diff options
| author | mo khan <mo@mokhan.ca> | 2025-07-15 16:37:08 -0600 |
|---|---|---|
| committer | mo khan <mo@mokhan.ca> | 2025-07-17 16:30:22 -0600 |
| commit | 45df4d0d9b577fecee798d672695fe24ff57fb1b (patch) | |
| tree | 1b99bf645035b58e0d6db08c7a83521f41f7a75b /vendor/itertools/src/combinations.rs | |
| parent | f94f79608393d4ab127db63cc41668445ef6b243 (diff) | |
feat: migrate from Cedar to SpiceDB authorization system
This is a major architectural change that replaces the Cedar policy-based
authorization system with SpiceDB's relation-based authorization.
Key changes:
- Migrate from Rust to Go implementation
- Replace Cedar policies with SpiceDB schema and relationships
- Switch from envoy `ext_authz` with Cedar to SpiceDB permission checks
- Update build system and dependencies for Go ecosystem
- Maintain Envoy integration for external authorization
This change enables more flexible permission modeling through SpiceDB's
Google Zanzibar inspired relation-based system, supporting complex
hierarchical permissions that were difficult to express in Cedar.
Breaking change: Existing Cedar policies and Rust-based configuration
will no longer work and need to be migrated to SpiceDB schema.
Diffstat (limited to 'vendor/itertools/src/combinations.rs')
| -rw-r--r-- | vendor/itertools/src/combinations.rs | 308 |
1 files changed, 0 insertions, 308 deletions
diff --git a/vendor/itertools/src/combinations.rs b/vendor/itertools/src/combinations.rs deleted file mode 100644 index 54a02755..00000000 --- a/vendor/itertools/src/combinations.rs +++ /dev/null @@ -1,308 +0,0 @@ -use core::array; -use core::borrow::BorrowMut; -use std::fmt; -use std::iter::FusedIterator; - -use super::lazy_buffer::LazyBuffer; -use alloc::vec::Vec; - -use crate::adaptors::checked_binomial; - -/// Iterator for `Vec` valued combinations returned by [`.combinations()`](crate::Itertools::combinations) -pub type Combinations<I> = CombinationsGeneric<I, Vec<usize>>; -/// Iterator for const generic combinations returned by [`.array_combinations()`](crate::Itertools::array_combinations) -pub type ArrayCombinations<I, const K: usize> = CombinationsGeneric<I, [usize; K]>; - -/// Create a new `Combinations` from a clonable iterator. -pub fn combinations<I: Iterator>(iter: I, k: usize) -> Combinations<I> -where - I::Item: Clone, -{ - Combinations::new(iter, (0..k).collect()) -} - -/// Create a new `ArrayCombinations` from a clonable iterator. -pub fn array_combinations<I: Iterator, const K: usize>(iter: I) -> ArrayCombinations<I, K> -where - I::Item: Clone, -{ - ArrayCombinations::new(iter, array::from_fn(|i| i)) -} - -/// An iterator to iterate through all the `k`-length combinations in an iterator. -/// -/// See [`.combinations()`](crate::Itertools::combinations) and [`.array_combinations()`](crate::Itertools::array_combinations) for more information. -#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] -pub struct CombinationsGeneric<I: Iterator, Idx> { - indices: Idx, - pool: LazyBuffer<I>, - first: bool, -} - -/// A type holding indices of elements in a pool or buffer of items from an inner iterator -/// and used to pick out different combinations in a generic way. -pub trait PoolIndex<T>: BorrowMut<[usize]> { - type Item; - - fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Self::Item - where - T: Clone; - - fn len(&self) -> usize { - self.borrow().len() - } -} - -impl<T> PoolIndex<T> for Vec<usize> { - type Item = Vec<T>; - - fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Vec<T> - where - T: Clone, - { - pool.get_at(self) - } -} - -impl<T, const K: usize> PoolIndex<T> for [usize; K] { - type Item = [T; K]; - - fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> [T; K] - where - T: Clone, - { - pool.get_array(*self) - } -} - -impl<I, Idx> Clone for CombinationsGeneric<I, Idx> -where - I: Iterator + Clone, - I::Item: Clone, - Idx: Clone, -{ - clone_fields!(indices, pool, first); -} - -impl<I, Idx> fmt::Debug for CombinationsGeneric<I, Idx> -where - I: Iterator + fmt::Debug, - I::Item: fmt::Debug, - Idx: fmt::Debug, -{ - debug_fmt_fields!(Combinations, indices, pool, first); -} - -impl<I: Iterator, Idx: PoolIndex<I::Item>> CombinationsGeneric<I, Idx> { - /// Constructor with arguments the inner iterator and the initial state for the indices. - fn new(iter: I, indices: Idx) -> Self { - Self { - indices, - pool: LazyBuffer::new(iter), - first: true, - } - } - - /// Returns the length of a combination produced by this iterator. - #[inline] - pub fn k(&self) -> usize { - self.indices.len() - } - - /// Returns the (current) length of the pool from which combination elements are - /// selected. This value can change between invocations of [`next`](Combinations::next). - #[inline] - pub fn n(&self) -> usize { - self.pool.len() - } - - /// Returns a reference to the source pool. - #[inline] - pub(crate) fn src(&self) -> &LazyBuffer<I> { - &self.pool - } - - /// Return the length of the inner iterator and the count of remaining combinations. - pub(crate) fn n_and_count(self) -> (usize, usize) { - let Self { - indices, - pool, - first, - } = self; - let n = pool.count(); - (n, remaining_for(n, first, indices.borrow()).unwrap()) - } - - /// Initialises the iterator by filling a buffer with elements from the - /// iterator. Returns true if there are no combinations, false otherwise. - fn init(&mut self) -> bool { - self.pool.prefill(self.k()); - let done = self.k() > self.n(); - if !done { - self.first = false; - } - - done - } - - /// Increments indices representing the combination to advance to the next - /// (in lexicographic order by increasing sequence) combination. For example - /// if we have n=4 & k=2 then `[0, 1] -> [0, 2] -> [0, 3] -> [1, 2] -> ...` - /// - /// Returns true if we've run out of combinations, false otherwise. - fn increment_indices(&mut self) -> bool { - // Borrow once instead of noise each time it's indexed - let indices = self.indices.borrow_mut(); - - if indices.is_empty() { - return true; // Done - } - // Scan from the end, looking for an index to increment - let mut i: usize = indices.len() - 1; - - // Check if we need to consume more from the iterator - if indices[i] == self.pool.len() - 1 { - self.pool.get_next(); // may change pool size - } - - while indices[i] == i + self.pool.len() - indices.len() { - if i > 0 { - i -= 1; - } else { - // Reached the last combination - return true; - } - } - - // Increment index, and reset the ones to its right - indices[i] += 1; - for j in i + 1..indices.len() { - indices[j] = indices[j - 1] + 1; - } - // If we've made it this far, we haven't run out of combos - false - } - - /// Returns the n-th item or the number of successful steps. - pub(crate) fn try_nth(&mut self, n: usize) -> Result<<Self as Iterator>::Item, usize> - where - I: Iterator, - I::Item: Clone, - { - let done = if self.first { - self.init() - } else { - self.increment_indices() - }; - if done { - return Err(0); - } - for i in 0..n { - if self.increment_indices() { - return Err(i + 1); - } - } - Ok(self.indices.extract_item(&self.pool)) - } -} - -impl<I, Idx> Iterator for CombinationsGeneric<I, Idx> -where - I: Iterator, - I::Item: Clone, - Idx: PoolIndex<I::Item>, -{ - type Item = Idx::Item; - fn next(&mut self) -> Option<Self::Item> { - let done = if self.first { - self.init() - } else { - self.increment_indices() - }; - - if done { - return None; - } - - Some(self.indices.extract_item(&self.pool)) - } - - fn nth(&mut self, n: usize) -> Option<Self::Item> { - self.try_nth(n).ok() - } - - fn size_hint(&self) -> (usize, Option<usize>) { - let (mut low, mut upp) = self.pool.size_hint(); - low = remaining_for(low, self.first, self.indices.borrow()).unwrap_or(usize::MAX); - upp = upp.and_then(|upp| remaining_for(upp, self.first, self.indices.borrow())); - (low, upp) - } - - #[inline] - fn count(self) -> usize { - self.n_and_count().1 - } -} - -impl<I, Idx> FusedIterator for CombinationsGeneric<I, Idx> -where - I: Iterator, - I::Item: Clone, - Idx: PoolIndex<I::Item>, -{ -} - -impl<I: Iterator> Combinations<I> { - /// Resets this `Combinations` back to an initial state for combinations of length - /// `k` over the same pool data source. If `k` is larger than the current length - /// of the data pool an attempt is made to prefill the pool so that it holds `k` - /// elements. - pub(crate) fn reset(&mut self, k: usize) { - self.first = true; - - if k < self.indices.len() { - self.indices.truncate(k); - for i in 0..k { - self.indices[i] = i; - } - } else { - for i in 0..self.indices.len() { - self.indices[i] = i; - } - self.indices.extend(self.indices.len()..k); - self.pool.prefill(k); - } - } -} - -/// For a given size `n`, return the count of remaining combinations or None if it would overflow. -fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> { - let k = indices.len(); - if n < k { - Some(0) - } else if first { - checked_binomial(n, k) - } else { - // https://en.wikipedia.org/wiki/Combinatorial_number_system - // http://www.site.uottawa.ca/~lucia/courses/5165-09/GenCombObj.pdf - - // The combinations generated after the current one can be counted by counting as follows: - // - The subsequent combinations that differ in indices[0]: - // If subsequent combinations differ in indices[0], then their value for indices[0] - // must be at least 1 greater than the current indices[0]. - // As indices is strictly monotonically sorted, this means we can effectively choose k values - // from (n - 1 - indices[0]), leading to binomial(n - 1 - indices[0], k) possibilities. - // - The subsequent combinations with same indices[0], but differing indices[1]: - // Here we can choose k - 1 values from (n - 1 - indices[1]) values, - // leading to binomial(n - 1 - indices[1], k - 1) possibilities. - // - (...) - // - The subsequent combinations with same indices[0..=i], but differing indices[i]: - // Here we can choose k - i values from (n - 1 - indices[i]) values: binomial(n - 1 - indices[i], k - i). - // Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients. - - // Below, `n0` resembles indices[i]. - indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| { - sum.checked_add(checked_binomial(n - 1 - *n0, k - i)?) - }) - } -} |
