summaryrefslogtreecommitdiff
path: root/vendor/itertools/src/combinations_with_replacement.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/itertools/src/combinations_with_replacement.rs')
-rw-r--r--vendor/itertools/src/combinations_with_replacement.rs188
1 files changed, 0 insertions, 188 deletions
diff --git a/vendor/itertools/src/combinations_with_replacement.rs b/vendor/itertools/src/combinations_with_replacement.rs
deleted file mode 100644
index c17e7525..00000000
--- a/vendor/itertools/src/combinations_with_replacement.rs
+++ /dev/null
@@ -1,188 +0,0 @@
-use alloc::boxed::Box;
-use alloc::vec::Vec;
-use std::fmt;
-use std::iter::FusedIterator;
-
-use super::lazy_buffer::LazyBuffer;
-use crate::adaptors::checked_binomial;
-
-/// An iterator to iterate through all the `n`-length combinations in an iterator, with replacement.
-///
-/// See [`.combinations_with_replacement()`](crate::Itertools::combinations_with_replacement)
-/// for more information.
-#[derive(Clone)]
-#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
-pub struct CombinationsWithReplacement<I>
-where
- I: Iterator,
- I::Item: Clone,
-{
- indices: Box<[usize]>,
- pool: LazyBuffer<I>,
- first: bool,
-}
-
-impl<I> fmt::Debug for CombinationsWithReplacement<I>
-where
- I: Iterator + fmt::Debug,
- I::Item: fmt::Debug + Clone,
-{
- debug_fmt_fields!(CombinationsWithReplacement, indices, pool, first);
-}
-
-/// Create a new `CombinationsWithReplacement` from a clonable iterator.
-pub fn combinations_with_replacement<I>(iter: I, k: usize) -> CombinationsWithReplacement<I>
-where
- I: Iterator,
- I::Item: Clone,
-{
- let indices = alloc::vec![0; k].into_boxed_slice();
- let pool: LazyBuffer<I> = LazyBuffer::new(iter);
-
- CombinationsWithReplacement {
- indices,
- pool,
- first: true,
- }
-}
-
-impl<I> CombinationsWithReplacement<I>
-where
- I: Iterator,
- I::Item: Clone,
-{
- /// Increments indices representing the combination to advance to the next
- /// (in lexicographic order by increasing sequence) combination.
- ///
- /// Returns true if we've run out of combinations, false otherwise.
- fn increment_indices(&mut self) -> bool {
- // Check if we need to consume more from the iterator
- // This will run while we increment our first index digit
- self.pool.get_next();
-
- // Work out where we need to update our indices
- let mut increment = None;
- for (i, indices_int) in self.indices.iter().enumerate().rev() {
- if *indices_int < self.pool.len() - 1 {
- increment = Some((i, indices_int + 1));
- break;
- }
- }
- match increment {
- // If we can update the indices further
- Some((increment_from, increment_value)) => {
- // We need to update the rightmost non-max value
- // and all those to the right
- self.indices[increment_from..].fill(increment_value);
- false
- }
- // Otherwise, we're done
- None => true,
- }
- }
-}
-
-impl<I> Iterator for CombinationsWithReplacement<I>
-where
- I: Iterator,
- I::Item: Clone,
-{
- type Item = Vec<I::Item>;
-
- fn next(&mut self) -> Option<Self::Item> {
- if self.first {
- // In empty edge cases, stop iterating immediately
- if !(self.indices.is_empty() || self.pool.get_next()) {
- return None;
- }
- self.first = false;
- } else if self.increment_indices() {
- return None;
- }
- Some(self.pool.get_at(&self.indices))
- }
-
- fn nth(&mut self, n: usize) -> Option<Self::Item> {
- if self.first {
- // In empty edge cases, stop iterating immediately
- if !(self.indices.is_empty() || self.pool.get_next()) {
- return None;
- }
- self.first = false;
- } else if self.increment_indices() {
- return None;
- }
- for _ in 0..n {
- if self.increment_indices() {
- return None;
- }
- }
- Some(self.pool.get_at(&self.indices))
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- let (mut low, mut upp) = self.pool.size_hint();
- low = remaining_for(low, self.first, &self.indices).unwrap_or(usize::MAX);
- upp = upp.and_then(|upp| remaining_for(upp, self.first, &self.indices));
- (low, upp)
- }
-
- fn count(self) -> usize {
- let Self {
- indices,
- pool,
- first,
- } = self;
- let n = pool.count();
- remaining_for(n, first, &indices).unwrap()
- }
-}
-
-impl<I> FusedIterator for CombinationsWithReplacement<I>
-where
- I: Iterator,
- I::Item: Clone,
-{
-}
-
-/// For a given size `n`, return the count of remaining combinations with replacement or None if it would overflow.
-fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> {
- // With a "stars and bars" representation, choose k values with replacement from n values is
- // like choosing k out of k + n − 1 positions (hence binomial(k + n - 1, k) possibilities)
- // to place k stars and therefore n - 1 bars.
- // Example (n=4, k=6): ***|*||** represents [0,0,0,1,3,3].
- let count = |n: usize, k: usize| {
- let positions = if n == 0 {
- k.saturating_sub(1)
- } else {
- (n - 1).checked_add(k)?
- };
- checked_binomial(positions, k)
- };
- let k = indices.len();
- if first {
- count(n, k)
- } else {
- // The algorithm is similar to the one for combinations *without replacement*,
- // except we choose values *with replacement* and indices are *non-strictly* monotonically sorted.
-
- // The combinations generated after the current one can be counted by counting as follows:
- // - The subsequent combinations that differ in indices[0]:
- // If subsequent combinations differ in indices[0], then their value for indices[0]
- // must be at least 1 greater than the current indices[0].
- // As indices is monotonically sorted, this means we can effectively choose k values with
- // replacement from (n - 1 - indices[0]), leading to count(n - 1 - indices[0], k) possibilities.
- // - The subsequent combinations with same indices[0], but differing indices[1]:
- // Here we can choose k - 1 values with replacement from (n - 1 - indices[1]) values,
- // leading to count(n - 1 - indices[1], k - 1) possibilities.
- // - (...)
- // - The subsequent combinations with same indices[0..=i], but differing indices[i]:
- // Here we can choose k - i values with replacement from (n - 1 - indices[i]) values: count(n - 1 - indices[i], k - i).
- // Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients.
-
- // Below, `n0` resembles indices[i].
- indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| {
- sum.checked_add(count(n - 1 - *n0, k - i)?)
- })
- }
-}