterator, if directly collected to a `VecDeque`, is converted - /// without any extra copying or allocation cost. - /// If directly collected to a `Vec`, it may need some data movement - /// but no re-allocation. - /// - /// ``` - /// use itertools::{assert_equal, Itertools}; - /// - /// let v = vec![5, 9, 8, 4, 2, 12, 0]; - /// assert_equal(v.iter().tail(3), &[2, 12, 0]); - /// assert_equal(v.iter().tail(10), &v); - /// - /// assert_equal(v.iter().tail(1), v.iter().last()); - /// - /// assert_equal((0..100).tail(10), 90..100); - /// - /// assert_equal((0..100).filter(|x| x % 3 == 0).tail(10), (72..100).step_by(3)); - /// ``` - /// - /// For double ended iterators without side-effects, you might prefer - /// `.rev().take(n).rev()` to have a similar result (lazy and non-allocating) - /// without consuming the entire iterator. - #[cfg(feature = "use_alloc")] - fn tail(self, n: usize) -> VecDequeIntoIter<Self::Item> - where - Self: Sized, - { - match n { - 0 => { - self.last(); - VecDeque::new() - } - 1 => self.last().into_iter().collect(), - _ => { - // Skip the starting part of the iterator if possible. - let (low, _) = self.size_hint(); - let mut iter = self.fuse().skip(low.saturating_sub(n)); - // TODO: If VecDeque has a more efficient method than - // `.pop_front();.push_back(val)` in the future then maybe revisit this. - let mut data: Vec<_> = iter.by_ref().take(n).collect(); - // Update `data` cyclically. - let idx = iter.fold(0, |i, val| { - debug_assert_eq!(data.len(), n); - data[i] = val; - if i + 1 == n { - 0 - } else { - i + 1 - } - }); - // Respect the insertion order, efficiently. - let mut data = VecDeque::from(data); - data.rotate_left(idx); - data - } - } - .into_iter() - } - - /// Collect all iterator elements into one of two - /// partitions. Unlike [`Iterator::partition`], each partition may - /// have a distinct type. - /// - /// ``` - /// use itertools::{Itertools, Either}; - /// - /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)]; - /// - /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures - /// .into_iter() - /// .partition_map(|r| { - /// match r { - /// Ok(v) => Either::Left(v), - /// Err(v) => Either::Right(v), - /// } - /// }); - /// - /// assert_eq!(successes, [1, 2]); - /// assert_eq!(failures, [false, true]); - /// ``` - fn partition_map<A, B, F, L, R>(self, mut predicate: F) -> (A, B) - where - Self: Sized, - F: FnMut(Self::Item) -> Either<L, R>, - A: Default + Extend<L>, - B: Default + Extend<R>, - { - let mut left = A::default(); - let mut right = B::default(); - - self.for_each(|val| match predicate(val) { - Either::Left(v) => left.extend(Some(v)), - Either::Right(v) => right.extend(Some(v)), - }); - - (left, right) - } - - /// Partition a sequence of `Result`s into one list of all the `Ok` elements - /// and another list of all the `Err` elements. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let successes_and_failures = vec![Ok(1), Err(false), Err(true), Ok(2)]; - /// - /// let (successes, failures): (Vec<_>, Vec<_>) = successes_and_failures - /// .into_iter() - /// .partition_result(); - /// - /// assert_eq!(successes, [1, 2]); - /// assert_eq!(failures, [false, true]); - /// ``` - fn partition_result<A, B, T, E>(self) -> (A, B) - where - Self: Iterator<Item = Result<T, E>> + Sized, - A: Default + Extend<T>, - B: Default + Extend<E>, - { - self.partition_map(|r| match r { - Ok(v) => Either::Left(v), - Err(v) => Either::Right(v), - }) - } - - /// Return a `HashMap` of keys mapped to `Vec`s of values. Keys and values - /// are taken from `(Key, Value)` tuple pairs yielded by the input iterator. - /// - /// Essentially a shorthand for `.into_grouping_map().collect::<Vec<_>>()`. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)]; - /// let lookup = data.into_iter().into_group_map(); - /// - /// assert_eq!(lookup[&0], vec![10, 20]); - /// assert_eq!(lookup.get(&1), None); - /// assert_eq!(lookup[&2], vec![12, 42]); - /// assert_eq!(lookup[&3], vec![13, 33]); - /// ``` - #[cfg(feature = "use_std")] - fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>> - where - Self: Iterator<Item = (K, V)> + Sized, - K: Hash + Eq, - { - group_map::into_group_map(self) - } - - /// Return a `HashMap` of keys mapped to `Vec`s of values. The key is specified - /// in the closure. The values are taken from the input iterator. - /// - /// Essentially a shorthand for `.into_grouping_map_by(f).collect::<Vec<_>>()`. - /// - /// ``` - /// use itertools::Itertools; - /// use std::collections::HashMap; - /// - /// let data = vec![(0, 10), (2, 12), (3, 13), (0, 20), (3, 33), (2, 42)]; - /// let lookup: HashMap<u32,Vec<(u32, u32)>> = - /// data.clone().into_iter().into_group_map_by(|a| a.0); - /// - /// assert_eq!(lookup[&0], vec![(0,10), (0,20)]); - /// assert_eq!(lookup.get(&1), None); - /// assert_eq!(lookup[&2], vec![(2,12), (2,42)]); - /// assert_eq!(lookup[&3], vec![(3,13), (3,33)]); - /// - /// assert_eq!( - /// data.into_iter() - /// .into_group_map_by(|x| x.0) - /// .into_iter() - /// .map(|(key, values)| (key, values.into_iter().fold(0,|acc, (_,v)| acc + v ))) - /// .collect::<HashMap<u32,u32>>()[&0], - /// 30, - /// ); - /// ``` - #[cfg(feature = "use_std")] - fn into_group_map_by<K, V, F>(self, f: F) -> HashMap<K, Vec<V>> - where - Self: Iterator<Item = V> + Sized, - K: Hash + Eq, - F: FnMut(&V) -> K, - { - group_map::into_group_map_by(self, f) - } - - /// Constructs a `GroupingMap` to be used later with one of the efficient - /// group-and-fold operations it allows to perform. - /// - /// The input iterator must yield item in the form of `(K, V)` where the - /// value of type `K` will be used as key to identify the groups and the - /// value of type `V` as value for the folding operation. - /// - /// See [`GroupingMap`] for more informations - /// on what operations are available. - #[cfg(feature = "use_std")] - fn into_grouping_map<K, V>(self) -> GroupingMap<Self> - where - Self: Iterator<Item = (K, V)> + Sized, - K: Hash + Eq, - { - grouping_map::new(self) - } - - /// Constructs a `GroupingMap` to be used later with one of the efficient - /// group-and-fold operations it allows to perform. - /// - /// The values from this iterator will be used as values for the folding operation - /// while the keys will be obtained from the values by calling `key_mapper`. - /// - /// See [`GroupingMap`] for more informations - /// on what operations are available. - #[cfg(feature = "use_std")] - fn into_grouping_map_by<K, V, F>(self, key_mapper: F) -> GroupingMapBy<Self, F> - where - Self: Iterator<Item = V> + Sized, - K: Hash + Eq, - F: FnMut(&V) -> K, - { - grouping_map::new(grouping_map::new_map_for_grouping(self, key_mapper)) - } - - /// Return all minimum elements of an iterator. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// - /// let a: [i32; 0] = []; - /// assert_eq!(a.iter().min_set(), Vec::<&i32>::new()); - /// - /// let a = [1]; - /// assert_eq!(a.iter().min_set(), vec![&1]); - /// - /// let a = [1, 2, 3, 4, 5]; - /// assert_eq!(a.iter().min_set(), vec![&1]); - /// - /// let a = [1, 1, 1, 1]; - /// assert_eq!(a.iter().min_set(), vec![&1, &1, &1, &1]); - /// ``` - /// - /// The elements can be floats but no particular result is guaranteed - /// if an element is NaN. - #[cfg(feature = "use_alloc")] - fn min_set(self) -> Vec<Self::Item> - where - Self: Sized, - Self::Item: Ord, - { - extrema_set::min_set_impl(self, |_| (), |x, y, _, _| x.cmp(y)) - } - - /// Return all minimum elements of an iterator, as determined by - /// the specified function. - /// - /// # Examples - /// - /// ``` - /// # use std::cmp::Ordering; - /// use itertools::Itertools; - /// - /// let a: [(i32, i32); 0] = []; - /// assert_eq!(a.iter().min_set_by(|_, _| Ordering::Equal), Vec::<&(i32, i32)>::new()); - /// - /// let a = [(1, 2)]; - /// assert_eq!(a.iter().min_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2)]); - /// - /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; - /// assert_eq!(a.iter().min_set_by(|&&(_,k1), &&(_,k2)| k1.cmp(&k2)), vec![&(1, 2), &(2, 2)]); - /// - /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; - /// assert_eq!(a.iter().min_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); - /// ``` - /// - /// The elements can be floats but no particular result is guaranteed - /// if an element is NaN. - #[cfg(feature = "use_alloc")] - fn min_set_by<F>(self, mut compare: F) -> Vec<Self::Item> - where - Self: Sized, - F: FnMut(&Self::Item, &Self::Item) -> Ordering, - { - extrema_set::min_set_impl(self, |_| (), |x, y, _, _| compare(x, y)) - } - - /// Return all minimum elements of an iterator, as determined by - /// the specified function. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// - /// let a: [(i32, i32); 0] = []; - /// assert_eq!(a.iter().min_set_by_key(|_| ()), Vec::<&(i32, i32)>::new()); - /// - /// let a = [(1, 2)]; - /// assert_eq!(a.iter().min_set_by_key(|&&(k,_)| k), vec![&(1, 2)]); - /// - /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; - /// assert_eq!(a.iter().min_set_by_key(|&&(_, k)| k), vec![&(1, 2), &(2, 2)]); - /// - /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; - /// assert_eq!(a.iter().min_set_by_key(|&&(k, _)| k), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); - /// ``` - /// - /// The elements can be floats but no particular result is guaranteed - /// if an element is NaN. - #[cfg(feature = "use_alloc")] - fn min_set_by_key<K, F>(self, key: F) -> Vec<Self::Item> - where - Self: Sized, - K: Ord, - F: FnMut(&Self::Item) -> K, - { - extrema_set::min_set_impl(self, key, |_, _, kx, ky| kx.cmp(ky)) - } - - /// Return all maximum elements of an iterator. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// - /// let a: [i32; 0] = []; - /// assert_eq!(a.iter().max_set(), Vec::<&i32>::new()); - /// - /// let a = [1]; - /// assert_eq!(a.iter().max_set(), vec![&1]); - /// - /// let a = [1, 2, 3, 4, 5]; - /// assert_eq!(a.iter().max_set(), vec![&5]); - /// - /// let a = [1, 1, 1, 1]; - /// assert_eq!(a.iter().max_set(), vec![&1, &1, &1, &1]); - /// ``` - /// - /// The elements can be floats but no particular result is guaranteed - /// if an element is NaN. - #[cfg(feature = "use_alloc")] - fn max_set(self) -> Vec<Self::Item> - where - Self: Sized, - Self::Item: Ord, - { - extrema_set::max_set_impl(self, |_| (), |x, y, _, _| x.cmp(y)) - } - - /// Return all maximum elements of an iterator, as determined by - /// the specified function. - /// - /// # Examples - /// - /// ``` - /// # use std::cmp::Ordering; - /// use itertools::Itertools; - /// - /// let a: [(i32, i32); 0] = []; - /// assert_eq!(a.iter().max_set_by(|_, _| Ordering::Equal), Vec::<&(i32, i32)>::new()); - /// - /// let a = [(1, 2)]; - /// assert_eq!(a.iter().max_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2)]); - /// - /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; - /// assert_eq!(a.iter().max_set_by(|&&(_,k1), &&(_,k2)| k1.cmp(&k2)), vec![&(3, 9), &(5, 9)]); - /// - /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; - /// assert_eq!(a.iter().max_set_by(|&&(k1,_), &&(k2, _)| k1.cmp(&k2)), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); - /// ``` - /// - /// The elements can be floats but no particular result is guaranteed - /// if an element is NaN. - #[cfg(feature = "use_alloc")] - fn max_set_by<F>(self, mut compare: F) -> Vec<Self::Item> - where - Self: Sized, - F: FnMut(&Self::Item, &Self::Item) -> Ordering, - { - extrema_set::max_set_impl(self, |_| (), |x, y, _, _| compare(x, y)) - } - - /// Return all maximum elements of an iterator, as determined by - /// the specified function. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// - /// let a: [(i32, i32); 0] = []; - /// assert_eq!(a.iter().max_set_by_key(|_| ()), Vec::<&(i32, i32)>::new()); - /// - /// let a = [(1, 2)]; - /// assert_eq!(a.iter().max_set_by_key(|&&(k,_)| k), vec![&(1, 2)]); - /// - /// let a = [(1, 2), (2, 2), (3, 9), (4, 8), (5, 9)]; - /// assert_eq!(a.iter().max_set_by_key(|&&(_, k)| k), vec![&(3, 9), &(5, 9)]); - /// - /// let a = [(1, 2), (1, 3), (1, 4), (1, 5)]; - /// assert_eq!(a.iter().max_set_by_key(|&&(k, _)| k), vec![&(1, 2), &(1, 3), &(1, 4), &(1, 5)]); - /// ``` - /// - /// The elements can be floats but no particular result is guaranteed - /// if an element is NaN. - #[cfg(feature = "use_alloc")] - fn max_set_by_key<K, F>(self, key: F) -> Vec<Self::Item> - where - Self: Sized, - K: Ord, - F: FnMut(&Self::Item) -> K, - { - extrema_set::max_set_impl(self, key, |_, _, kx, ky| kx.cmp(ky)) - } - - /// Return the minimum and maximum elements in the iterator. - /// - /// The return type `MinMaxResult` is an enum of three variants: - /// - /// - `NoElements` if the iterator is empty. - /// - `OneElement(x)` if the iterator has exactly one element. - /// - `MinMax(x, y)` is returned otherwise, where `x <= y`. Two - /// values are equal if and only if there is more than one - /// element in the iterator and all elements are equal. - /// - /// On an iterator of length `n`, `minmax` does `1.5 * n` comparisons, - /// and so is faster than calling `min` and `max` separately which does - /// `2 * n` comparisons. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; - /// - /// let a: [i32; 0] = []; - /// assert_eq!(a.iter().minmax(), NoElements); - /// - /// let a = [1]; - /// assert_eq!(a.iter().minmax(), OneElement(&1)); - /// - /// let a = [1, 2, 3, 4, 5]; - /// assert_eq!(a.iter().minmax(), MinMax(&1, &5)); - /// - /// let a = [1, 1, 1, 1]; - /// assert_eq!(a.iter().minmax(), MinMax(&1, &1)); - /// ``` - /// - /// The elements can be floats but no particular result is guaranteed - /// if an element is NaN. - fn minmax(self) -> MinMaxResult<Self::Item> - where - Self: Sized, - Self::Item: PartialOrd, - { - minmax::minmax_impl(self, |_| (), |x, y, _, _| x < y) - } - - /// Return the minimum and maximum element of an iterator, as determined by - /// the specified function. - /// - /// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax). - /// - /// For the minimum, the first minimal element is returned. For the maximum, - /// the last maximal element wins. This matches the behavior of the standard - /// [`Iterator::min`] and [`Iterator::max`] methods. - /// - /// The keys can be floats but no particular result is guaranteed - /// if a key is NaN. - fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item> - where - Self: Sized, - K: PartialOrd, - F: FnMut(&Self::Item) -> K, - { - minmax::minmax_impl(self, key, |_, _, xk, yk| xk < yk) - } - - /// Return the minimum and maximum element of an iterator, as determined by - /// the specified comparison function. - /// - /// The return value is a variant of [`MinMaxResult`] like for [`.minmax()`](Itertools::minmax). - /// - /// For the minimum, the first minimal element is returned. For the maximum, - /// the last maximal element wins. This matches the behavior of the standard - /// [`Iterator::min`] and [`Iterator::max`] methods. - fn minmax_by<F>(self, mut compare: F) -> MinMaxResult<Self::Item> - where - Self: Sized, - F: FnMut(&Self::Item, &Self::Item) -> Ordering, - { - minmax::minmax_impl(self, |_| (), |x, y, _, _| Ordering::Less == compare(x, y)) - } - - /// Return the position of the maximum element in the iterator. - /// - /// If several elements are equally maximum, the position of the - /// last of them is returned. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// - /// let a: [i32; 0] = []; - /// assert_eq!(a.iter().position_max(), None); - /// - /// let a = [-3, 0, 1, 5, -10]; - /// assert_eq!(a.iter().position_max(), Some(3)); - /// - /// let a = [1, 1, -1, -1]; - /// assert_eq!(a.iter().position_max(), Some(1)); - /// ``` - fn position_max(self) -> Option<usize> - where - Self: Sized, - Self::Item: Ord, - { - self.enumerate() - .max_by(|x, y| Ord::cmp(&x.1, &y.1)) - .map(|x| x.0) - } - - /// Return the position of the maximum element in the iterator, as - /// determined by the specified function. - /// - /// If several elements are equally maximum, the position of the - /// last of them is returned. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// - /// let a: [i32; 0] = []; - /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), None); - /// - /// let a = [-3_i32, 0, 1, 5, -10]; - /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(4)); - /// - /// let a = [1_i32, 1, -1, -1]; - /// assert_eq!(a.iter().position_max_by_key(|x| x.abs()), Some(3)); - /// ``` - fn position_max_by_key<K, F>(self, mut key: F) -> Option<usize> - where - Self: Sized, - K: Ord, - F: FnMut(&Self::Item) -> K, - { - self.enumerate() - .max_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1))) - .map(|x| x.0) - } - - /// Return the position of the maximum element in the iterator, as - /// determined by the specified comparison function. - /// - /// If several elements are equally maximum, the position of the - /// last of them is returned. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// - /// let a: [i32; 0] = []; - /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), None); - /// - /// let a = [-3_i32, 0, 1, 5, -10]; - /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(3)); - /// - /// let a = [1_i32, 1, -1, -1]; - /// assert_eq!(a.iter().position_max_by(|x, y| x.cmp(y)), Some(1)); - /// ``` - fn position_max_by<F>(self, mut compare: F) -> Option<usize> - where - Self: Sized, - F: FnMut(&Self::Item, &Self::Item) -> Ordering, - { - self.enumerate() - .max_by(|x, y| compare(&x.1, &y.1)) - .map(|x| x.0) - } - - /// Return the position of the minimum element in the iterator. - /// - /// If several elements are equally minimum, the position of the - /// first of them is returned. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// - /// let a: [i32; 0] = []; - /// assert_eq!(a.iter().position_min(), None); - /// - /// let a = [-3, 0, 1, 5, -10]; - /// assert_eq!(a.iter().position_min(), Some(4)); - /// - /// let a = [1, 1, -1, -1]; - /// assert_eq!(a.iter().position_min(), Some(2)); - /// ``` - fn position_min(self) -> Option<usize> - where - Self: Sized, - Self::Item: Ord, - { - self.enumerate() - .min_by(|x, y| Ord::cmp(&x.1, &y.1)) - .map(|x| x.0) - } - - /// Return the position of the minimum element in the iterator, as - /// determined by the specified function. - /// - /// If several elements are equally minimum, the position of the - /// first of them is returned. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// - /// let a: [i32; 0] = []; - /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), None); - /// - /// let a = [-3_i32, 0, 1, 5, -10]; - /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(1)); - /// - /// let a = [1_i32, 1, -1, -1]; - /// assert_eq!(a.iter().position_min_by_key(|x| x.abs()), Some(0)); - /// ``` - fn position_min_by_key<K, F>(self, mut key: F) -> Option<usize> - where - Self: Sized, - K: Ord, - F: FnMut(&Self::Item) -> K, - { - self.enumerate() - .min_by(|x, y| Ord::cmp(&key(&x.1), &key(&y.1))) - .map(|x| x.0) - } - - /// Return the position of the minimum element in the iterator, as - /// determined by the specified comparison function. - /// - /// If several elements are equally minimum, the position of the - /// first of them is returned. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// - /// let a: [i32; 0] = []; - /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), None); - /// - /// let a = [-3_i32, 0, 1, 5, -10]; - /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(4)); - /// - /// let a = [1_i32, 1, -1, -1]; - /// assert_eq!(a.iter().position_min_by(|x, y| x.cmp(y)), Some(2)); - /// ``` - fn position_min_by<F>(self, mut compare: F) -> Option<usize> - where - Self: Sized, - F: FnMut(&Self::Item, &Self::Item) -> Ordering, - { - self.enumerate() - .min_by(|x, y| compare(&x.1, &y.1)) - .map(|x| x.0) - } - - /// Return the positions of the minimum and maximum elements in - /// the iterator. - /// - /// The return type [`MinMaxResult`] is an enum of three variants: - /// - /// - `NoElements` if the iterator is empty. - /// - `OneElement(xpos)` if the iterator has exactly one element. - /// - `MinMax(xpos, ypos)` is returned otherwise, where the - /// element at `xpos` ≤ the element at `ypos`. While the - /// referenced elements themselves may be equal, `xpos` cannot - /// be equal to `ypos`. - /// - /// On an iterator of length `n`, `position_minmax` does `1.5 * n` - /// comparisons, and so is faster than calling `position_min` and - /// `position_max` separately which does `2 * n` comparisons. - /// - /// For the minimum, if several elements are equally minimum, the - /// position of the first of them is returned. For the maximum, if - /// several elements are equally maximum, the position of the last - /// of them is returned. - /// - /// The elements can be floats but no particular result is - /// guaranteed if an element is NaN. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; - /// - /// let a: [i32; 0] = []; - /// assert_eq!(a.iter().position_minmax(), NoElements); - /// - /// let a = [10]; - /// assert_eq!(a.iter().position_minmax(), OneElement(0)); - /// - /// let a = [-3, 0, 1, 5, -10]; - /// assert_eq!(a.iter().position_minmax(), MinMax(4, 3)); - /// - /// let a = [1, 1, -1, -1]; - /// assert_eq!(a.iter().position_minmax(), MinMax(2, 1)); - /// ``` - fn position_minmax(self) -> MinMaxResult<usize> - where - Self: Sized, - Self::Item: PartialOrd, - { - use crate::MinMaxResult::{MinMax, NoElements, OneElement}; - match minmax::minmax_impl(self.enumerate(), |_| (), |x, y, _, _| x.1 < y.1) { - NoElements => NoElements, - OneElement(x) => OneElement(x.0), - MinMax(x, y) => MinMax(x.0, y.0), - } - } - - /// Return the postions of the minimum and maximum elements of an - /// iterator, as determined by the specified function. - /// - /// The return value is a variant of [`MinMaxResult`] like for - /// [`position_minmax`]. - /// - /// For the minimum, if several elements are equally minimum, the - /// position of the first of them is returned. For the maximum, if - /// several elements are equally maximum, the position of the last - /// of them is returned. - /// - /// The keys can be floats but no particular result is guaranteed - /// if a key is NaN. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; - /// - /// let a: [i32; 0] = []; - /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), NoElements); - /// - /// let a = [10_i32]; - /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), OneElement(0)); - /// - /// let a = [-3_i32, 0, 1, 5, -10]; - /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(1, 4)); - /// - /// let a = [1_i32, 1, -1, -1]; - /// assert_eq!(a.iter().position_minmax_by_key(|x| x.abs()), MinMax(0, 3)); - /// ``` - /// - /// [`position_minmax`]: Self::position_minmax - fn position_minmax_by_key<K, F>(self, mut key: F) -> MinMaxResult<usize> - where - Self: Sized, - K: PartialOrd, - F: FnMut(&Self::Item) -> K, - { - use crate::MinMaxResult::{MinMax, NoElements, OneElement}; - match self.enumerate().minmax_by_key(|e| key(&e.1)) { - NoElements => NoElements, - OneElement(x) => OneElement(x.0), - MinMax(x, y) => MinMax(x.0, y.0), - } - } - - /// Return the postions of the minimum and maximum elements of an - /// iterator, as determined by the specified comparison function. - /// - /// The return value is a variant of [`MinMaxResult`] like for - /// [`position_minmax`]. - /// - /// For the minimum, if several elements are equally minimum, the - /// position of the first of them is returned. For the maximum, if - /// several elements are equally maximum, the position of the last - /// of them is returned. - /// - /// # Examples - /// - /// ``` - /// use itertools::Itertools; - /// use itertools::MinMaxResult::{NoElements, OneElement, MinMax}; - /// - /// let a: [i32; 0] = []; - /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), NoElements); - /// - /// let a = [10_i32]; - /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), OneElement(0)); - /// - /// let a = [-3_i32, 0, 1, 5, -10]; - /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(4, 3)); - /// - /// let a = [1_i32, 1, -1, -1]; - /// assert_eq!(a.iter().position_minmax_by(|x, y| x.cmp(y)), MinMax(2, 1)); - /// ``` - /// - /// [`position_minmax`]: Self::position_minmax - fn position_minmax_by<F>(self, mut compare: F) -> MinMaxResult<usize> - where - Self: Sized, - F: FnMut(&Self::Item, &Self::Item) -> Ordering, - { - use crate::MinMaxResult::{MinMax, NoElements, OneElement}; - match self.enumerate().minmax_by(|x, y| compare(&x.1, &y.1)) { - NoElements => NoElements, - OneElement(x) => OneElement(x.0), - MinMax(x, y) => MinMax(x.0, y.0), - } - } - - /// If the iterator yields exactly one element, that element will be returned, otherwise - /// an error will be returned containing an iterator that has the same output as the input - /// iterator. - /// - /// This provides an additional layer of validation over just calling `Iterator::next()`. - /// If your assumption that there should only be one element yielded is false this provides - /// the opportunity to detect and handle that, preventing errors at a distance. - /// - /// # Examples - /// ``` - /// use itertools::Itertools; - /// - /// assert_eq!((0..10).filter(|&x| x == 2).exactly_one().unwrap(), 2); - /// assert!((0..10).filter(|&x| x > 1 && x < 4).exactly_one().unwrap_err().eq(2..4)); - /// assert!((0..10).filter(|&x| x > 1 && x < 5).exactly_one().unwrap_err().eq(2..5)); - /// assert!((0..10).filter(|&_| false).exactly_one().unwrap_err().eq(0..0)); - /// ``` - fn exactly_one(mut self) -> Result<Self::Item, ExactlyOneError<Self>> - where - Self: Sized, - { - match self.next() { - Some(first) => match self.next() { - Some(second) => Err(ExactlyOneError::new( - Some(Either::Left([first, second])), - self, - )), - None => Ok(first), - }, - None => Err(ExactlyOneError::new(None, self)), - } - } - - /// If the iterator yields no elements, `Ok(None)` will be returned. If the iterator yields - /// exactly one element, that element will be returned, otherwise an error will be returned - /// containing an iterator that has the same output as the input iterator. - /// - /// This provides an additional layer of validation over just calling `Iterator::next()`. - /// If your assumption that there should be at most one element yielded is false this provides - /// the opportunity to detect and handle that, preventing errors at a distance. - /// - /// # Examples - /// ``` - /// use itertools::Itertools; - /// - /// assert_eq!((0..10).filter(|&x| x == 2).at_most_one().unwrap(), Some(2)); - /// assert!((0..10).filter(|&x| x > 1 && x < 4).at_most_one().unwrap_err().eq(2..4)); - /// assert!((0..10).filter(|&x| x > 1 && x < 5).at_most_one().unwrap_err().eq(2..5)); - /// assert_eq!((0..10).filter(|&_| false).at_most_one().unwrap(), None); - /// ``` - fn at_most_one(mut self) -> Result<Option<Self::Item>, ExactlyOneError<Self>> - where - Self: Sized, - { - match self.next() { - Some(first) => match self.next() { - Some(second) => Err(ExactlyOneError::new( - Some(Either::Left([first, second])), - self, - )), - None => Ok(Some(first)), - }, - None => Ok(None), - } - } - - /// An iterator adaptor that allows the user to peek at multiple `.next()` - /// values without advancing the base iterator. - /// - /// # Examples - /// ``` - /// use itertools::Itertools; - /// - /// let mut iter = (0..10).multipeek(); - /// assert_eq!(iter.peek(), Some(&0)); - /// assert_eq!(iter.peek(), Some(&1)); - /// assert_eq!(iter.peek(), Some(&2)); - /// assert_eq!(iter.next(), Some(0)); - /// assert_eq!(iter.peek(), Some(&1)); - /// ``` - #[cfg(feature = "use_alloc")] - fn multipeek(self) -> MultiPeek<Self> - where - Self: Sized, - { - multipeek_impl::multipeek(self) - } - - /// Collect the items in this iterator and return a `HashMap` which - /// contains each item that appears in the iterator and the number - /// of times it appears. - /// - /// # Examples - /// ``` - /// # use itertools::Itertools; - /// let counts = [1, 1, 1, 3, 3, 5].iter().counts(); - /// assert_eq!(counts[&1], 3); - /// assert_eq!(counts[&3], 2); - /// assert_eq!(counts[&5], 1); - /// assert_eq!(counts.get(&0), None); - /// ``` - #[cfg(feature = "use_std")] - fn counts(self) -> HashMap<Self::Item, usize> - where - Self: Sized, - Self::Item: Eq + Hash, - { - let mut counts = HashMap::new(); - self.for_each(|item| *counts.entry(item).or_default() += 1); - counts - } - - /// Collect the items in this iterator and return a `HashMap` which - /// contains each item that appears in the iterator and the number - /// of times it appears, - /// determining identity using a keying function. - /// - /// ``` - /// # use itertools::Itertools; - /// struct Character { - /// first_name: &'static str, - /// # #[allow(dead_code)] - /// last_name: &'static str, - /// } - /// - /// let characters = - /// vec![ - /// Character { first_name: "Amy", last_name: "Pond" }, - /// Character { first_name: "Amy", last_name: "Wong" }, - /// Character { first_name: "Amy", last_name: "Santiago" }, - /// Character { first_name: "James", last_name: "Bond" }, - /// Character { first_name: "James", last_name: "Sullivan" }, - /// Character { first_name: "James", last_name: "Norington" }, - /// Character { first_name: "James", last_name: "Kirk" }, - /// ]; - /// - /// let first_name_frequency = - /// characters - /// .into_iter() - /// .counts_by(|c| c.first_name); - /// - /// assert_eq!(first_name_frequency["Amy"], 3); - /// assert_eq!(first_name_frequency["James"], 4); - /// assert_eq!(first_name_frequency.contains_key("Asha"), false); - /// ``` - #[cfg(feature = "use_std")] - fn counts_by<K, F>(self, f: F) -> HashMap<K, usize> - where - Self: Sized, - K: Eq + Hash, - F: FnMut(Self::Item) -> K, - { - self.map(f).counts() - } - - /// Converts an iterator of tuples into a tuple of containers. - /// - /// It consumes an entire iterator of n-ary tuples, producing `n` collections, one for each - /// column. - /// - /// This function is, in some sense, the opposite of [`multizip`]. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let inputs = vec![(1, 2, 3), (4, 5, 6), (7, 8, 9)]; - /// - /// let (a, b, c): (Vec<_>, Vec<_>, Vec<_>) = inputs - /// .into_iter() - /// .multiunzip(); - /// - /// assert_eq!(a, vec![1, 4, 7]); - /// assert_eq!(b, vec![2, 5, 8]); - /// assert_eq!(c, vec![3, 6, 9]); - /// ``` - fn multiunzip<FromI>(self) -> FromI - where - Self: Sized + MultiUnzip<FromI>, - { - MultiUnzip::multiunzip(self) - } - - /// Returns the length of the iterator if one exists. - /// Otherwise return `self.size_hint()`. - /// - /// Fallible [`ExactSizeIterator::len`]. - /// - /// Inherits guarantees and restrictions from [`Iterator::size_hint`]. - /// - /// ``` - /// use itertools::Itertools; - /// - /// assert_eq!([0; 10].iter().try_len(), Ok(10)); - /// assert_eq!((10..15).try_len(), Ok(5)); - /// assert_eq!((15..10).try_len(), Ok(0)); - /// assert_eq!((10..).try_len(), Err((usize::MAX, None))); - /// assert_eq!((10..15).filter(|x| x % 2 == 0).try_len(), Err((0, Some(5)))); - /// ``` - fn try_len(&self) -> Result<usize, size_hint::SizeHint> { - let sh = self.size_hint(); - match sh { - (lo, Some(hi)) if lo == hi => Ok(lo), - _ => Err(sh), - } - } -} - -impl<T> Itertools for T where T: Iterator + ?Sized {} - -/// Return `true` if both iterables produce equal sequences -/// (elements pairwise equal and sequences of the same length), -/// `false` otherwise. -/// -/// [`IntoIterator`] enabled version of [`Iterator::eq`]. -/// -/// ``` -/// assert!(itertools::equal(vec![1, 2, 3], 1..4)); -/// assert!(!itertools::equal(&[0, 0], &[0, 0, 0])); -/// ``` -pub fn equal<I, J>(a: I, b: J) -> bool -where - I: IntoIterator, - J: IntoIterator, - I::Item: PartialEq<J::Item>, -{ - a.into_iter().eq(b) -} - -/// Assert that two iterables produce equal sequences, with the same -/// semantics as [`equal(a, b)`](equal). -/// -/// **Panics** on assertion failure with a message that shows the -/// two different elements and the iteration index. -/// -/// ```should_panic -/// # use itertools::assert_equal; -/// assert_equal("exceed".split('c'), "excess".split('c')); -/// // ^PANIC: panicked at 'Failed assertion Some("eed") == Some("ess") for iteration 1'. -/// ``` -#[track_caller] -pub fn assert_equal<I, J>(a: I, b: J) -where - I: IntoIterator, - J: IntoIterator, - I::Item: fmt::Debug + PartialEq<J::Item>, - J::Item: fmt::Debug, -{ - let mut ia = a.into_iter(); - let mut ib = b.into_iter(); - let mut i: usize = 0; - loop { - match (ia.next(), ib.next()) { - (None, None) => return, - (a, b) => { - let equal = match (&a, &b) { - (Some(a), Some(b)) => a == b, - _ => false, - }; - assert!( - equal, - "Failed assertion {a:?} == {b:?} for iteration {i}", - i = i, - a = a, - b = b - ); - i += 1; - } - } - } -} - -/// Partition a sequence using predicate `pred` so that elements -/// that map to `true` are placed before elements which map to `false`. -/// -/// The order within the partitions is arbitrary. -/// -/// Return the index of the split point. -/// -/// ``` -/// use itertools::partition; -/// -/// # // use repeated numbers to not promise any ordering -/// let mut data = [7, 1, 1, 7, 1, 1, 7]; -/// let split_index = partition(&mut data, |elt| *elt >= 3); -/// -/// assert_eq!(data, [7, 7, 7, 1, 1, 1, 1]); -/// assert_eq!(split_index, 3); -/// ``` -pub fn partition<'a, A: 'a, I, F>(iter: I, mut pred: F) -> usize -where - I: IntoIterator<Item = &'a mut A>, - I::IntoIter: DoubleEndedIterator, - F: FnMut(&A) -> bool, -{ - let mut split_index = 0; - let mut iter = iter.into_iter(); - while let Some(front) = iter.next() { - if !pred(front) { - match iter.rfind(|back| pred(back)) { - Some(back) => std::mem::swap(front, back), - None => break, - } - } - split_index += 1; - } - split_index -} - -/// An enum used for controlling the execution of `fold_while`. -/// -/// See [`.fold_while()`](Itertools::fold_while) for more information. -#[derive(Copy, Clone, Debug, Eq, PartialEq)] -pub enum FoldWhile<T> { - /// Continue folding with this value - Continue(T), - /// Fold is complete and will return this value - Done(T), -} - -impl<T> FoldWhile<T> { - /// Return the value in the continue or done. - pub fn into_inner(self) -> T { - match self { - Self::Continue(x) | Self::Done(x) => x, - } - } - - /// Return true if `self` is `Done`, false if it is `Continue`. - pub fn is_done(&self) -> bool { - match *self { - Self::Continue(_) => false, - Self::Done(_) => true, - } - } -} diff --git a/vendor/itertools/src/merge_join.rs b/vendor/itertools/src/merge_join.rs deleted file mode 100644 index 5f4a605f..00000000 --- a/vendor/itertools/src/merge_join.rs +++ /dev/null @@ -1,348 +0,0 @@ -use std::cmp::Ordering; -use std::fmt; -use std::iter::{Fuse, FusedIterator}; -use std::marker::PhantomData; - -use either::Either; - -use super::adaptors::{put_back, PutBack}; -use crate::either_or_both::EitherOrBoth; -use crate::size_hint::{self, SizeHint}; -#[cfg(doc)] -use crate::Itertools; - -#[derive(Clone, Debug)] -pub struct MergeLte; - -/// An iterator adaptor that merges the two base iterators in ascending order. -/// If both base iterators are sorted (ascending), the result is sorted. -/// -/// Iterator element type is `I::Item`. -/// -/// See [`.merge()`](crate::Itertools::merge_by) for more information. -pub type Merge<I, J> = MergeBy<I, J, MergeLte>; - -/// Create an iterator that merges elements in `i` and `j`. -/// -/// [`IntoIterator`] enabled version of [`Itertools::merge`](crate::Itertools::merge). -/// -/// ``` -/// use itertools::merge; -/// -/// for elt in merge(&[1, 2, 3], &[2, 3, 4]) { -/// /* loop body */ -/// # let _ = elt; -/// } -/// ``` -pub fn merge<I, J>( - i: I, - j: J, -) -> Merge<<I as IntoIterator>::IntoIter, <J as IntoIterator>::IntoIter> -where - I: IntoIterator, - J: IntoIterator<Item = I::Item>, - I::Item: PartialOrd, -{ - merge_by_new(i, j, MergeLte) -} - -/// An iterator adaptor that merges the two base iterators in ascending order. -/// If both base iterators are sorted (ascending), the result is sorted. -/// -/// Iterator element type is `I::Item`. -/// -/// See [`.merge_by()`](crate::Itertools::merge_by) for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct MergeBy<I: Iterator, J: Iterator, F> { - left: PutBack<Fuse<I>>, - right: PutBack<Fuse<J>>, - cmp_fn: F, -} - -/// Create a `MergeBy` iterator. -pub fn merge_by_new<I, J, F>(a: I, b: J, cmp: F) -> MergeBy<I::IntoIter, J::IntoIter, F> -where - I: IntoIterator, - J: IntoIterator<Item = I::Item>, -{ - MergeBy { - left: put_back(a.into_iter().fuse()), - right: put_back(b.into_iter().fuse()), - cmp_fn: cmp, - } -} - -/// Return an iterator adaptor that merge-joins items from the two base iterators in ascending order. -/// -/// [`IntoIterator`] enabled version of [`Itertools::merge_join_by`]. -pub fn merge_join_by<I, J, F, T>( - left: I, - right: J, - cmp_fn: F, -) -> MergeJoinBy<I::IntoIter, J::IntoIter, F> -where - I: IntoIterator, - J: IntoIterator, - F: FnMut(&I::Item, &J::Item) -> T, -{ - MergeBy { - left: put_back(left.into_iter().fuse()), - right: put_back(right.into_iter().fuse()), - cmp_fn: MergeFuncLR(cmp_fn, PhantomData), - } -} - -/// An iterator adaptor that merge-joins items from the two base iterators in ascending order. -/// -/// See [`.merge_join_by()`](crate::Itertools::merge_join_by) for more information. -pub type MergeJoinBy<I, J, F> = - MergeBy<I, J, MergeFuncLR<F, <F as FuncLR<<I as Iterator>::Item, <J as Iterator>::Item>>::T>>; - -#[derive(Clone, Debug)] -pub struct MergeFuncLR<F, T>(F, PhantomData<T>); - -pub trait FuncLR<L, R> { - type T; -} - -impl<L, R, T, F: FnMut(&L, &R) -> T> FuncLR<L, R> for F { - type T = T; -} - -pub trait OrderingOrBool<L, R> { - type MergeResult; - fn left(left: L) -> Self::MergeResult; - fn right(right: R) -> Self::MergeResult; - // "merge" never returns (Some(...), Some(...), ...) so Option<Either<I::Item, J::Item>> - // is appealing but it is always followed by two put_backs, so we think the compiler is - // smart enough to optimize it. Or we could move put_backs into "merge". - fn merge(&mut self, left: L, right: R) -> (Option<Either<L, R>>, Self::MergeResult); - fn size_hint(left: SizeHint, right: SizeHint) -> SizeHint; -} - -impl<L, R, F: FnMut(&L, &R) -> Ordering> OrderingOrBool<L, R> for MergeFuncLR<F, Ordering> { - type MergeResult = EitherOrBoth<L, R>; - fn left(left: L) -> Self::MergeResult { - EitherOrBoth::Left(left) - } - fn right(right: R) -> Self::MergeResult { - EitherOrBoth::Right(right) - } - fn merge(&mut self, left: L, right: R) -> (Option<Either<L, R>>, Self::MergeResult) { - match self.0(&left, &right) { - Ordering::Equal => (None, EitherOrBoth::Both(left, right)), - Ordering::Less => (Some(Either::Right(right)), EitherOrBoth::Left(left)), - Ordering::Greater => (Some(Either::Left(left)), EitherOrBoth::Right(right)), - } - } - fn size_hint(left: SizeHint, right: SizeHint) -> SizeHint { - let (a_lower, a_upper) = left; - let (b_lower, b_upper) = right; - let lower = ::std::cmp::max(a_lower, b_lower); - let upper = match (a_upper, b_upper) { - (Some(x), Some(y)) => x.checked_add(y), - _ => None, - }; - (lower, upper) - } -} - -impl<L, R, F: FnMut(&L, &R) -> bool> OrderingOrBool<L, R> for MergeFuncLR<F, bool> { - type MergeResult = Either<L, R>; - fn left(left: L) -> Self::MergeResult { - Either::Left(left) - } - fn right(right: R) -> Self::MergeResult { - Either::Right(right) - } - fn merge(&mut self, left: L, right: R) -> (Option<Either<L, R>>, Self::MergeResult) { - if self.0(&left, &right) { - (Some(Either::Right(right)), Either::Left(left)) - } else { - (Some(Either::Left(left)), Either::Right(right)) - } - } - fn size_hint(left: SizeHint, right: SizeHint) -> SizeHint { - // Not ExactSizeIterator because size may be larger than usize - size_hint::add(left, right) - } -} - -impl<T, F: FnMut(&T, &T) -> bool> OrderingOrBool<T, T> for F { - type MergeResult = T; - fn left(left: T) -> Self::MergeResult { - left - } - fn right(right: T) -> Self::MergeResult { - right - } - fn merge(&mut self, left: T, right: T) -> (Option<Either<T, T>>, Self::MergeResult) { - if self(&left, &right) { - (Some(Either::Right(right)), left) - } else { - (Some(Either::Left(left)), right) - } - } - fn size_hint(left: SizeHint, right: SizeHint) -> SizeHint { - // Not ExactSizeIterator because size may be larger than usize - size_hint::add(left, right) - } -} - -impl<T: PartialOrd> OrderingOrBool<T, T> for MergeLte { - type MergeResult = T; - fn left(left: T) -> Self::MergeResult { - left - } - fn right(right: T) -> Self::MergeResult { - right - } - fn merge(&mut self, left: T, right: T) -> (Option<Either<T, T>>, Self::MergeResult) { - if left <= right { - (Some(Either::Right(right)), left) - } else { - (Some(Either::Left(left)), right) - } - } - fn size_hint(left: SizeHint, right: SizeHint) -> SizeHint { - // Not ExactSizeIterator because size may be larger than usize - size_hint::add(left, right) - } -} - -impl<I, J, F> Clone for MergeBy<I, J, F> -where - I: Iterator, - J: Iterator, - PutBack<Fuse<I>>: Clone, - PutBack<Fuse<J>>: Clone, - F: Clone, -{ - clone_fields!(left, right, cmp_fn); -} - -impl<I, J, F> fmt::Debug for MergeBy<I, J, F> -where - I: Iterator + fmt::Debug, - I::Item: fmt::Debug, - J: Iterator + fmt::Debug, - J::Item: fmt::Debug, -{ - debug_fmt_fields!(MergeBy, left, right); -} - -impl<I, J, F> Iterator for MergeBy<I, J, F> -where - I: Iterator, - J: Iterator, - F: OrderingOrBool<I::Item, J::Item>, -{ - type Item = F::MergeResult; - - fn next(&mut self) -> Option<Self::Item> { - match (self.left.next(), self.right.next()) { - (None, None) => None, - (Some(left), None) => Some(F::left(left)), - (None, Some(right)) => Some(F::right(right)), - (Some(left), Some(right)) => { - let (not_next, next) = self.cmp_fn.merge(left, right); - match not_next { - Some(Either::Left(l)) => { - self.left.put_back(l); - } - Some(Either::Right(r)) => { - self.right.put_back(r); - } - None => (), - } - - Some(next) - } - } - } - - fn fold<B, G>(mut self, init: B, mut f: G) -> B - where - Self: Sized, - G: FnMut(B, Self::Item) -> B, - { - let mut acc = init; - let mut left = self.left.next(); - let mut right = self.right.next(); - - loop { - match (left, right) { - (Some(l), Some(r)) => match self.cmp_fn.merge(l, r) { - (Some(Either::Right(r)), x) => { - acc = f(acc, x); - left = self.left.next(); - right = Some(r); - } - (Some(Either::Left(l)), x) => { - acc = f(acc, x); - left = Some(l); - right = self.right.next(); - } - (None, x) => { - acc = f(acc, x); - left = self.left.next(); - right = self.right.next(); - } - }, - (Some(l), None) => { - self.left.put_back(l); - acc = self.left.fold(acc, |acc, x| f(acc, F::left(x))); - break; - } - (None, Some(r)) => { - self.right.put_back(r); - acc = self.right.fold(acc, |acc, x| f(acc, F::right(x))); - break; - } - (None, None) => { - break; - } - } - } - - acc - } - - fn size_hint(&self) -> SizeHint { - F::size_hint(self.left.size_hint(), self.right.size_hint()) - } - - fn nth(&mut self, mut n: usize) -> Option<Self::Item> { - loop { - if n == 0 { - break self.next(); - } - n -= 1; - match (self.left.next(), self.right.next()) { - (None, None) => break None, - (Some(_left), None) => break self.left.nth(n).map(F::left), - (None, Some(_right)) => break self.right.nth(n).map(F::right), - (Some(left), Some(right)) => { - let (not_next, _) = self.cmp_fn.merge(left, right); - match not_next { - Some(Either::Left(l)) => { - self.left.put_back(l); - } - Some(Either::Right(r)) => { - self.right.put_back(r); - } - None => (), - } - } - } - } - } -} - -impl<I, J, F> FusedIterator for MergeBy<I, J, F> -where - I: Iterator, - J: Iterator, - F: OrderingOrBool<I::Item, J::Item>, -{ -} diff --git a/vendor/itertools/src/minmax.rs b/vendor/itertools/src/minmax.rs deleted file mode 100644 index 5c9674e0..00000000 --- a/vendor/itertools/src/minmax.rs +++ /dev/null @@ -1,116 +0,0 @@ -/// `MinMaxResult` is an enum returned by `minmax`. -/// -/// See [`.minmax()`](crate::Itertools::minmax) for more detail. -#[derive(Copy, Clone, PartialEq, Eq, Debug)] -pub enum MinMaxResult<T> { - /// Empty iterator - NoElements, - - /// Iterator with one element, so the minimum and maximum are the same - OneElement(T), - - /// More than one element in the iterator, the first element is not larger - /// than the second - MinMax(T, T), -} - -impl<T: Clone> MinMaxResult<T> { - /// `into_option` creates an `Option` of type `(T, T)`. The returned `Option` - /// has variant `None` if and only if the `MinMaxResult` has variant - /// `NoElements`. Otherwise `Some((x, y))` is returned where `x <= y`. - /// If the `MinMaxResult` has variant `OneElement(x)`, performing this - /// operation will make one clone of `x`. - /// - /// # Examples - /// - /// ``` - /// use itertools::MinMaxResult::{self, NoElements, OneElement, MinMax}; - /// - /// let r: MinMaxResult<i32> = NoElements; - /// assert_eq!(r.into_option(), None); - /// - /// let r = OneElement(1); - /// assert_eq!(r.into_option(), Some((1, 1))); - /// - /// let r = MinMax(1, 2); - /// assert_eq!(r.into_option(), Some((1, 2))); - /// ``` - pub fn into_option(self) -> Option<(T, T)> { - match self { - Self::NoElements => None, - Self::OneElement(x) => Some((x.clone(), x)), - Self::MinMax(x, y) => Some((x, y)), - } - } -} - -/// Implementation guts for `minmax` and `minmax_by_key`. -pub fn minmax_impl<I, K, F, L>(mut it: I, mut key_for: F, mut lt: L) -> MinMaxResult<I::Item> -where - I: Iterator, - F: FnMut(&I::Item) -> K, - L: FnMut(&I::Item, &I::Item, &K, &K) -> bool, -{ - let (mut min, mut max, mut min_key, mut max_key) = match it.next() { - None => return MinMaxResult::NoElements, - Some(x) => match it.next() { - None => return MinMaxResult::OneElement(x), - Some(y) => { - let xk = key_for(&x); - let yk = key_for(&y); - if !lt(&y, &x, &yk, &xk) { - (x, y, xk, yk) - } else { - (y, x, yk, xk) - } - } - }, - }; - - loop { - // `first` and `second` are the two next elements we want to look - // at. We first compare `first` and `second` (#1). The smaller one - // is then compared to current minimum (#2). The larger one is - // compared to current maximum (#3). This way we do 3 comparisons - // for 2 elements. - let first = match it.next() { - None => break, - Some(x) => x, - }; - let second = match it.next() { - None => { - let first_key = key_for(&first); - if lt(&first, &min, &first_key, &min_key) { - min = first; - } else if !lt(&first, &max, &first_key, &max_key) { - max = first; - } - break; - } - Some(x) => x, - }; - let first_key = key_for(&first); - let second_key = key_for(&second); - if !lt(&second, &first, &second_key, &first_key) { - if lt(&first, &min, &first_key, &min_key) { - min = first; - min_key = first_key; - } - if !lt(&second, &max, &second_key, &max_key) { - max = second; - max_key = second_key; - } - } else { - if lt(&second, &min, &second_key, &min_key) { - min = second; - min_key = second_key; - } - if !lt(&first, &max, &first_key, &max_key) { - max = first; - max_key = first_key; - } - } - } - - MinMaxResult::MinMax(min, max) -} diff --git a/vendor/itertools/src/multipeek_impl.rs b/vendor/itertools/src/multipeek_impl.rs deleted file mode 100644 index 6f800b6f..00000000 --- a/vendor/itertools/src/multipeek_impl.rs +++ /dev/null @@ -1,116 +0,0 @@ -use crate::size_hint; -#[cfg(doc)] -use crate::Itertools; -use crate::PeekingNext; -use alloc::collections::VecDeque; -use std::iter::Fuse; - -/// See [`multipeek()`] for more information. -#[derive(Clone, Debug)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct MultiPeek<I> -where - I: Iterator, -{ - iter: Fuse<I>, - buf: VecDeque<I::Item>, - index: usize, -} - -/// An iterator adaptor that allows the user to peek at multiple `.next()` -/// values without advancing the base iterator. -/// -/// [`IntoIterator`] enabled version of [`Itertools::multipeek`]. -pub fn multipeek<I>(iterable: I) -> MultiPeek<I::IntoIter> -where - I: IntoIterator, -{ - MultiPeek { - iter: iterable.into_iter().fuse(), - buf: VecDeque::new(), - index: 0, - } -} - -impl<I> MultiPeek<I> -where - I: Iterator, -{ - /// Reset the peeking “cursor” - pub fn reset_peek(&mut self) { - self.index = 0; - } -} - -impl<I: Iterator> MultiPeek<I> { - /// Works exactly like `.next()` with the only difference that it doesn't - /// advance itself. `.peek()` can be called multiple times, to peek - /// further ahead. - /// When `.next()` is called, reset the peeking “cursor”. - pub fn peek(&mut self) -> Option<&I::Item> { - let ret = if self.index < self.buf.len() { - Some(&self.buf[self.index]) - } else { - match self.iter.next() { - Some(x) => { - self.buf.push_back(x); - Some(&self.buf[self.index]) - } - None => return None, - } - }; - - self.index += 1; - ret - } -} - -impl<I> PeekingNext for MultiPeek<I> -where - I: Iterator, -{ - fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item> - where - F: FnOnce(&Self::Item) -> bool, - { - if self.buf.is_empty() { - if let Some(r) = self.peek() { - if !accept(r) { - return None; - } - } - } else if let Some(r) = self.buf.front() { - if !accept(r) { - return None; - } - } - self.next() - } -} - -impl<I> Iterator for MultiPeek<I> -where - I: Iterator, -{ - type Item = I::Item; - - fn next(&mut self) -> Option<Self::Item> { - self.index = 0; - self.buf.pop_front().or_else(|| self.iter.next()) - } - - fn size_hint(&self) -> (usize, Option<usize>) { - size_hint::add_scalar(self.iter.size_hint(), self.buf.len()) - } - - fn fold<B, F>(self, mut init: B, mut f: F) -> B - where - F: FnMut(B, Self::Item) -> B, - { - init = self.buf.into_iter().fold(init, &mut f); - self.iter.fold(init, f) - } -} - -// Same size -impl<I> ExactSizeIterator for MultiPeek<I> where I: ExactSizeIterator {} diff --git a/vendor/itertools/src/next_array.rs b/vendor/itertools/src/next_array.rs deleted file mode 100644 index 86480b19..00000000 --- a/vendor/itertools/src/next_array.rs +++ /dev/null @@ -1,269 +0,0 @@ -use core::mem::{self, MaybeUninit}; - -/// An array of at most `N` elements. -struct ArrayBuilder<T, const N: usize> { - /// The (possibly uninitialized) elements of the `ArrayBuilder`. - /// - /// # Safety - /// - /// The elements of `arr[..len]` are valid `T`s. - arr: [MaybeUninit<T>; N], - - /// The number of leading elements of `arr` that are valid `T`s, len <= N. - len: usize, -} - -impl<T, const N: usize> ArrayBuilder<T, N> { - /// Initializes a new, empty `ArrayBuilder`. - pub fn new() -> Self { - // SAFETY: The safety invariant of `arr` trivially holds for `len = 0`. - Self { - arr: [(); N].map(|_| MaybeUninit::uninit()), - len: 0, - } - } - - /// Pushes `value` onto the end of the array. - /// - /// # Panics - /// - /// This panics if `self.len >= N`. - #[inline(always)] - pub fn push(&mut self, value: T) { - // PANICS: This will panic if `self.len >= N`. - let place = &mut self.arr[self.len]; - // SAFETY: The safety invariant of `self.arr` applies to elements at - // indices `0..self.len` — not to the element at `self.len`. Writing to - // the element at index `self.len` therefore does not violate the safety - // invariant of `self.arr`. Even if this line panics, we have not - // created any intermediate invalid state. - *place = MaybeUninit::new(value); - // Lemma: `self.len < N`. By invariant, `self.len <= N`. Above, we index - // into `self.arr`, which has size `N`, at index `self.len`. If `self.len == N` - // at that point, that index would be out-of-bounds, and the index - // operation would panic. Thus, `self.len != N`, and since `self.len <= N`, - // that means that `self.len < N`. - // - // PANICS: Since `self.len < N`, and since `N <= usize::MAX`, - // `self.len + 1 <= usize::MAX`, and so `self.len += 1` will not - // overflow. Overflow is the only panic condition of `+=`. - // - // SAFETY: - // - We are required to uphold the invariant that `self.len <= N`. - // Since, by the preceding lemma, `self.len < N` at this point in the - // code, `self.len += 1` results in `self.len <= N`. - // - We are required to uphold the invariant that `self.arr[..self.len]` - // are valid instances of `T`. Since this invariant already held when - // this method was called, and since we only increment `self.len` - // by 1 here, we only need to prove that the element at - // `self.arr[self.len]` (using the value of `self.len` before incrementing) - // is valid. Above, we construct `place` to point to `self.arr[self.len]`, - // and then initialize `*place` to `MaybeUninit::new(value)`, which is - // a valid `T` by construction. - self.len += 1; - } - - /// Consumes the elements in the `ArrayBuilder` and returns them as an array - /// `[T; N]`. - /// - /// If `self.len() < N`, this returns `None`. - pub fn take(&mut self) -> Option<[T; N]> { - if self.len == N { - // SAFETY: Decreasing the value of `self.len` cannot violate the - // safety invariant on `self.arr`. - self.len = 0; - - // SAFETY: Since `self.len` is 0, `self.arr` may safely contain - // uninitialized elements. - let arr = mem::replace(&mut self.arr, [(); N].map(|_| MaybeUninit::uninit())); - - Some(arr.map(|v| { - // SAFETY: We know that all elements of `arr` are valid because - // we checked that `len == N`. - unsafe { v.assume_init() } - })) - } else { - None - } - } -} - -impl<T, const N: usize> AsMut<[T]> for ArrayBuilder<T, N> { - fn as_mut(&mut self) -> &mut [T] { - let valid = &mut self.arr[..self.len]; - // SAFETY: By invariant on `self.arr`, the elements of `self.arr` at - // indices `0..self.len` are in a valid state. Since `valid` references - // only these elements, the safety precondition of - // `slice_assume_init_mut` is satisfied. - unsafe { slice_assume_init_mut(valid) } - } -} - -impl<T, const N: usize> Drop for ArrayBuilder<T, N> { - // We provide a non-trivial `Drop` impl, because the trivial impl would be a - // no-op; `MaybeUninit<T>` has no innate awareness of its own validity, and - // so it can only forget its contents. By leveraging the safety invariant of - // `self.arr`, we do know which elements of `self.arr` are valid, and can - // selectively run their destructors. - fn drop(&mut self) { - // SAFETY: - // - by invariant on `&mut [T]`, `self.as_mut()` is: - // - valid for reads and writes - // - properly aligned - // - non-null - // - the dropped `T` are valid for dropping; they do not have any - // additional library invariants that we've violated - // - no other pointers to `valid` exist (since we're in the context of - // `drop`) - unsafe { core::ptr::drop_in_place(self.as_mut()) } - } -} - -/// Assuming all the elements are initialized, get a mutable slice to them. -/// -/// # Safety -/// -/// The caller guarantees that the elements `T` referenced by `slice` are in a -/// valid state. -unsafe fn slice_assume_init_mut<T>(slice: &mut [MaybeUninit<T>]) -> &mut [T] { - // SAFETY: Casting `&mut [MaybeUninit<T>]` to `&mut [T]` is sound, because - // `MaybeUninit<T>` is guaranteed to have the same size, alignment and ABI - // as `T`, and because the caller has guaranteed that `slice` is in the - // valid state. - unsafe { &mut *(slice as *mut [MaybeUninit<T>] as *mut [T]) } -} - -/// Equivalent to `it.next_array()`. -pub(crate) fn next_array<I, const N: usize>(it: &mut I) -> Option<[I::Item; N]> -where - I: Iterator, -{ - let mut builder = ArrayBuilder::new(); - for _ in 0..N { - builder.push(it.next()?); - } - builder.take() -} - -#[cfg(test)] -mod test { - use super::ArrayBuilder; - - #[test] - fn zero_len_take() { - let mut builder = ArrayBuilder::<(), 0>::new(); - let taken = builder.take(); - assert_eq!(taken, Some([(); 0])); - } - - #[test] - #[should_panic] - fn zero_len_push() { - let mut builder = ArrayBuilder::<(), 0>::new(); - builder.push(()); - } - - #[test] - fn push_4() { - let mut builder = ArrayBuilder::<(), 4>::new(); - assert_eq!(builder.take(), None); - - builder.push(()); - assert_eq!(builder.take(), None); - - builder.push(()); - assert_eq!(builder.take(), None); - - builder.push(()); - assert_eq!(builder.take(), None); - - builder.push(()); - assert_eq!(builder.take(), Some([(); 4])); - } - - #[test] - fn tracked_drop() { - use std::panic::{catch_unwind, AssertUnwindSafe}; - use std::sync::atomic::{AtomicU16, Ordering}; - - static DROPPED: AtomicU16 = AtomicU16::new(0); - - #[derive(Debug, PartialEq)] - struct TrackedDrop; - - impl Drop for TrackedDrop { - fn drop(&mut self) { - DROPPED.fetch_add(1, Ordering::Relaxed); - } - } - - { - let builder = ArrayBuilder::<TrackedDrop, 0>::new(); - assert_eq!(DROPPED.load(Ordering::Relaxed), 0); - drop(builder); - assert_eq!(DROPPED.load(Ordering::Relaxed), 0); - } - - { - let mut builder = ArrayBuilder::<TrackedDrop, 2>::new(); - builder.push(TrackedDrop); - assert_eq!(builder.take(), None); - assert_eq!(DROPPED.load(Ordering::Relaxed), 0); - drop(builder); - assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 1); - } - - { - let mut builder = ArrayBuilder::<TrackedDrop, 2>::new(); - builder.push(TrackedDrop); - builder.push(TrackedDrop); - assert!(matches!(builder.take(), Some(_))); - assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 2); - drop(builder); - assert_eq!(DROPPED.load(Ordering::Relaxed), 0); - } - - { - let mut builder = ArrayBuilder::<TrackedDrop, 2>::new(); - - builder.push(TrackedDrop); - builder.push(TrackedDrop); - - assert!(catch_unwind(AssertUnwindSafe(|| { - builder.push(TrackedDrop); - })) - .is_err()); - - assert_eq!(DROPPED.load(Ordering::Relaxed), 1); - - drop(builder); - - assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 3); - } - - { - let mut builder = ArrayBuilder::<TrackedDrop, 2>::new(); - - builder.push(TrackedDrop); - builder.push(TrackedDrop); - - assert!(catch_unwind(AssertUnwindSafe(|| { - builder.push(TrackedDrop); - })) - .is_err()); - - assert_eq!(DROPPED.load(Ordering::Relaxed), 1); - - assert!(matches!(builder.take(), Some(_))); - - assert_eq!(DROPPED.load(Ordering::Relaxed), 3); - - builder.push(TrackedDrop); - builder.push(TrackedDrop); - - assert!(matches!(builder.take(), Some(_))); - - assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 5); - } - } -} diff --git a/vendor/itertools/src/pad_tail.rs b/vendor/itertools/src/pad_tail.rs deleted file mode 100644 index 5595b42b..00000000 --- a/vendor/itertools/src/pad_tail.rs +++ /dev/null @@ -1,124 +0,0 @@ -use crate::size_hint; -use std::iter::{Fuse, FusedIterator}; - -/// An iterator adaptor that pads a sequence to a minimum length by filling -/// missing elements using a closure. -/// -/// Iterator element type is `I::Item`. -/// -/// See [`.pad_using()`](crate::Itertools::pad_using) for more information. -#[derive(Clone)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct PadUsing<I, F> { - iter: Fuse<I>, - min: usize, - pos: usize, - filler: F, -} - -impl<I, F> std::fmt::Debug for PadUsing<I, F> -where - I: std::fmt::Debug, -{ - debug_fmt_fields!(PadUsing, iter, min, pos); -} - -/// Create a new `PadUsing` iterator. -pub fn pad_using<I, F>(iter: I, min: usize, filler: F) -> PadUsing<I, F> -where - I: Iterator, - F: FnMut(usize) -> I::Item, -{ - PadUsing { - iter: iter.fuse(), - min, - pos: 0, - filler, - } -} - -impl<I, F> Iterator for PadUsing<I, F> -where - I: Iterator, - F: FnMut(usize) -> I::Item, -{ - type Item = I::Item; - - #[inline] - fn next(&mut self) -> Option<Self::Item> { - match self.iter.next() { - None => { - if self.pos < self.min { - let e = Some((self.filler)(self.pos)); - self.pos += 1; - e - } else { - None - } - } - e => { - self.pos += 1; - e - } - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - let tail = self.min.saturating_sub(self.pos); - size_hint::max(self.iter.size_hint(), (tail, Some(tail))) - } - - fn fold<B, G>(self, mut init: B, mut f: G) -> B - where - G: FnMut(B, Self::Item) -> B, - { - let mut pos = self.pos; - init = self.iter.fold(init, |acc, item| { - pos += 1; - f(acc, item) - }); - (pos..self.min).map(self.filler).fold(init, f) - } -} - -impl<I, F> DoubleEndedIterator for PadUsing<I, F> -where - I: DoubleEndedIterator + ExactSizeIterator, - F: FnMut(usize) -> I::Item, -{ - fn next_back(&mut self) -> Option<Self::Item> { - if self.min == 0 { - self.iter.next_back() - } else if self.iter.len() >= self.min { - self.min -= 1; - self.iter.next_back() - } else { - self.min -= 1; - Some((self.filler)(self.min)) - } - } - - fn rfold<B, G>(self, mut init: B, mut f: G) -> B - where - G: FnMut(B, Self::Item) -> B, - { - init = (self.iter.len()..self.min) - .map(self.filler) - .rfold(init, &mut f); - self.iter.rfold(init, f) - } -} - -impl<I, F> ExactSizeIterator for PadUsing<I, F> -where - I: ExactSizeIterator, - F: FnMut(usize) -> I::Item, -{ -} - -impl<I, F> FusedIterator for PadUsing<I, F> -where - I: FusedIterator, - F: FnMut(usize) -> I::Item, -{ -} diff --git a/vendor/itertools/src/peek_nth.rs b/vendor/itertools/src/peek_nth.rs deleted file mode 100644 index b03a3ef5..00000000 --- a/vendor/itertools/src/peek_nth.rs +++ /dev/null @@ -1,178 +0,0 @@ -use crate::size_hint; -use crate::PeekingNext; -use alloc::collections::VecDeque; -use std::iter::Fuse; - -/// See [`peek_nth()`] for more information. -#[derive(Clone, Debug)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct PeekNth<I> -where - I: Iterator, -{ - iter: Fuse<I>, - buf: VecDeque<I::Item>, -} - -/// A drop-in replacement for [`std::iter::Peekable`] which adds a `peek_nth` -/// method allowing the user to `peek` at a value several iterations forward -/// without advancing the base iterator. -/// -/// This differs from `multipeek` in that subsequent calls to `peek` or -/// `peek_nth` will always return the same value until `next` is called -/// (making `reset_peek` unnecessary). -pub fn peek_nth<I>(iterable: I) -> PeekNth<I::IntoIter> -where - I: IntoIterator, -{ - PeekNth { - iter: iterable.into_iter().fuse(), - buf: VecDeque::new(), - } -} - -impl<I> PeekNth<I> -where - I: Iterator, -{ - /// Works exactly like the `peek` method in [`std::iter::Peekable`]. - pub fn peek(&mut self) -> Option<&I::Item> { - self.peek_nth(0) - } - - /// Works exactly like the `peek_mut` method in [`std::iter::Peekable`]. - pub fn peek_mut(&mut self) -> Option<&mut I::Item> { - self.peek_nth_mut(0) - } - - /// Returns a reference to the `nth` value without advancing the iterator. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use itertools::peek_nth; - /// - /// let xs = vec![1, 2, 3]; - /// let mut iter = peek_nth(xs.into_iter()); - /// - /// assert_eq!(iter.peek_nth(0), Some(&1)); - /// assert_eq!(iter.next(), Some(1)); - /// - /// // The iterator does not advance even if we call `peek_nth` multiple times - /// assert_eq!(iter.peek_nth(0), Some(&2)); - /// assert_eq!(iter.peek_nth(1), Some(&3)); - /// assert_eq!(iter.next(), Some(2)); - /// - /// // Calling `peek_nth` past the end of the iterator will return `None` - /// assert_eq!(iter.peek_nth(1), None); - /// ``` - pub fn peek_nth(&mut self, n: usize) -> Option<&I::Item> { - let unbuffered_items = (n + 1).saturating_sub(self.buf.len()); - - self.buf.extend(self.iter.by_ref().take(unbuffered_items)); - - self.buf.get(n) - } - - /// Returns a mutable reference to the `nth` value without advancing the iterator. - /// - /// # Examples - /// - /// Basic usage: - /// - /// ``` - /// use itertools::peek_nth; - /// - /// let xs = vec![1, 2, 3, 4, 5]; - /// let mut iter = peek_nth(xs.into_iter()); - /// - /// assert_eq!(iter.peek_nth_mut(0), Some(&mut 1)); - /// assert_eq!(iter.next(), Some(1)); - /// - /// // The iterator does not advance even if we call `peek_nth_mut` multiple times - /// assert_eq!(iter.peek_nth_mut(0), Some(&mut 2)); - /// assert_eq!(iter.peek_nth_mut(1), Some(&mut 3)); - /// assert_eq!(iter.next(), Some(2)); - /// - /// // Peek into the iterator and set the value behind the mutable reference. - /// if let Some(p) = iter.peek_nth_mut(1) { - /// assert_eq!(*p, 4); - /// *p = 9; - /// } - /// - /// // The value we put in reappears as the iterator continues. - /// assert_eq!(iter.next(), Some(3)); - /// assert_eq!(iter.next(), Some(9)); - /// - /// // Calling `peek_nth_mut` past the end of the iterator will return `None` - /// assert_eq!(iter.peek_nth_mut(1), None); - /// ``` - pub fn peek_nth_mut(&mut self, n: usize) -> Option<&mut I::Item> { - let unbuffered_items = (n + 1).saturating_sub(self.buf.len()); - - self.buf.extend(self.iter.by_ref().take(unbuffered_items)); - - self.buf.get_mut(n) - } - - /// Works exactly like the `next_if` method in [`std::iter::Peekable`]. - pub fn next_if(&mut self, func: impl FnOnce(&I::Item) -> bool) -> Option<I::Item> { - match self.next() { - Some(item) if func(&item) => Some(item), - Some(item) => { - self.buf.push_front(item); - None - } - _ => None, - } - } - - /// Works exactly like the `next_if_eq` method in [`std::iter::Peekable`]. - pub fn next_if_eq<T>(&mut self, expected: &T) -> Option<I::Item> - where - T: ?Sized, - I::Item: PartialEq<T>, - { - self.next_if(|next| next == expected) - } -} - -impl<I> Iterator for PeekNth<I> -where - I: Iterator, -{ - type Item = I::Item; - - fn next(&mut self) -> Option<Self::Item> { - self.buf.pop_front().or_else(|| self.iter.next()) - } - - fn size_hint(&self) -> (usize, Option<usize>) { - size_hint::add_scalar(self.iter.size_hint(), self.buf.len()) - } - - fn fold<B, F>(self, mut init: B, mut f: F) -> B - where - F: FnMut(B, Self::Item) -> B, - { - init = self.buf.into_iter().fold(init, &mut f); - self.iter.fold(init, f) - } -} - -impl<I> ExactSizeIterator for PeekNth<I> where I: ExactSizeIterator {} - -impl<I> PeekingNext for PeekNth<I> -where - I: Iterator, -{ - fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item> - where - F: FnOnce(&Self::Item) -> bool, - { - self.peek().filter(|item| accept(item))?; - self.next() - } -} diff --git a/vendor/itertools/src/peeking_take_while.rs b/vendor/itertools/src/peeking_take_while.rs deleted file mode 100644 index f3259a91..00000000 --- a/vendor/itertools/src/peeking_take_while.rs +++ /dev/null @@ -1,201 +0,0 @@ -use crate::PutBack; -#[cfg(feature = "use_alloc")] -use crate::PutBackN; -use crate::RepeatN; -use std::iter::Peekable; - -/// An iterator that allows peeking at an element before deciding to accept it. -/// -/// See [`.peeking_take_while()`](crate::Itertools::peeking_take_while) -/// for more information. -/// -/// This is implemented by peeking adaptors like peekable and put back, -/// but also by a few iterators that can be peeked natively, like the slice’s -/// by reference iterator ([`std::slice::Iter`]). -pub trait PeekingNext: Iterator { - /// Pass a reference to the next iterator element to the closure `accept`; - /// if `accept` returns `true`, return it as the next element, - /// else `None`. - fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item> - where - Self: Sized, - F: FnOnce(&Self::Item) -> bool; -} - -impl<I> PeekingNext for &mut I -where - I: PeekingNext, -{ - fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item> - where - F: FnOnce(&Self::Item) -> bool, - { - (*self).peeking_next(accept) - } -} - -impl<I> PeekingNext for Peekable<I> -where - I: Iterator, -{ - fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item> - where - F: FnOnce(&Self::Item) -> bool, - { - if let Some(r) = self.peek() { - if !accept(r) { - return None; - } - } - self.next() - } -} - -impl<I> PeekingNext for PutBack<I> -where - I: Iterator, -{ - fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item> - where - F: FnOnce(&Self::Item) -> bool, - { - if let Some(r) = self.next() { - if !accept(&r) { - self.put_back(r); - return None; - } - Some(r) - } else { - None - } - } -} - -#[cfg(feature = "use_alloc")] -impl<I> PeekingNext for PutBackN<I> -where - I: Iterator, -{ - fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item> - where - F: FnOnce(&Self::Item) -> bool, - { - if let Some(r) = self.next() { - if !accept(&r) { - self.put_back(r); - return None; - } - Some(r) - } else { - None - } - } -} - -impl<T: Clone> PeekingNext for RepeatN<T> { - fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item> - where - F: FnOnce(&Self::Item) -> bool, - { - let r = self.elt.as_ref()?; - if !accept(r) { - return None; - } - self.next() - } -} - -/// An iterator adaptor that takes items while a closure returns `true`. -/// -/// See [`.peeking_take_while()`](crate::Itertools::peeking_take_while) -/// for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct PeekingTakeWhile<'a, I, F> -where - I: Iterator + 'a, -{ - iter: &'a mut I, - f: F, -} - -impl<'a, I, F> std::fmt::Debug for PeekingTakeWhile<'a, I, F> -where - I: Iterator + std::fmt::Debug + 'a, -{ - debug_fmt_fields!(PeekingTakeWhile, iter); -} - -/// Create a `PeekingTakeWhile` -pub fn peeking_take_while<I, F>(iter: &mut I, f: F) -> PeekingTakeWhile<I, F> -where - I: Iterator, -{ - PeekingTakeWhile { iter, f } -} - -impl<I, F> Iterator for PeekingTakeWhile<'_, I, F> -where - I: PeekingNext, - F: FnMut(&I::Item) -> bool, -{ - type Item = I::Item; - fn next(&mut self) -> Option<Self::Item> { - self.iter.peeking_next(&mut self.f) - } - - fn size_hint(&self) -> (usize, Option<usize>) { - (0, self.iter.size_hint().1) - } -} - -impl<I, F> PeekingNext for PeekingTakeWhile<'_, I, F> -where - I: PeekingNext, - F: FnMut(&I::Item) -> bool, -{ - fn peeking_next<G>(&mut self, g: G) -> Option<Self::Item> - where - G: FnOnce(&Self::Item) -> bool, - { - let f = &mut self.f; - self.iter.peeking_next(|r| f(r) && g(r)) - } -} - -// Some iterators are so lightweight we can simply clone them to save their -// state and use that for peeking. -macro_rules! peeking_next_by_clone { - ([$($typarm:tt)*] $type_:ty) => { - impl<$($typarm)*> PeekingNext for $type_ { - fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item> - where F: FnOnce(&Self::Item) -> bool - { - let saved_state = self.clone(); - if let Some(r) = self.next() { - if !accept(&r) { - *self = saved_state; - } else { - return Some(r) - } - } - None - } - } - } -} - -peeking_next_by_clone! { ['a, T] ::std::slice::Iter<'a, T> } -peeking_next_by_clone! { ['a] ::std::str::Chars<'a> } -peeking_next_by_clone! { ['a] ::std::str::CharIndices<'a> } -peeking_next_by_clone! { ['a] ::std::str::Bytes<'a> } -peeking_next_by_clone! { ['a, T] ::std::option::Iter<'a, T> } -peeking_next_by_clone! { ['a, T] ::std::result::Iter<'a, T> } -peeking_next_by_clone! { [T] ::std::iter::Empty<T> } -#[cfg(feature = "use_alloc")] -peeking_next_by_clone! { ['a, T] alloc::collections::linked_list::Iter<'a, T> } -#[cfg(feature = "use_alloc")] -peeking_next_by_clone! { ['a, T] alloc::collections::vec_deque::Iter<'a, T> } - -// cloning a Rev has no extra overhead; peekable and put backs are never DEI. -peeking_next_by_clone! { [I: Clone + PeekingNext + DoubleEndedIterator] -::std::iter::Rev<I> } diff --git a/vendor/itertools/src/permutations.rs b/vendor/itertools/src/permutations.rs deleted file mode 100644 index 91389a73..00000000 --- a/vendor/itertools/src/permutations.rs +++ /dev/null @@ -1,186 +0,0 @@ -use alloc::boxed::Box; -use alloc::vec::Vec; -use std::fmt; -use std::iter::once; -use std::iter::FusedIterator; - -use super::lazy_buffer::LazyBuffer; -use crate::size_hint::{self, SizeHint}; - -/// An iterator adaptor that iterates through all the `k`-permutations of the -/// elements from an iterator. -/// -/// See [`.permutations()`](crate::Itertools::permutations) for -/// more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct Permutations<I: Iterator> { - vals: LazyBuffer<I>, - state: PermutationState, -} - -impl<I> Clone for Permutations<I> -where - I: Clone + Iterator, - I::Item: Clone, -{ - clone_fields!(vals, state); -} - -#[derive(Clone, Debug)] -enum PermutationState { - /// No permutation generated yet. - Start { k: usize }, - /// Values from the iterator are not fully loaded yet so `n` is still unknown. - Buffered { k: usize, min_n: usize }, - /// All values from the iterator are known so `n` is known. - Loaded { - indices: Box<[usize]>, - cycles: Box<[usize]>, - }, - /// No permutation left to generate. - End, -} - -impl<I> fmt::Debug for Permutations<I> -where - I: Iterator + fmt::Debug, - I::Item: fmt::Debug, -{ - debug_fmt_fields!(Permutations, vals, state); -} - -pub fn permutations<I: Iterator>(iter: I, k: usize) -> Permutations<I> { - Permutations { - vals: LazyBuffer::new(iter), - state: PermutationState::Start { k }, - } -} - -impl<I> Iterator for Permutations<I> -where - I: Iterator, - I::Item: Clone, -{ - type Item = Vec<I::Item>; - - fn next(&mut self) -> Option<Self::Item> { - let Self { vals, state } = self; - match state { - PermutationState::Start { k: 0 } => { - *state = PermutationState::End; - Some(Vec::new()) - } - &mut PermutationState::Start { k } => { - vals.prefill(k); - if vals.len() != k { - *state = PermutationState::End; - return None; - } - *state = PermutationState::Buffered { k, min_n: k }; - Some(vals[0..k].to_vec()) - } - PermutationState::Buffered { ref k, min_n } => { - if vals.get_next() { - let item = (0..*k - 1) - .chain(once(*min_n)) - .map(|i| vals[i].clone()) - .collect(); - *min_n += 1; - Some(item) - } else { - let n = *min_n; - let prev_iteration_count = n - *k + 1; - let mut indices: Box<[_]> = (0..n).collect(); - let mut cycles: Box<[_]> = (n - k..n).rev().collect(); - // Advance the state to the correct point. - for _ in 0..prev_iteration_count { - if advance(&mut indices, &mut cycles) { - *state = PermutationState::End; - return None; - } - } - let item = vals.get_at(&indices[0..*k]); - *state = PermutationState::Loaded { indices, cycles }; - Some(item) - } - } - PermutationState::Loaded { indices, cycles } => { - if advance(indices, cycles) { - *state = PermutationState::End; - return None; - } - let k = cycles.len(); - Some(vals.get_at(&indices[0..k])) - } - PermutationState::End => None, - } - } - - fn count(self) -> usize { - let Self { vals, state } = self; - let n = vals.count(); - state.size_hint_for(n).1.unwrap() - } - - fn size_hint(&self) -> SizeHint { - let (mut low, mut upp) = self.vals.size_hint(); - low = self.state.size_hint_for(low).0; - upp = upp.and_then(|n| self.state.size_hint_for(n).1); - (low, upp) - } -} - -impl<I> FusedIterator for Permutations<I> -where - I: Iterator, - I::Item: Clone, -{ -} - -fn advance(indices: &mut [usize], cycles: &mut [usize]) -> bool { - let n = indices.len(); - let k = cycles.len(); - // NOTE: if `cycles` are only zeros, then we reached the last permutation. - for i in (0..k).rev() { - if cycles[i] == 0 { - cycles[i] = n - i - 1; - indices[i..].rotate_left(1); - } else { - let swap_index = n - cycles[i]; - indices.swap(i, swap_index); - cycles[i] -= 1; - return false; - } - } - true -} - -impl PermutationState { - fn size_hint_for(&self, n: usize) -> SizeHint { - // At the beginning, there are `n!/(n-k)!` items to come. - let at_start = |n, k| { - debug_assert!(n >= k); - let total = (n - k + 1..=n).try_fold(1usize, |acc, i| acc.checked_mul(i)); - (total.unwrap_or(usize::MAX), total) - }; - match *self { - Self::Start { k } if n < k => (0, Some(0)), - Self::Start { k } => at_start(n, k), - Self::Buffered { k, min_n } => { - // Same as `Start` minus the previously generated items. - size_hint::sub_scalar(at_start(n, k), min_n - k + 1) - } - Self::Loaded { - ref indices, - ref cycles, - } => { - let count = cycles.iter().enumerate().try_fold(0usize, |acc, (i, &c)| { - acc.checked_mul(indices.len() - i) - .and_then(|count| count.checked_add(c)) - }); - (count.unwrap_or(usize::MAX), count) - } - Self::End => (0, Some(0)), - } - } -} diff --git a/vendor/itertools/src/powerset.rs b/vendor/itertools/src/powerset.rs deleted file mode 100644 index 734eaf61..00000000 --- a/vendor/itertools/src/powerset.rs +++ /dev/null @@ -1,131 +0,0 @@ -use alloc::vec::Vec; -use std::fmt; -use std::iter::FusedIterator; - -use super::combinations::{combinations, Combinations}; -use crate::adaptors::checked_binomial; -use crate::size_hint::{self, SizeHint}; - -/// An iterator to iterate through the powerset of the elements from an iterator. -/// -/// See [`.powerset()`](crate::Itertools::powerset) for more -/// information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct Powerset<I: Iterator> { - combs: Combinations<I>, -} - -impl<I> Clone for Powerset<I> -where - I: Clone + Iterator, - I::Item: Clone, -{ - clone_fields!(combs); -} - -impl<I> fmt::Debug for Powerset<I> -where - I: Iterator + fmt::Debug, - I::Item: fmt::Debug, -{ - debug_fmt_fields!(Powerset, combs); -} - -/// Create a new `Powerset` from a clonable iterator. -pub fn powerset<I>(src: I) -> Powerset<I> -where - I: Iterator, - I::Item: Clone, -{ - Powerset { - combs: combinations(src, 0), - } -} - -impl<I: Iterator> Powerset<I> { - /// Returns true if `k` has been incremented, false otherwise. - fn increment_k(&mut self) -> bool { - if self.combs.k() < self.combs.n() || self.combs.k() == 0 { - self.combs.reset(self.combs.k() + 1); - true - } else { - false - } - } -} - -impl<I> Iterator for Powerset<I> -where - I: Iterator, - I::Item: Clone, -{ - type Item = Vec<I::Item>; - - fn next(&mut self) -> Option<Self::Item> { - if let Some(elt) = self.combs.next() { - Some(elt) - } else if self.increment_k() { - self.combs.next() - } else { - None - } - } - - fn nth(&mut self, mut n: usize) -> Option<Self::Item> { - loop { - match self.combs.try_nth(n) { - Ok(item) => return Some(item), - Err(steps) => { - if !self.increment_k() { - return None; - } - n -= steps; - } - } - } - } - - fn size_hint(&self) -> SizeHint { - let k = self.combs.k(); - // Total bounds for source iterator. - let (n_min, n_max) = self.combs.src().size_hint(); - let low = remaining_for(n_min, k).unwrap_or(usize::MAX); - let upp = n_max.and_then(|n| remaining_for(n, k)); - size_hint::add(self.combs.size_hint(), (low, upp)) - } - - fn count(self) -> usize { - let k = self.combs.k(); - let (n, combs_count) = self.combs.n_and_count(); - combs_count + remaining_for(n, k).unwrap() - } - - fn fold<B, F>(self, mut init: B, mut f: F) -> B - where - F: FnMut(B, Self::Item) -> B, - { - let mut it = self.combs; - if it.k() == 0 { - init = it.by_ref().fold(init, &mut f); - it.reset(1); - } - init = it.by_ref().fold(init, &mut f); - // n is now known for sure because k >= 1 and all k-combinations have been generated. - for k in it.k() + 1..=it.n() { - it.reset(k); - init = it.by_ref().fold(init, &mut f); - } - init - } -} - -impl<I> FusedIterator for Powerset<I> -where - I: Iterator, - I::Item: Clone, -{ -} - -fn remaining_for(n: usize, k: usize) -> Option<usize> { - (k + 1..=n).try_fold(0usize, |sum, i| sum.checked_add(checked_binomial(n, i)?)) -} diff --git a/vendor/itertools/src/process_results_impl.rs b/vendor/itertools/src/process_results_impl.rs deleted file mode 100644 index 31389c5f..00000000 --- a/vendor/itertools/src/process_results_impl.rs +++ /dev/null @@ -1,108 +0,0 @@ -#[cfg(doc)] -use crate::Itertools; - -/// An iterator that produces only the `T` values as long as the -/// inner iterator produces `Ok(T)`. -/// -/// Used by [`process_results`](crate::process_results), see its docs -/// for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -#[derive(Debug)] -pub struct ProcessResults<'a, I, E: 'a> { - error: &'a mut Result<(), E>, - iter: I, -} - -impl<I, E> ProcessResults<'_, I, E> { - #[inline(always)] - fn next_body<T>(&mut self, item: Option<Result<T, E>>) -> Option<T> { - match item { - Some(Ok(x)) => Some(x), - Some(Err(e)) => { - *self.error = Err(e); - None - } - None => None, - } - } -} - -impl<I, T, E> Iterator for ProcessResults<'_, I, E> -where - I: Iterator<Item = Result<T, E>>, -{ - type Item = T; - - fn next(&mut self) -> Option<Self::Item> { - let item = self.iter.next(); - self.next_body(item) - } - - fn size_hint(&self) -> (usize, Option<usize>) { - (0, self.iter.size_hint().1) - } - - fn fold<B, F>(mut self, init: B, mut f: F) -> B - where - Self: Sized, - F: FnMut(B, Self::Item) -> B, - { - let error = self.error; - self.iter - .try_fold(init, |acc, opt| match opt { - Ok(x) => Ok(f(acc, x)), - Err(e) => { - *error = Err(e); - Err(acc) - } - }) - .unwrap_or_else(|e| e) - } -} - -impl<I, T, E> DoubleEndedIterator for ProcessResults<'_, I, E> -where - I: Iterator<Item = Result<T, E>>, - I: DoubleEndedIterator, -{ - fn next_back(&mut self) -> Option<Self::Item> { - let item = self.iter.next_back(); - self.next_body(item) - } - - fn rfold<B, F>(mut self, init: B, mut f: F) -> B - where - F: FnMut(B, Self::Item) -> B, - { - let error = self.error; - self.iter - .try_rfold(init, |acc, opt| match opt { - Ok(x) => Ok(f(acc, x)), - Err(e) => { - *error = Err(e); - Err(acc) - } - }) - .unwrap_or_else(|e| e) - } -} - -/// “Lift” a function of the values of an iterator so that it can process -/// an iterator of `Result` values instead. -/// -/// [`IntoIterator`] enabled version of [`Itertools::process_results`]. -pub fn process_results<I, F, T, E, R>(iterable: I, processor: F) -> Result<R, E> -where - I: IntoIterator<Item = Result<T, E>>, - F: FnOnce(ProcessResults<I::IntoIter, E>) -> R, -{ - let iter = iterable.into_iter(); - let mut error = Ok(()); - - let result = processor(ProcessResults { - error: &mut error, - iter, - }); - - error.map(|_| result) -} diff --git a/vendor/itertools/src/put_back_n_impl.rs b/vendor/itertools/src/put_back_n_impl.rs deleted file mode 100644 index a9eb4179..00000000 --- a/vendor/itertools/src/put_back_n_impl.rs +++ /dev/null @@ -1,71 +0,0 @@ -use alloc::vec::Vec; - -use crate::size_hint; - -/// An iterator adaptor that allows putting multiple -/// items in front of the iterator. -/// -/// Iterator element type is `I::Item`. -#[derive(Debug, Clone)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct PutBackN<I: Iterator> { - top: Vec<I::Item>, - iter: I, -} - -/// Create an iterator where you can put back multiple values to the front -/// of the iteration. -/// -/// Iterator element type is `I::Item`. -pub fn put_back_n<I>(iterable: I) -> PutBackN<I::IntoIter> -where - I: IntoIterator, -{ - PutBackN { - top: Vec::new(), - iter: iterable.into_iter(), - } -} - -impl<I: Iterator> PutBackN<I> { - /// Puts `x` in front of the iterator. - /// - /// The values are yielded in order of the most recently put back - /// values first. - /// - /// ```rust - /// use itertools::put_back_n; - /// - /// let mut it = put_back_n(1..5); - /// it.next(); - /// it.put_back(1); - /// it.put_back(0); - /// - /// assert!(itertools::equal(it, 0..5)); - /// ``` - #[inline] - pub fn put_back(&mut self, x: I::Item) { - self.top.push(x); - } -} - -impl<I: Iterator> Iterator for PutBackN<I> { - type Item = I::Item; - #[inline] - fn next(&mut self) -> Option<Self::Item> { - self.top.pop().or_else(|| self.iter.next()) - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - size_hint::add_scalar(self.iter.size_hint(), self.top.len()) - } - - fn fold<B, F>(self, mut init: B, mut f: F) -> B - where - F: FnMut(B, Self::Item) -> B, - { - init = self.top.into_iter().rfold(init, &mut f); - self.iter.fold(init, f) - } -} diff --git a/vendor/itertools/src/rciter_impl.rs b/vendor/itertools/src/rciter_impl.rs deleted file mode 100644 index 96a0fd69..00000000 --- a/vendor/itertools/src/rciter_impl.rs +++ /dev/null @@ -1,102 +0,0 @@ -use alloc::rc::Rc; -use std::cell::RefCell; -use std::iter::{FusedIterator, IntoIterator}; - -/// A wrapper for `Rc<RefCell<I>>`, that implements the `Iterator` trait. -#[derive(Debug)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct RcIter<I> { - /// The boxed iterator. - pub rciter: Rc<RefCell<I>>, -} - -/// Return an iterator inside a `Rc<RefCell<_>>` wrapper. -/// -/// The returned `RcIter` can be cloned, and each clone will refer back to the -/// same original iterator. -/// -/// `RcIter` allows doing interesting things like using `.zip()` on an iterator with -/// itself, at the cost of runtime borrow checking which may have a performance -/// penalty. -/// -/// Iterator element type is `Self::Item`. -/// -/// ``` -/// use itertools::rciter; -/// use itertools::zip; -/// -/// // In this example a range iterator is created and we iterate it using -/// // three separate handles (two of them given to zip). -/// // We also use the IntoIterator implementation for `&RcIter`. -/// -/// let mut iter = rciter(0..9); -/// let mut z = zip(&iter, &iter); -/// -/// assert_eq!(z.next(), Some((0, 1))); -/// assert_eq!(z.next(), Some((2, 3))); -/// assert_eq!(z.next(), Some((4, 5))); -/// assert_eq!(iter.next(), Some(6)); -/// assert_eq!(z.next(), Some((7, 8))); -/// assert_eq!(z.next(), None); -/// ``` -/// -/// **Panics** in iterator methods if a borrow error is encountered in the -/// iterator methods. It can only happen if the `RcIter` is reentered in -/// `.next()`, i.e. if it somehow participates in an “iterator knot” -/// where it is an adaptor of itself. -pub fn rciter<I>(iterable: I) -> RcIter<I::IntoIter> -where - I: IntoIterator, -{ - RcIter { - rciter: Rc::new(RefCell::new(iterable.into_iter())), - } -} - -impl<I> Clone for RcIter<I> { - clone_fields!(rciter); -} - -impl<A, I> Iterator for RcIter<I> -where - I: Iterator<Item = A>, -{ - type Item = A; - #[inline] - fn next(&mut self) -> Option<Self::Item> { - self.rciter.borrow_mut().next() - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - // To work sanely with other API that assume they own an iterator, - // so it can't change in other places, we can't guarantee as much - // in our size_hint. Other clones may drain values under our feet. - (0, self.rciter.borrow().size_hint().1) - } -} - -impl<I> DoubleEndedIterator for RcIter<I> -where - I: DoubleEndedIterator, -{ - #[inline] - fn next_back(&mut self) -> Option<Self::Item> { - self.rciter.borrow_mut().next_back() - } -} - -/// Return an iterator from `&RcIter<I>` (by simply cloning it). -impl<I> IntoIterator for &RcIter<I> -where - I: Iterator, -{ - type Item = I::Item; - type IntoIter = RcIter<I>; - - fn into_iter(self) -> RcIter<I> { - self.clone() - } -} - -impl<A, I> FusedIterator for RcIter<I> where I: FusedIterator<Item = A> {} diff --git a/vendor/itertools/src/repeatn.rs b/vendor/itertools/src/repeatn.rs deleted file mode 100644 index d86ad9fa..00000000 --- a/vendor/itertools/src/repeatn.rs +++ /dev/null @@ -1,83 +0,0 @@ -use std::iter::FusedIterator; - -/// An iterator that produces *n* repetitions of an element. -/// -/// See [`repeat_n()`](crate::repeat_n) for more information. -#[must_use = "iterators are lazy and do nothing unless consumed"] -#[derive(Clone, Debug)] -pub struct RepeatN<A> { - pub(crate) elt: Option<A>, - n: usize, -} - -/// Create an iterator that produces `n` repetitions of `element`. -pub fn repeat_n<A>(element: A, n: usize) -> RepeatN<A> -where - A: Clone, -{ - if n == 0 { - RepeatN { elt: None, n } - } else { - RepeatN { - elt: Some(element), - n, - } - } -} - -impl<A> Iterator for RepeatN<A> -where - A: Clone, -{ - type Item = A; - - fn next(&mut self) -> Option<Self::Item> { - if self.n > 1 { - self.n -= 1; - self.elt.as_ref().cloned() - } else { - self.n = 0; - self.elt.take() - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - (self.n, Some(self.n)) - } - - fn fold<B, F>(self, mut init: B, mut f: F) -> B - where - F: FnMut(B, Self::Item) -> B, - { - match self { - Self { elt: Some(elt), n } => { - debug_assert!(n > 0); - init = (1..n).map(|_| elt.clone()).fold(init, &mut f); - f(init, elt) - } - _ => init, - } - } -} - -impl<A> DoubleEndedIterator for RepeatN<A> -where - A: Clone, -{ - #[inline] - fn next_back(&mut self) -> Option<Self::Item> { - self.next() - } - - #[inline] - fn rfold<B, F>(self, init: B, f: F) -> B - where - F: FnMut(B, Self::Item) -> B, - { - self.fold(init, f) - } -} - -impl<A> ExactSizeIterator for RepeatN<A> where A: Clone {} - -impl<A> FusedIterator for RepeatN<A> where A: Clone {} diff --git a/vendor/itertools/src/size_hint.rs b/vendor/itertools/src/size_hint.rs deleted file mode 100644 index 6cfead7f..00000000 --- a/vendor/itertools/src/size_hint.rs +++ /dev/null @@ -1,94 +0,0 @@ -//! Arithmetic on `Iterator.size_hint()` values. -//! - -use std::cmp; - -/// `SizeHint` is the return type of `Iterator::size_hint()`. -pub type SizeHint = (usize, Option<usize>); - -/// Add `SizeHint` correctly. -#[inline] -pub fn add(a: SizeHint, b: SizeHint) -> SizeHint { - let min = a.0.saturating_add(b.0); - let max = match (a.1, b.1) { - (Some(x), Some(y)) => x.checked_add(y), - _ => None, - }; - - (min, max) -} - -/// Add `x` correctly to a `SizeHint`. -#[inline] -pub fn add_scalar(sh: SizeHint, x: usize) -> SizeHint { - let (mut low, mut hi) = sh; - low = low.saturating_add(x); - hi = hi.and_then(|elt| elt.checked_add(x)); - (low, hi) -} - -/// Subtract `x` correctly from a `SizeHint`. -#[inline] -pub fn sub_scalar(sh: SizeHint, x: usize) -> SizeHint { - let (mut low, mut hi) = sh; - low = low.saturating_sub(x); - hi = hi.map(|elt| elt.saturating_sub(x)); - (low, hi) -} - -/// Multiply `SizeHint` correctly -#[inline] -pub fn mul(a: SizeHint, b: SizeHint) -> SizeHint { - let low = a.0.saturating_mul(b.0); - let hi = match (a.1, b.1) { - (Some(x), Some(y)) => x.checked_mul(y), - (Some(0), None) | (None, Some(0)) => Some(0), - _ => None, - }; - (low, hi) -} - -/// Multiply `x` correctly with a `SizeHint`. -#[inline] -pub fn mul_scalar(sh: SizeHint, x: usize) -> SizeHint { - let (mut low, mut hi) = sh; - low = low.saturating_mul(x); - hi = hi.and_then(|elt| elt.checked_mul(x)); - (low, hi) -} - -/// Return the maximum -#[inline] -pub fn max(a: SizeHint, b: SizeHint) -> SizeHint { - let (a_lower, a_upper) = a; - let (b_lower, b_upper) = b; - - let lower = cmp::max(a_lower, b_lower); - - let upper = match (a_upper, b_upper) { - (Some(x), Some(y)) => Some(cmp::max(x, y)), - _ => None, - }; - - (lower, upper) -} - -/// Return the minimum -#[inline] -pub fn min(a: SizeHint, b: SizeHint) -> SizeHint { - let (a_lower, a_upper) = a; - let (b_lower, b_upper) = b; - let lower = cmp::min(a_lower, b_lower); - let upper = match (a_upper, b_upper) { - (Some(u1), Some(u2)) => Some(cmp::min(u1, u2)), - _ => a_upper.or(b_upper), - }; - (lower, upper) -} - -#[test] -fn mul_size_hints() { - assert_eq!(mul((3, Some(4)), (3, Some(4))), (9, Some(16))); - assert_eq!(mul((3, Some(4)), (usize::MAX, None)), (usize::MAX, None)); - assert_eq!(mul((3, None), (0, Some(0))), (0, Some(0))); -} diff --git a/vendor/itertools/src/sources.rs b/vendor/itertools/src/sources.rs deleted file mode 100644 index c405ffdc..00000000 --- a/vendor/itertools/src/sources.rs +++ /dev/null @@ -1,153 +0,0 @@ -//! Iterators that are sources (produce elements from parameters, -//! not from another iterator). -#![allow(deprecated)] - -use std::fmt; -use std::mem; - -/// Creates a new unfold source with the specified closure as the "iterator -/// function" and an initial state to eventually pass to the closure -/// -/// `unfold` is a general iterator builder: it has a mutable state value, -/// and a closure with access to the state that produces the next value. -/// -/// This more or less equivalent to a regular struct with an [`Iterator`] -/// implementation, and is useful for one-off iterators. -/// -/// ``` -/// // an iterator that yields sequential Fibonacci numbers, -/// // and stops at the maximum representable value. -/// -/// use itertools::unfold; -/// -/// let mut fibonacci = unfold((1u32, 1u32), |(x1, x2)| { -/// // Attempt to get the next Fibonacci number -/// let next = x1.saturating_add(*x2); -/// -/// // Shift left: ret <- x1 <- x2 <- next -/// let ret = *x1; -/// *x1 = *x2; -/// *x2 = next; -/// -/// // If addition has saturated at the maximum, we are finished -/// if ret == *x1 && ret > 1 { -/// None -/// } else { -/// Some(ret) -/// } -/// }); -/// -/// itertools::assert_equal(fibonacci.by_ref().take(8), -/// vec![1, 1, 2, 3, 5, 8, 13, 21]); -/// assert_eq!(fibonacci.last(), Some(2_971_215_073)) -/// ``` -#[deprecated( - note = "Use [std::iter::from_fn](https://doc.rust-lang.org/std/iter/fn.from_fn.html) instead", - since = "0.13.0" -)] -pub fn unfold<A, St, F>(initial_state: St, f: F) -> Unfold<St, F> -where - F: FnMut(&mut St) -> Option<A>, -{ - Unfold { - f, - state: initial_state, - } -} - -impl<St, F> fmt::Debug for Unfold<St, F> -where - St: fmt::Debug, -{ - debug_fmt_fields!(Unfold, state); -} - -/// See [`unfold`](crate::unfold) for more information. -#[derive(Clone)] -#[must_use = "iterators are lazy and do nothing unless consumed"] -#[deprecated( - note = "Use [std::iter::FromFn](https://doc.rust-lang.org/std/iter/struct.FromFn.html) instead", - since = "0.13.0" -)] -pub struct Unfold<St, F> { - f: F, - /// Internal state that will be passed to the closure on the next iteration - pub state: St, -} - -impl<A, St, F> Iterator for Unfold<St, F> -where - F: FnMut(&mut St) -> Option<A>, -{ - type Item = A; - - #[inline] - fn next(&mut self) -> Option<Self::Item> { - (self.f)(&mut self.state) - } -} - -/// An iterator that infinitely applies function to value and yields results. -/// -/// This `struct` is created by the [`iterate()`](crate::iterate) function. -/// See its documentation for more. -#[derive(Clone)] -#[must_use = "iterators are lazy and do nothing unless consumed"] -pub struct Iterate<St, F> { - state: St, - f: F, -} - -impl<St, F> fmt::Debug for Iterate<St, F> -where - St: fmt::Debug, -{ - debug_fmt_fields!(Iterate, state); -} - -impl<St, F> Iterator for Iterate<St, F> -where - F: FnMut(&St) -> St, -{ - type Item = St; - - #[inline] - fn next(&mut self) -> Option<Self::Item> { - let next_state = (self.f)(&self.state); - Some(mem::replace(&mut self.state, next_state)) - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - (usize::MAX, None) - } -} - -/// Creates a new iterator that infinitely applies function to value and yields results. -/// -/// ``` -/// use itertools::iterate; -/// -/// itertools::assert_equal(iterate(1, |i| i % 3 + 1).take(5), vec![1, 2, 3, 1, 2]); -/// ``` -/// -/// **Panics** if compute the next value does. -/// -/// ```should_panic -/// # use itertools::iterate; -/// let mut it = iterate(25u32, |x| x - 10).take_while(|&x| x > 10); -/// assert_eq!(it.next(), Some(25)); // `Iterate` holds 15. -/// assert_eq!(it.next(), Some(15)); // `Iterate` holds 5. -/// it.next(); // `5 - 10` overflows. -/// ``` -/// -/// You can alternatively use [`core::iter::successors`] as it better describes a finite iterator. -pub fn iterate<St, F>(initial_value: St, f: F) -> Iterate<St, F> -where - F: FnMut(&St) -> St, -{ - Iterate { - state: initial_value, - f, - } -} diff --git a/vendor/itertools/src/take_while_inclusive.rs b/vendor/itertools/src/take_while_inclusive.rs deleted file mode 100644 index 420da984..00000000 --- a/vendor/itertools/src/take_while_inclusive.rs +++ /dev/null @@ -1,96 +0,0 @@ -use core::iter::FusedIterator; -use std::fmt; - -/// An iterator adaptor that consumes elements while the given predicate is -/// `true`, including the element for which the predicate first returned -/// `false`. -/// -/// See [`.take_while_inclusive()`](crate::Itertools::take_while_inclusive) -/// for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -#[derive(Clone)] -pub struct TakeWhileInclusive<I, F> { - iter: I, - predicate: F, - done: bool, -} - -impl<I, F> TakeWhileInclusive<I, F> -where - I: Iterator, - F: FnMut(&I::Item) -> bool, -{ - /// Create a new [`TakeWhileInclusive`] from an iterator and a predicate. - pub(crate) fn new(iter: I, predicate: F) -> Self { - Self { - iter, - predicate, - done: false, - } - } -} - -impl<I, F> fmt::Debug for TakeWhileInclusive<I, F> -where - I: Iterator + fmt::Debug, -{ - debug_fmt_fields!(TakeWhileInclusive, iter, done); -} - -impl<I, F> Iterator for TakeWhileInclusive<I, F> -where - I: Iterator, - F: FnMut(&I::Item) -> bool, -{ - type Item = I::Item; - - fn next(&mut self) -> Option<Self::Item> { - if self.done { - None - } else { - self.iter.next().map(|item| { - if !(self.predicate)(&item) { - self.done = true; - } - item - }) - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - if self.done { - (0, Some(0)) - } else { - (0, self.iter.size_hint().1) - } - } - - fn fold<B, Fold>(mut self, init: B, mut f: Fold) -> B - where - Fold: FnMut(B, Self::Item) -> B, - { - if self.done { - init - } else { - let predicate = &mut self.predicate; - self.iter - .try_fold(init, |mut acc, item| { - let is_ok = predicate(&item); - acc = f(acc, item); - if is_ok { - Ok(acc) - } else { - Err(acc) - } - }) - .unwrap_or_else(|err| err) - } - } -} - -impl<I, F> FusedIterator for TakeWhileInclusive<I, F> -where - I: Iterator, - F: FnMut(&I::Item) -> bool, -{ -} diff --git a/vendor/itertools/src/tee.rs b/vendor/itertools/src/tee.rs deleted file mode 100644 index 0984c5de..00000000 --- a/vendor/itertools/src/tee.rs +++ /dev/null @@ -1,93 +0,0 @@ -use super::size_hint; - -use alloc::collections::VecDeque; -use alloc::rc::Rc; -use std::cell::RefCell; - -/// Common buffer object for the two tee halves -#[derive(Debug)] -struct TeeBuffer<A, I> { - backlog: VecDeque<A>, - iter: I, - /// The owner field indicates which id should read from the backlog - owner: bool, -} - -/// One half of an iterator pair where both return the same elements. -/// -/// See [`.tee()`](crate::Itertools::tee) for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -#[derive(Debug)] -pub struct Tee<I> -where - I: Iterator, -{ - rcbuffer: Rc<RefCell<TeeBuffer<I::Item, I>>>, - id: bool, -} - -pub fn new<I>(iter: I) -> (Tee<I>, Tee<I>) -where - I: Iterator, -{ - let buffer = TeeBuffer { - backlog: VecDeque::new(), - iter, - owner: false, - }; - let t1 = Tee { - rcbuffer: Rc::new(RefCell::new(buffer)), - id: true, - }; - let t2 = Tee { - rcbuffer: t1.rcbuffer.clone(), - id: false, - }; - (t1, t2) -} - -impl<I> Iterator for Tee<I> -where - I: Iterator, - I::Item: Clone, -{ - type Item = I::Item; - fn next(&mut self) -> Option<Self::Item> { - // .borrow_mut may fail here -- but only if the user has tied some kind of weird - // knot where the iterator refers back to itself. - let mut buffer = self.rcbuffer.borrow_mut(); - if buffer.owner == self.id { - match buffer.backlog.pop_front() { - None => {} - some_elt => return some_elt, - } - } - match buffer.iter.next() { - None => None, - Some(elt) => { - buffer.backlog.push_back(elt.clone()); - buffer.owner = !self.id; - Some(elt) - } - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - let buffer = self.rcbuffer.borrow(); - let sh = buffer.iter.size_hint(); - - if buffer.owner == self.id { - let log_len = buffer.backlog.len(); - size_hint::add_scalar(sh, log_len) - } else { - sh - } - } -} - -impl<I> ExactSizeIterator for Tee<I> -where - I: ExactSizeIterator, - I::Item: Clone, -{ -} diff --git a/vendor/itertools/src/tuple_impl.rs b/vendor/itertools/src/tuple_impl.rs deleted file mode 100644 index c0d556fc..00000000 --- a/vendor/itertools/src/tuple_impl.rs +++ /dev/null @@ -1,401 +0,0 @@ -//! Some iterator that produces tuples - -use std::iter::Cycle; -use std::iter::Fuse; -use std::iter::FusedIterator; - -use crate::size_hint; - -// `HomogeneousTuple` is a public facade for `TupleCollect`, allowing -// tuple-related methods to be used by clients in generic contexts, while -// hiding the implementation details of `TupleCollect`. -// See https://github.com/rust-itertools/itertools/issues/387 - -/// Implemented for homogeneous tuples of size up to 12. -pub trait HomogeneousTuple: TupleCollect {} - -impl<T: TupleCollect> HomogeneousTuple for T {} - -/// An iterator over a incomplete tuple. -/// -/// See [`.tuples()`](crate::Itertools::tuples) and -/// [`Tuples::into_buffer()`]. -#[derive(Clone, Debug)] -pub struct TupleBuffer<T> -where - T: HomogeneousTuple, -{ - cur: usize, - buf: T::Buffer, -} - -impl<T> TupleBuffer<T> -where - T: HomogeneousTuple, -{ - fn new(buf: T::Buffer) -> Self { - Self { cur: 0, buf } - } -} - -impl<T> Iterator for TupleBuffer<T> -where - T: HomogeneousTuple, -{ - type Item = T::Item; - - fn next(&mut self) -> Option<Self::Item> { - let s = self.buf.as_mut(); - if let Some(ref mut item) = s.get_mut(self.cur) { - self.cur += 1; - item.take() - } else { - None - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - let buffer = &self.buf.as_ref()[self.cur..]; - let len = if buffer.is_empty() { - 0 - } else { - buffer - .iter() - .position(|x| x.is_none()) - .unwrap_or(buffer.len()) - }; - (len, Some(len)) - } -} - -impl<T> ExactSizeIterator for TupleBuffer<T> where T: HomogeneousTuple {} - -/// An iterator that groups the items in tuples of a specific size. -/// -/// See [`.tuples()`](crate::Itertools::tuples) for more information. -#[derive(Clone, Debug)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct Tuples<I, T> -where - I: Iterator<Item = T::Item>, - T: HomogeneousTuple, -{ - iter: Fuse<I>, - buf: T::Buffer, -} - -/// Create a new tuples iterator. -pub fn tuples<I, T>(iter: I) -> Tuples<I, T> -where - I: Iterator<Item = T::Item>, - T: HomogeneousTuple, -{ - Tuples { - iter: iter.fuse(), - buf: Default::default(), - } -} - -impl<I, T> Iterator for Tuples<I, T> -where - I: Iterator<Item = T::Item>, - T: HomogeneousTuple, -{ - type Item = T; - - fn next(&mut self) -> Option<Self::Item> { - T::collect_from_iter(&mut self.iter, &mut self.buf) - } - - fn size_hint(&self) -> (usize, Option<usize>) { - // The number of elts we've drawn from the underlying iterator, but have - // not yet produced as a tuple. - let buffered = T::buffer_len(&self.buf); - // To that, we must add the size estimates of the underlying iterator. - let (unbuffered_lo, unbuffered_hi) = self.iter.size_hint(); - // The total low estimate is the sum of the already-buffered elements, - // plus the low estimate of remaining unbuffered elements, divided by - // the tuple size. - let total_lo = add_then_div(unbuffered_lo, buffered, T::num_items()).unwrap_or(usize::MAX); - // And likewise for the total high estimate, but using the high estimate - // of the remaining unbuffered elements. - let total_hi = unbuffered_hi.and_then(|hi| add_then_div(hi, buffered, T::num_items())); - (total_lo, total_hi) - } -} - -/// `(n + a) / d` avoiding overflow when possible, returns `None` if it overflows. -fn add_then_div(n: usize, a: usize, d: usize) -> Option<usize> { - debug_assert_ne!(d, 0); - (n / d).checked_add(a / d)?.checked_add((n % d + a % d) / d) -} - -impl<I, T> ExactSizeIterator for Tuples<I, T> -where - I: ExactSizeIterator<Item = T::Item>, - T: HomogeneousTuple, -{ -} - -impl<I, T> Tuples<I, T> -where - I: Iterator<Item = T::Item>, - T: HomogeneousTuple, -{ - /// Return a buffer with the produced items that was not enough to be grouped in a tuple. - /// - /// ``` - /// use itertools::Itertools; - /// - /// let mut iter = (0..5).tuples(); - /// assert_eq!(Some((0, 1, 2)), iter.next()); - /// assert_eq!(None, iter.next()); - /// itertools::assert_equal(vec![3, 4], iter.into_buffer()); - /// ``` - pub fn into_buffer(self) -> TupleBuffer<T> { - TupleBuffer::new(self.buf) - } -} - -/// An iterator over all contiguous windows that produces tuples of a specific size. -/// -/// See [`.tuple_windows()`](crate::Itertools::tuple_windows) for more -/// information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -#[derive(Clone, Debug)] -pub struct TupleWindows<I, T> -where - I: Iterator<Item = T::Item>, - T: HomogeneousTuple, -{ - iter: I, - last: Option<T>, -} - -/// Create a new tuple windows iterator. -pub fn tuple_windows<I, T>(iter: I) -> TupleWindows<I, T> -where - I: Iterator<Item = T::Item>, - T: HomogeneousTuple, - T::Item: Clone, -{ - TupleWindows { last: None, iter } -} - -impl<I, T> Iterator for TupleWindows<I, T> -where - I: Iterator<Item = T::Item>, - T: HomogeneousTuple + Clone, - T::Item: Clone, -{ - type Item = T; - - fn next(&mut self) -> Option<Self::Item> { - if T::num_items() == 1 { - return T::collect_from_iter_no_buf(&mut self.iter); - } - if let Some(new) = self.iter.next() { - if let Some(ref mut last) = self.last { - last.left_shift_push(new); - Some(last.clone()) - } else { - use std::iter::once; - let iter = once(new).chain(&mut self.iter); - self.last = T::collect_from_iter_no_buf(iter); - self.last.clone() - } - } else { - None - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - let mut sh = self.iter.size_hint(); - // Adjust the size hint at the beginning - // OR when `num_items == 1` (but it does not change the size hint). - if self.last.is_none() { - sh = size_hint::sub_scalar(sh, T::num_items() - 1); - } - sh - } -} - -impl<I, T> ExactSizeIterator for TupleWindows<I, T> -where - I: ExactSizeIterator<Item = T::Item>, - T: HomogeneousTuple + Clone, - T::Item: Clone, -{ -} - -impl<I, T> FusedIterator for TupleWindows<I, T> -where - I: FusedIterator<Item = T::Item>, - T: HomogeneousTuple + Clone, - T::Item: Clone, -{ -} - -/// An iterator over all windows, wrapping back to the first elements when the -/// window would otherwise exceed the length of the iterator, producing tuples -/// of a specific size. -/// -/// See [`.circular_tuple_windows()`](crate::Itertools::circular_tuple_windows) for more -/// information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -#[derive(Debug, Clone)] -pub struct CircularTupleWindows<I, T> -where - I: Iterator<Item = T::Item> + Clone, - T: TupleCollect + Clone, -{ - iter: TupleWindows<Cycle<I>, T>, - len: usize, -} - -pub fn circular_tuple_windows<I, T>(iter: I) -> CircularTupleWindows<I, T> -where - I: Iterator<Item = T::Item> + Clone + ExactSizeIterator, - T: TupleCollect + Clone, - T::Item: Clone, -{ - let len = iter.len(); - let iter = tuple_windows(iter.cycle()); - - CircularTupleWindows { iter, len } -} - -impl<I, T> Iterator for CircularTupleWindows<I, T> -where - I: Iterator<Item = T::Item> + Clone, - T: TupleCollect + Clone, - T::Item: Clone, -{ - type Item = T; - - fn next(&mut self) -> Option<Self::Item> { - if self.len != 0 { - self.len -= 1; - self.iter.next() - } else { - None - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - (self.len, Some(self.len)) - } -} - -impl<I, T> ExactSizeIterator for CircularTupleWindows<I, T> -where - I: Iterator<Item = T::Item> + Clone, - T: TupleCollect + Clone, - T::Item: Clone, -{ -} - -impl<I, T> FusedIterator for CircularTupleWindows<I, T> -where - I: Iterator<Item = T::Item> + Clone, - T: TupleCollect + Clone, - T::Item: Clone, -{ -} - -pub trait TupleCollect: Sized { - type Item; - type Buffer: Default + AsRef<[Option<Self::Item>]> + AsMut<[Option<Self::Item>]>; - - fn buffer_len(buf: &Self::Buffer) -> usize { - let s = buf.as_ref(); - s.iter().position(Option::is_none).unwrap_or(s.len()) - } - - fn collect_from_iter<I>(iter: I, buf: &mut Self::Buffer) -> Option<Self> - where - I: IntoIterator<Item = Self::Item>; - - fn collect_from_iter_no_buf<I>(iter: I) -> Option<Self> - where - I: IntoIterator<Item = Self::Item>; - - fn num_items() -> usize; - - fn left_shift_push(&mut self, item: Self::Item); -} - -macro_rules! rev_for_each_ident{ - ($m:ident, ) => {}; - ($m:ident, $i0:ident, $($i:ident,)*) => { - rev_for_each_ident!($m, $($i,)*); - $m!($i0); - }; -} - -macro_rules! impl_tuple_collect { - ($dummy:ident,) => {}; // stop - ($dummy:ident, $($Y:ident,)*) => ( - impl_tuple_collect!($($Y,)*); - impl<A> TupleCollect for ($(ignore_ident!($Y, A),)*) { - type Item = A; - type Buffer = [Option<A>; count_ident!($($Y)*) - 1]; - - #[allow(unused_assignments, unused_mut)] - fn collect_from_iter<I>(iter: I, buf: &mut Self::Buffer) -> Option<Self> - where I: IntoIterator<Item = A> - { - let mut iter = iter.into_iter(); - $( - let mut $Y = None; - )* - - loop { - $( - $Y = iter.next(); - if $Y.is_none() { - break - } - )* - return Some(($($Y.unwrap()),*,)) - } - - let mut i = 0; - let mut s = buf.as_mut(); - $( - if i < s.len() { - s[i] = $Y; - i += 1; - } - )* - return None; - } - - fn collect_from_iter_no_buf<I>(iter: I) -> Option<Self> - where I: IntoIterator<Item = A> - { - let mut iter = iter.into_iter(); - - Some(($( - { let $Y = iter.next()?; $Y }, - )*)) - } - - fn num_items() -> usize { - count_ident!($($Y)*) - } - - fn left_shift_push(&mut self, mut item: A) { - use std::mem::replace; - - let &mut ($(ref mut $Y),*,) = self; - macro_rules! replace_item{($i:ident) => { - item = replace($i, item); - }} - rev_for_each_ident!(replace_item, $($Y,)*); - drop(item); - } - } - ) -} -impl_tuple_collect!(dummy, a, b, c, d, e, f, g, h, i, j, k, l,); diff --git a/vendor/itertools/src/unique_impl.rs b/vendor/itertools/src/unique_impl.rs deleted file mode 100644 index 0f6397e4..00000000 --- a/vendor/itertools/src/unique_impl.rs +++ /dev/null @@ -1,188 +0,0 @@ -use std::collections::hash_map::Entry; -use std::collections::HashMap; -use std::fmt; -use std::hash::Hash; -use std::iter::FusedIterator; - -/// An iterator adapter to filter out duplicate elements. -/// -/// See [`.unique_by()`](crate::Itertools::unique) for more information. -#[derive(Clone)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct UniqueBy<I: Iterator, V, F> { - iter: I, - // Use a Hashmap for the Entry API in order to prevent hashing twice. - // This can maybe be replaced with a HashSet once `get_or_insert_with` - // or a proper Entry API for Hashset is stable and meets this msrv - used: HashMap<V, ()>, - f: F, -} - -impl<I, V, F> fmt::Debug for UniqueBy<I, V, F> -where - I: Iterator + fmt::Debug, - V: fmt::Debug + Hash + Eq, -{ - debug_fmt_fields!(UniqueBy, iter, used); -} - -/// Create a new `UniqueBy` iterator. -pub fn unique_by<I, V, F>(iter: I, f: F) -> UniqueBy<I, V, F> -where - V: Eq + Hash, - F: FnMut(&I::Item) -> V, - I: Iterator, -{ - UniqueBy { - iter, - used: HashMap::new(), - f, - } -} - -// count the number of new unique keys in iterable (`used` is the set already seen) -fn count_new_keys<I, K>(mut used: HashMap<K, ()>, iterable: I) -> usize -where - I: IntoIterator<Item = K>, - K: Hash + Eq, -{ - let iter = iterable.into_iter(); - let current_used = used.len(); - used.extend(iter.map(|key| (key, ()))); - used.len() - current_used -} - -impl<I, V, F> Iterator for UniqueBy<I, V, F> -where - I: Iterator, - V: Eq + Hash, - F: FnMut(&I::Item) -> V, -{ - type Item = I::Item; - - fn next(&mut self) -> Option<Self::Item> { - let Self { iter, used, f } = self; - iter.find(|v| used.insert(f(v), ()).is_none()) - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - let (low, hi) = self.iter.size_hint(); - ((low > 0 && self.used.is_empty()) as usize, hi) - } - - fn count(self) -> usize { - let mut key_f = self.f; - count_new_keys(self.used, self.iter.map(move |elt| key_f(&elt))) - } -} - -impl<I, V, F> DoubleEndedIterator for UniqueBy<I, V, F> -where - I: DoubleEndedIterator, - V: Eq + Hash, - F: FnMut(&I::Item) -> V, -{ - fn next_back(&mut self) -> Option<Self::Item> { - let Self { iter, used, f } = self; - iter.rfind(|v| used.insert(f(v), ()).is_none()) - } -} - -impl<I, V, F> FusedIterator for UniqueBy<I, V, F> -where - I: FusedIterator, - V: Eq + Hash, - F: FnMut(&I::Item) -> V, -{ -} - -impl<I> Iterator for Unique<I> -where - I: Iterator, - I::Item: Eq + Hash + Clone, -{ - type Item = I::Item; - - fn next(&mut self) -> Option<Self::Item> { - let UniqueBy { iter, used, .. } = &mut self.iter; - iter.find_map(|v| { - if let Entry::Vacant(entry) = used.entry(v) { - let elt = entry.key().clone(); - entry.insert(()); - return Some(elt); - } - None - }) - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - let (low, hi) = self.iter.iter.size_hint(); - ((low > 0 && self.iter.used.is_empty()) as usize, hi) - } - - fn count(self) -> usize { - count_new_keys(self.iter.used, self.iter.iter) - } -} - -impl<I> DoubleEndedIterator for Unique<I> -where - I: DoubleEndedIterator, - I::Item: Eq + Hash + Clone, -{ - fn next_back(&mut self) -> Option<Self::Item> { - let UniqueBy { iter, used, .. } = &mut self.iter; - iter.rev().find_map(|v| { - if let Entry::Vacant(entry) = used.entry(v) { - let elt = entry.key().clone(); - entry.insert(()); - return Some(elt); - } - None - }) - } -} - -impl<I> FusedIterator for Unique<I> -where - I: FusedIterator, - I::Item: Eq + Hash + Clone, -{ -} - -/// An iterator adapter to filter out duplicate elements. -/// -/// See [`.unique()`](crate::Itertools::unique) for more information. -#[derive(Clone)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct Unique<I> -where - I: Iterator, - I::Item: Eq + Hash + Clone, -{ - iter: UniqueBy<I, I::Item, ()>, -} - -impl<I> fmt::Debug for Unique<I> -where - I: Iterator + fmt::Debug, - I::Item: Hash + Eq + fmt::Debug + Clone, -{ - debug_fmt_fields!(Unique, iter); -} - -pub fn unique<I>(iter: I) -> Unique<I> -where - I: Iterator, - I::Item: Eq + Hash + Clone, -{ - Unique { - iter: UniqueBy { - iter, - used: HashMap::new(), - f: (), - }, - } -} diff --git a/vendor/itertools/src/unziptuple.rs b/vendor/itertools/src/unziptuple.rs deleted file mode 100644 index 2c79c2d8..00000000 --- a/vendor/itertools/src/unziptuple.rs +++ /dev/null @@ -1,80 +0,0 @@ -/// Converts an iterator of tuples into a tuple of containers. -/// -/// `multiunzip()` consumes an entire iterator of n-ary tuples, producing `n` collections, one for each -/// column. -/// -/// This function is, in some sense, the opposite of [`multizip`]. -/// -/// ``` -/// use itertools::multiunzip; -/// -/// let inputs = vec![(1, 2, 3), (4, 5, 6), (7, 8, 9)]; -/// -/// let (a, b, c): (Vec<_>, Vec<_>, Vec<_>) = multiunzip(inputs); -/// -/// assert_eq!(a, vec![1, 4, 7]); -/// assert_eq!(b, vec![2, 5, 8]); -/// assert_eq!(c, vec![3, 6, 9]); -/// ``` -/// -/// [`multizip`]: crate::multizip -pub fn multiunzip<FromI, I>(i: I) -> FromI -where - I: IntoIterator, - I::IntoIter: MultiUnzip<FromI>, -{ - i.into_iter().multiunzip() -} - -/// An iterator that can be unzipped into multiple collections. -/// -/// See [`.multiunzip()`](crate::Itertools::multiunzip) for more information. -pub trait MultiUnzip<FromI>: Iterator { - /// Unzip this iterator into multiple collections. - fn multiunzip(self) -> FromI; -} - -macro_rules! impl_unzip_iter { - ($($T:ident => $FromT:ident),*) => ( - #[allow(non_snake_case)] - impl<IT: Iterator<Item = ($($T,)*)>, $($T, $FromT: Default + Extend<$T>),* > MultiUnzip<($($FromT,)*)> for IT { - fn multiunzip(self) -> ($($FromT,)*) { - // This implementation mirrors the logic of Iterator::unzip resp. Extend for (A, B) as close as possible. - // Unfortunately a lot of the used api there is still unstable (https://github.com/rust-lang/rust/issues/72631). - // - // Iterator::unzip: https://doc.rust-lang.org/src/core/iter/traits/iterator.rs.html#2825-2865 - // Extend for (A, B): https://doc.rust-lang.org/src/core/iter/traits/collect.rs.html#370-411 - - let mut res = ($($FromT::default(),)*); - let ($($FromT,)*) = &mut res; - - // Still unstable #72631 - // let (lower_bound, _) = self.size_hint(); - // if lower_bound > 0 { - // $($FromT.extend_reserve(lower_bound);)* - // } - - self.fold((), |(), ($($T,)*)| { - // Still unstable #72631 - // $( $FromT.extend_one($T); )* - $( $FromT.extend(std::iter::once($T)); )* - }); - res - } - } - ); -} - -impl_unzip_iter!(); -impl_unzip_iter!(A => FromA); -impl_unzip_iter!(A => FromA, B => FromB); -impl_unzip_iter!(A => FromA, B => FromB, C => FromC); -impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD); -impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE); -impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF); -impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG); -impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG, H => FromH); -impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG, H => FromH, I => FromI); -impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG, H => FromH, I => FromI, J => FromJ); -impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG, H => FromH, I => FromI, J => FromJ, K => FromK); -impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG, H => FromH, I => FromI, J => FromJ, K => FromK, L => FromL); diff --git a/vendor/itertools/src/with_position.rs b/vendor/itertools/src/with_position.rs deleted file mode 100644 index 2d56bb9b..00000000 --- a/vendor/itertools/src/with_position.rs +++ /dev/null @@ -1,124 +0,0 @@ -use std::fmt; -use std::iter::{Fuse, FusedIterator, Peekable}; - -/// An iterator adaptor that wraps each element in an [`Position`]. -/// -/// Iterator element type is `(Position, I::Item)`. -/// -/// See [`.with_position()`](crate::Itertools::with_position) for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct WithPosition<I> -where - I: Iterator, -{ - handled_first: bool, - peekable: Peekable<Fuse<I>>, -} - -impl<I> fmt::Debug for WithPosition<I> -where - I: Iterator, - Peekable<Fuse<I>>: fmt::Debug, -{ - debug_fmt_fields!(WithPosition, handled_first, peekable); -} - -impl<I> Clone for WithPosition<I> -where - I: Clone + Iterator, - I::Item: Clone, -{ - clone_fields!(handled_first, peekable); -} - -/// Create a new `WithPosition` iterator. -pub fn with_position<I>(iter: I) -> WithPosition<I> -where - I: Iterator, -{ - WithPosition { - handled_first: false, - peekable: iter.fuse().peekable(), - } -} - -/// The first component of the value yielded by `WithPosition`. -/// Indicates the position of this element in the iterator results. -/// -/// See [`.with_position()`](crate::Itertools::with_position) for more information. -#[derive(Copy, Clone, Debug, PartialEq, Eq)] -pub enum Position { - /// This is the first element. - First, - /// This is neither the first nor the last element. - Middle, - /// This is the last element. - Last, - /// This is the only element. - Only, -} - -impl<I: Iterator> Iterator for WithPosition<I> { - type Item = (Position, I::Item); - - fn next(&mut self) -> Option<Self::Item> { - match self.peekable.next() { - Some(item) => { - if !self.handled_first { - // Haven't seen the first item yet, and there is one to give. - self.handled_first = true; - // Peek to see if this is also the last item, - // in which case tag it as `Only`. - match self.peekable.peek() { - Some(_) => Some((Position::First, item)), - None => Some((Position::Only, item)), - } - } else { - // Have seen the first item, and there's something left. - // Peek to see if this is the last item. - match self.peekable.peek() { - Some(_) => Some((Position::Middle, item)), - None => Some((Position::Last, item)), - } - } - } - // Iterator is finished. - None => None, - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - self.peekable.size_hint() - } - - fn fold<B, F>(mut self, mut init: B, mut f: F) -> B - where - F: FnMut(B, Self::Item) -> B, - { - if let Some(mut head) = self.peekable.next() { - if !self.handled_first { - // The current head is `First` or `Only`, - // it depends if there is another item or not. - match self.peekable.next() { - Some(second) => { - let first = std::mem::replace(&mut head, second); - init = f(init, (Position::First, first)); - } - None => return f(init, (Position::Only, head)), - } - } - // Have seen the first item, and there's something left. - init = self.peekable.fold(init, |acc, mut item| { - std::mem::swap(&mut head, &mut item); - f(acc, (Position::Middle, item)) - }); - // The "head" is now the last item. - init = f(init, (Position::Last, head)); - } - init - } -} - -impl<I> ExactSizeIterator for WithPosition<I> where I: ExactSizeIterator {} - -impl<I: Iterator> FusedIterator for WithPosition<I> {} diff --git a/vendor/itertools/src/zip_eq_impl.rs b/vendor/itertools/src/zip_eq_impl.rs deleted file mode 100644 index 3240a40e..00000000 --- a/vendor/itertools/src/zip_eq_impl.rs +++ /dev/null @@ -1,65 +0,0 @@ -use super::size_hint; - -/// An iterator which iterates two other iterators simultaneously -/// and panic if they have different lengths. -/// -/// See [`.zip_eq()`](crate::Itertools::zip_eq) for more information. -#[derive(Clone, Debug)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct ZipEq<I, J> { - a: I, - b: J, -} - -/// Zips two iterators but **panics** if they are not of the same length. -/// -/// [`IntoIterator`] enabled version of [`Itertools::zip_eq`](crate::Itertools::zip_eq). -/// -/// ``` -/// use itertools::zip_eq; -/// -/// let data = [1, 2, 3, 4, 5]; -/// for (a, b) in zip_eq(&data[..data.len() - 1], &data[1..]) { -/// /* loop body */ -/// # let _ = (a, b); -/// } -/// ``` -pub fn zip_eq<I, J>(i: I, j: J) -> ZipEq<I::IntoIter, J::IntoIter> -where - I: IntoIterator, - J: IntoIterator, -{ - ZipEq { - a: i.into_iter(), - b: j.into_iter(), - } -} - -impl<I, J> Iterator for ZipEq<I, J> -where - I: Iterator, - J: Iterator, -{ - type Item = (I::Item, J::Item); - - fn next(&mut self) -> Option<Self::Item> { - match (self.a.next(), self.b.next()) { - (None, None) => None, - (Some(a), Some(b)) => Some((a, b)), - (None, Some(_)) | (Some(_), None) => { - panic!("itertools: .zip_eq() reached end of one iterator before the other") - } - } - } - - fn size_hint(&self) -> (usize, Option<usize>) { - size_hint::min(self.a.size_hint(), self.b.size_hint()) - } -} - -impl<I, J> ExactSizeIterator for ZipEq<I, J> -where - I: ExactSizeIterator, - J: ExactSizeIterator, -{ -} diff --git a/vendor/itertools/src/zip_longest.rs b/vendor/itertools/src/zip_longest.rs deleted file mode 100644 index d4eb9a88..00000000 --- a/vendor/itertools/src/zip_longest.rs +++ /dev/null @@ -1,139 +0,0 @@ -use super::size_hint; -use std::cmp::Ordering::{Equal, Greater, Less}; -use std::iter::{Fuse, FusedIterator}; - -use crate::either_or_both::EitherOrBoth; - -// ZipLongest originally written by SimonSapin, -// and dedicated to itertools https://github.com/rust-lang/rust/pull/19283 - -/// An iterator which iterates two other iterators simultaneously -/// and wraps the elements in [`EitherOrBoth`]. -/// -/// This iterator is *fused*. -/// -/// See [`.zip_longest()`](crate::Itertools::zip_longest) for more information. -#[derive(Clone, Debug)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct ZipLongest<T, U> { - a: Fuse<T>, - b: Fuse<U>, -} - -/// Create a new `ZipLongest` iterator. -pub fn zip_longest<T, U>(a: T, b: U) -> ZipLongest<T, U> -where - T: Iterator, - U: Iterator, -{ - ZipLongest { - a: a.fuse(), - b: b.fuse(), - } -} - -impl<T, U> Iterator for ZipLongest<T, U> -where - T: Iterator, - U: Iterator, -{ - type Item = EitherOrBoth<T::Item, U::Item>; - - #[inline] - fn next(&mut self) -> Option<Self::Item> { - match (self.a.next(), self.b.next()) { - (None, None) => None, - (Some(a), None) => Some(EitherOrBoth::Left(a)), - (None, Some(b)) => Some(EitherOrBoth::Right(b)), - (Some(a), Some(b)) => Some(EitherOrBoth::Both(a, b)), - } - } - - #[inline] - fn size_hint(&self) -> (usize, Option<usize>) { - size_hint::max(self.a.size_hint(), self.b.size_hint()) - } - - #[inline] - fn fold<B, F>(self, init: B, mut f: F) -> B - where - Self: Sized, - F: FnMut(B, Self::Item) -> B, - { - let Self { mut a, mut b } = self; - let res = a.try_fold(init, |init, a| match b.next() { - Some(b) => Ok(f(init, EitherOrBoth::Both(a, b))), - None => Err(f(init, EitherOrBoth::Left(a))), - }); - match res { - Ok(acc) => b.map(EitherOrBoth::Right).fold(acc, f), - Err(acc) => a.map(EitherOrBoth::Left).fold(acc, f), - } - } -} - -impl<T, U> DoubleEndedIterator for ZipLongest<T, U> -where - T: DoubleEndedIterator + ExactSizeIterator, - U: DoubleEndedIterator + ExactSizeIterator, -{ - #[inline] - fn next_back(&mut self) -> Option<Self::Item> { - match self.a.len().cmp(&self.b.len()) { - Equal => match (self.a.next_back(), self.b.next_back()) { - (None, None) => None, - (Some(a), Some(b)) => Some(EitherOrBoth::Both(a, b)), - // These can only happen if .len() is inconsistent with .next_back() - (Some(a), None) => Some(EitherOrBoth::Left(a)), - (None, Some(b)) => Some(EitherOrBoth::Right(b)), - }, - Greater => self.a.next_back().map(EitherOrBoth::Left), - Less => self.b.next_back().map(EitherOrBoth::Right), - } - } - - fn rfold<B, F>(self, mut init: B, mut f: F) -> B - where - F: FnMut(B, Self::Item) -> B, - { - let Self { mut a, mut b } = self; - let a_len = a.len(); - let b_len = b.len(); - match a_len.cmp(&b_len) { - Equal => {} - Greater => { - init = a - .by_ref() - .rev() - .take(a_len - b_len) - .map(EitherOrBoth::Left) - .fold(init, &mut f) - } - Less => { - init = b - .by_ref() - .rev() - .take(b_len - a_len) - .map(EitherOrBoth::Right) - .fold(init, &mut f) - } - } - a.rfold(init, |acc, item_a| { - f(acc, EitherOrBoth::Both(item_a, b.next_back().unwrap())) - }) - } -} - -impl<T, U> ExactSizeIterator for ZipLongest<T, U> -where - T: ExactSizeIterator, - U: ExactSizeIterator, -{ -} - -impl<T, U> FusedIterator for ZipLongest<T, U> -where - T: Iterator, - U: Iterator, -{ -} diff --git a/vendor/itertools/src/ziptuple.rs b/vendor/itertools/src/ziptuple.rs deleted file mode 100644 index 3ada0296..00000000 --- a/vendor/itertools/src/ziptuple.rs +++ /dev/null @@ -1,137 +0,0 @@ -use super::size_hint; - -/// See [`multizip`] for more information. -#[derive(Clone, Debug)] -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct Zip<T> { - t: T, -} - -/// An iterator that generalizes `.zip()` and allows running multiple iterators in lockstep. -/// -/// The iterator `Zip<(I, J, ..., M)>` is formed from a tuple of iterators (or values that -/// implement [`IntoIterator`]) and yields elements -/// until any of the subiterators yields `None`. -/// -/// The iterator element type is a tuple like like `(A, B, ..., E)` where `A` to `E` are the -/// element types of the subiterator. -/// -/// **Note:** The result of this function is a value of a named type (`Zip<(I, J, -/// ..)>` of each component iterator `I, J, ...`) if each component iterator is -/// nameable. -/// -/// Prefer [`izip!()`](crate::izip) over `multizip` for the performance benefits of using the -/// standard library `.zip()`. Prefer `multizip` if a nameable type is needed. -/// -/// ``` -/// use itertools::multizip; -/// -/// // iterate over three sequences side-by-side -/// let mut results = [0, 0, 0, 0]; -/// let inputs = [3, 7, 9, 6]; -/// -/// for (r, index, input) in multizip((&mut results, 0..10, &inputs)) { -/// *r = index * 10 + input; -/// } -/// -/// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]); -/// ``` -pub fn multizip<T, U>(t: U) -> Zip<T> -where - Zip<T>: From<U> + Iterator, -{ - Zip::from(t) -} - -macro_rules! impl_zip_iter { - ($($B:ident),*) => ( - #[allow(non_snake_case)] - impl<$($B: IntoIterator),*> From<($($B,)*)> for Zip<($($B::IntoIter,)*)> { - fn from(t: ($($B,)*)) -> Self { - let ($($B,)*) = t; - Zip { t: ($($B.into_iter(),)*) } - } - } - - #[allow(non_snake_case)] - #[allow(unused_assignments)] - impl<$($B),*> Iterator for Zip<($($B,)*)> - where - $( - $B: Iterator, - )* - { - type Item = ($($B::Item,)*); - - fn next(&mut self) -> Option<Self::Item> - { - let ($(ref mut $B,)*) = self.t; - - // NOTE: Just like iter::Zip, we check the iterators - // for None in order. We may finish unevenly (some - // iterators gave n + 1 elements, some only n). - $( - let $B = match $B.next() { - None => return None, - Some(elt) => elt - }; - )* - Some(($($B,)*)) - } - - fn size_hint(&self) -> (usize, Option<usize>) - { - let sh = (usize::MAX, None); - let ($(ref $B,)*) = self.t; - $( - let sh = size_hint::min($B.size_hint(), sh); - )* - sh - } - } - - #[allow(non_snake_case)] - impl<$($B),*> ExactSizeIterator for Zip<($($B,)*)> where - $( - $B: ExactSizeIterator, - )* - { } - - #[allow(non_snake_case)] - impl<$($B),*> DoubleEndedIterator for Zip<($($B,)*)> where - $( - $B: DoubleEndedIterator + ExactSizeIterator, - )* - { - #[inline] - fn next_back(&mut self) -> Option<Self::Item> { - let ($(ref mut $B,)*) = self.t; - let size = *[$( $B.len(), )*].iter().min().unwrap(); - - $( - if $B.len() != size { - for _ in 0..$B.len() - size { $B.next_back(); } - } - )* - - match ($($B.next_back(),)*) { - ($(Some($B),)*) => Some(($($B,)*)), - _ => None, - } - } - } - ); -} - -impl_zip_iter!(A); -impl_zip_iter!(A, B); -impl_zip_iter!(A, B, C); -impl_zip_iter!(A, B, C, D); -impl_zip_iter!(A, B, C, D, E); -impl_zip_iter!(A, B, C, D, E, F); -impl_zip_iter!(A, B, C, D, E, F, G); -impl_zip_iter!(A, B, C, D, E, F, G, H); -impl_zip_iter!(A, B, C, D, E, F, G, H, I); -impl_zip_iter!(A, B, C, D, E, F, G, H, I, J); -impl_zip_iter!(A, B, C, D, E, F, G, H, I, J, K); -impl_zip_iter!(A, B, C, D, E, F, G, H, I, J, K, L); |
