summaryrefslogtreecommitdiff
path: root/vendor/bytes/src
diff options
context:
space:
mode:
authormo khan <mo@mokhan.ca>2025-07-15 16:37:08 -0600
committermo khan <mo@mokhan.ca>2025-07-17 16:30:22 -0600
commit45df4d0d9b577fecee798d672695fe24ff57fb1b (patch)
tree1b99bf645035b58e0d6db08c7a83521f41f7a75b /vendor/bytes/src
parentf94f79608393d4ab127db63cc41668445ef6b243 (diff)
feat: migrate from Cedar to SpiceDB authorization system
This is a major architectural change that replaces the Cedar policy-based authorization system with SpiceDB's relation-based authorization. Key changes: - Migrate from Rust to Go implementation - Replace Cedar policies with SpiceDB schema and relationships - Switch from envoy `ext_authz` with Cedar to SpiceDB permission checks - Update build system and dependencies for Go ecosystem - Maintain Envoy integration for external authorization This change enables more flexible permission modeling through SpiceDB's Google Zanzibar inspired relation-based system, supporting complex hierarchical permissions that were difficult to express in Cedar. Breaking change: Existing Cedar policies and Rust-based configuration will no longer work and need to be migrated to SpiceDB schema.
Diffstat (limited to 'vendor/bytes/src')
-rw-r--r--vendor/bytes/src/buf/buf_impl.rs2962
-rw-r--r--vendor/bytes/src/buf/buf_mut.rs1671
-rw-r--r--vendor/bytes/src/buf/chain.rs240
-rw-r--r--vendor/bytes/src/buf/iter.rs127
-rw-r--r--vendor/bytes/src/buf/limit.rs75
-rw-r--r--vendor/bytes/src/buf/mod.rs39
-rw-r--r--vendor/bytes/src/buf/reader.rs81
-rw-r--r--vendor/bytes/src/buf/take.rs204
-rw-r--r--vendor/bytes/src/buf/uninit_slice.rs257
-rw-r--r--vendor/bytes/src/buf/vec_deque.rs40
-rw-r--r--vendor/bytes/src/buf/writer.rs88
-rw-r--r--vendor/bytes/src/bytes.rs1680
-rw-r--r--vendor/bytes/src/bytes_mut.rs1921
-rw-r--r--vendor/bytes/src/fmt/debug.rs40
-rw-r--r--vendor/bytes/src/fmt/hex.rs27
-rw-r--r--vendor/bytes/src/fmt/mod.rs15
-rw-r--r--vendor/bytes/src/lib.rs199
-rw-r--r--vendor/bytes/src/loom.rs33
-rw-r--r--vendor/bytes/src/serde.rs89
19 files changed, 0 insertions, 9788 deletions
diff --git a/vendor/bytes/src/buf/buf_impl.rs b/vendor/bytes/src/buf/buf_impl.rs
deleted file mode 100644
index 192034fb..00000000
--- a/vendor/bytes/src/buf/buf_impl.rs
+++ /dev/null
@@ -1,2962 +0,0 @@
-#[cfg(feature = "std")]
-use crate::buf::{reader, Reader};
-use crate::buf::{take, Chain, Take};
-#[cfg(feature = "std")]
-use crate::{min_u64_usize, saturating_sub_usize_u64};
-use crate::{panic_advance, panic_does_not_fit, TryGetError};
-
-#[cfg(feature = "std")]
-use std::io::IoSlice;
-
-use alloc::boxed::Box;
-
-macro_rules! buf_try_get_impl {
- ($this:ident, $typ:tt::$conv:tt) => {{
- const SIZE: usize = core::mem::size_of::<$typ>();
-
- if $this.remaining() < SIZE {
- return Err(TryGetError {
- requested: SIZE,
- available: $this.remaining(),
- });
- }
-
- // try to convert directly from the bytes
- // this Option<ret> trick is to avoid keeping a borrow on self
- // when advance() is called (mut borrow) and to call bytes() only once
- let ret = $this
- .chunk()
- .get(..SIZE)
- .map(|src| unsafe { $typ::$conv(*(src as *const _ as *const [_; SIZE])) });
-
- if let Some(ret) = ret {
- // if the direct conversion was possible, advance and return
- $this.advance(SIZE);
- return Ok(ret);
- } else {
- // if not we copy the bytes in a temp buffer then convert
- let mut buf = [0; SIZE];
- $this.copy_to_slice(&mut buf); // (do the advance)
- return Ok($typ::$conv(buf));
- }
- }};
- (le => $this:ident, $typ:tt, $len_to_read:expr) => {{
- const SIZE: usize = core::mem::size_of::<$typ>();
-
- // The same trick as above does not improve the best case speed.
- // It seems to be linked to the way the method is optimised by the compiler
- let mut buf = [0; SIZE];
-
- let subslice = match buf.get_mut(..$len_to_read) {
- Some(subslice) => subslice,
- None => panic_does_not_fit(SIZE, $len_to_read),
- };
-
- $this.try_copy_to_slice(subslice)?;
- return Ok($typ::from_le_bytes(buf));
- }};
- (be => $this:ident, $typ:tt, $len_to_read:expr) => {{
- const SIZE: usize = core::mem::size_of::<$typ>();
-
- let slice_at = match SIZE.checked_sub($len_to_read) {
- Some(slice_at) => slice_at,
- None => panic_does_not_fit(SIZE, $len_to_read),
- };
-
- let mut buf = [0; SIZE];
- $this.try_copy_to_slice(&mut buf[slice_at..])?;
- return Ok($typ::from_be_bytes(buf));
- }};
-}
-
-macro_rules! buf_get_impl {
- ($this:ident, $typ:tt::$conv:tt) => {{
- return (|| buf_try_get_impl!($this, $typ::$conv))()
- .unwrap_or_else(|error| panic_advance(&error));
- }};
- (le => $this:ident, $typ:tt, $len_to_read:expr) => {{
- return (|| buf_try_get_impl!(le => $this, $typ, $len_to_read))()
- .unwrap_or_else(|error| panic_advance(&error));
- }};
- (be => $this:ident, $typ:tt, $len_to_read:expr) => {{
- return (|| buf_try_get_impl!(be => $this, $typ, $len_to_read))()
- .unwrap_or_else(|error| panic_advance(&error));
- }};
-}
-
-// https://en.wikipedia.org/wiki/Sign_extension
-fn sign_extend(val: u64, nbytes: usize) -> i64 {
- let shift = (8 - nbytes) * 8;
- (val << shift) as i64 >> shift
-}
-
-/// Read bytes from a buffer.
-///
-/// A buffer stores bytes in memory such that read operations are infallible.
-/// The underlying storage may or may not be in contiguous memory. A `Buf` value
-/// is a cursor into the buffer. Reading from `Buf` advances the cursor
-/// position. It can be thought of as an efficient `Iterator` for collections of
-/// bytes.
-///
-/// The simplest `Buf` is a `&[u8]`.
-///
-/// ```
-/// use bytes::Buf;
-///
-/// let mut buf = &b"hello world"[..];
-///
-/// assert_eq!(b'h', buf.get_u8());
-/// assert_eq!(b'e', buf.get_u8());
-/// assert_eq!(b'l', buf.get_u8());
-///
-/// let mut rest = [0; 8];
-/// buf.copy_to_slice(&mut rest);
-///
-/// assert_eq!(&rest[..], &b"lo world"[..]);
-/// ```
-pub trait Buf {
- /// Returns the number of bytes between the current position and the end of
- /// the buffer.
- ///
- /// This value is greater than or equal to the length of the slice returned
- /// by `chunk()`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"hello world"[..];
- ///
- /// assert_eq!(buf.remaining(), 11);
- ///
- /// buf.get_u8();
- ///
- /// assert_eq!(buf.remaining(), 10);
- /// ```
- ///
- /// # Implementer notes
- ///
- /// Implementations of `remaining` should ensure that the return value does
- /// not change unless a call is made to `advance` or any other function that
- /// is documented to change the `Buf`'s current position.
- fn remaining(&self) -> usize;
-
- /// Returns a slice starting at the current position and of length between 0
- /// and `Buf::remaining()`. Note that this *can* return a shorter slice (this
- /// allows non-continuous internal representation).
- ///
- /// This is a lower level function. Most operations are done with other
- /// functions.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"hello world"[..];
- ///
- /// assert_eq!(buf.chunk(), &b"hello world"[..]);
- ///
- /// buf.advance(6);
- ///
- /// assert_eq!(buf.chunk(), &b"world"[..]);
- /// ```
- ///
- /// # Implementer notes
- ///
- /// This function should never panic. `chunk()` should return an empty
- /// slice **if and only if** `remaining()` returns 0. In other words,
- /// `chunk()` returning an empty slice implies that `remaining()` will
- /// return 0 and `remaining()` returning 0 implies that `chunk()` will
- /// return an empty slice.
- // The `chunk` method was previously called `bytes`. This alias makes the rename
- // more easily discoverable.
- #[cfg_attr(docsrs, doc(alias = "bytes"))]
- fn chunk(&self) -> &[u8];
-
- /// Fills `dst` with potentially multiple slices starting at `self`'s
- /// current position.
- ///
- /// If the `Buf` is backed by disjoint slices of bytes, `chunk_vectored` enables
- /// fetching more than one slice at once. `dst` is a slice of `IoSlice`
- /// references, enabling the slice to be directly used with [`writev`]
- /// without any further conversion. The sum of the lengths of all the
- /// buffers written to `dst` will be less than or equal to `Buf::remaining()`.
- ///
- /// The entries in `dst` will be overwritten, but the data **contained** by
- /// the slices **will not** be modified. The return value is the number of
- /// slices written to `dst`. If `Buf::remaining()` is non-zero, then this
- /// writes at least one non-empty slice to `dst`.
- ///
- /// This is a lower level function. Most operations are done with other
- /// functions.
- ///
- /// # Implementer notes
- ///
- /// This function should never panic. Once the end of the buffer is reached,
- /// i.e., `Buf::remaining` returns 0, calls to `chunk_vectored` must return 0
- /// without mutating `dst`.
- ///
- /// Implementations should also take care to properly handle being called
- /// with `dst` being a zero length slice.
- ///
- /// [`writev`]: http://man7.org/linux/man-pages/man2/readv.2.html
- #[cfg(feature = "std")]
- #[cfg_attr(docsrs, doc(cfg(feature = "std")))]
- fn chunks_vectored<'a>(&'a self, dst: &mut [IoSlice<'a>]) -> usize {
- if dst.is_empty() {
- return 0;
- }
-
- if self.has_remaining() {
- dst[0] = IoSlice::new(self.chunk());
- 1
- } else {
- 0
- }
- }
-
- /// Advance the internal cursor of the Buf
- ///
- /// The next call to `chunk()` will return a slice starting `cnt` bytes
- /// further into the underlying buffer.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"hello world"[..];
- ///
- /// assert_eq!(buf.chunk(), &b"hello world"[..]);
- ///
- /// buf.advance(6);
- ///
- /// assert_eq!(buf.chunk(), &b"world"[..]);
- /// ```
- ///
- /// # Panics
- ///
- /// This function **may** panic if `cnt > self.remaining()`.
- ///
- /// # Implementer notes
- ///
- /// It is recommended for implementations of `advance` to panic if `cnt >
- /// self.remaining()`. If the implementation does not panic, the call must
- /// behave as if `cnt == self.remaining()`.
- ///
- /// A call with `cnt == 0` should never panic and be a no-op.
- fn advance(&mut self, cnt: usize);
-
- /// Returns true if there are any more bytes to consume
- ///
- /// This is equivalent to `self.remaining() != 0`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"a"[..];
- ///
- /// assert!(buf.has_remaining());
- ///
- /// buf.get_u8();
- ///
- /// assert!(!buf.has_remaining());
- /// ```
- fn has_remaining(&self) -> bool {
- self.remaining() > 0
- }
-
- /// Copies bytes from `self` into `dst`.
- ///
- /// The cursor is advanced by the number of bytes copied. `self` must have
- /// enough remaining bytes to fill `dst`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"hello world"[..];
- /// let mut dst = [0; 5];
- ///
- /// buf.copy_to_slice(&mut dst);
- /// assert_eq!(&b"hello"[..], &dst);
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if `self.remaining() < dst.len()`.
- fn copy_to_slice(&mut self, dst: &mut [u8]) {
- self.try_copy_to_slice(dst)
- .unwrap_or_else(|error| panic_advance(&error));
- }
-
- /// Gets an unsigned 8 bit integer from `self`.
- ///
- /// The current position is advanced by 1.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08 hello"[..];
- /// assert_eq!(8, buf.get_u8());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is no more remaining data in `self`.
- fn get_u8(&mut self) -> u8 {
- if self.remaining() < 1 {
- panic_advance(&TryGetError {
- requested: 1,
- available: 0,
- })
- }
- let ret = self.chunk()[0];
- self.advance(1);
- ret
- }
-
- /// Gets a signed 8 bit integer from `self`.
- ///
- /// The current position is advanced by 1.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08 hello"[..];
- /// assert_eq!(8, buf.get_i8());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is no more remaining data in `self`.
- fn get_i8(&mut self) -> i8 {
- if self.remaining() < 1 {
- panic_advance(&TryGetError {
- requested: 1,
- available: 0,
- });
- }
- let ret = self.chunk()[0] as i8;
- self.advance(1);
- ret
- }
-
- /// Gets an unsigned 16 bit integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08\x09 hello"[..];
- /// assert_eq!(0x0809, buf.get_u16());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_u16(&mut self) -> u16 {
- buf_get_impl!(self, u16::from_be_bytes);
- }
-
- /// Gets an unsigned 16 bit integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x09\x08 hello"[..];
- /// assert_eq!(0x0809, buf.get_u16_le());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_u16_le(&mut self) -> u16 {
- buf_get_impl!(self, u16::from_le_bytes);
- }
-
- /// Gets an unsigned 16 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x08\x09 hello",
- /// false => b"\x09\x08 hello",
- /// };
- /// assert_eq!(0x0809, buf.get_u16_ne());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_u16_ne(&mut self) -> u16 {
- buf_get_impl!(self, u16::from_ne_bytes);
- }
-
- /// Gets a signed 16 bit integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08\x09 hello"[..];
- /// assert_eq!(0x0809, buf.get_i16());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_i16(&mut self) -> i16 {
- buf_get_impl!(self, i16::from_be_bytes);
- }
-
- /// Gets a signed 16 bit integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x09\x08 hello"[..];
- /// assert_eq!(0x0809, buf.get_i16_le());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_i16_le(&mut self) -> i16 {
- buf_get_impl!(self, i16::from_le_bytes);
- }
-
- /// Gets a signed 16 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x08\x09 hello",
- /// false => b"\x09\x08 hello",
- /// };
- /// assert_eq!(0x0809, buf.get_i16_ne());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_i16_ne(&mut self) -> i16 {
- buf_get_impl!(self, i16::from_ne_bytes);
- }
-
- /// Gets an unsigned 32 bit integer from `self` in the big-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08\x09\xA0\xA1 hello"[..];
- /// assert_eq!(0x0809A0A1, buf.get_u32());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_u32(&mut self) -> u32 {
- buf_get_impl!(self, u32::from_be_bytes);
- }
-
- /// Gets an unsigned 32 bit integer from `self` in the little-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\xA1\xA0\x09\x08 hello"[..];
- /// assert_eq!(0x0809A0A1, buf.get_u32_le());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_u32_le(&mut self) -> u32 {
- buf_get_impl!(self, u32::from_le_bytes);
- }
-
- /// Gets an unsigned 32 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x08\x09\xA0\xA1 hello",
- /// false => b"\xA1\xA0\x09\x08 hello",
- /// };
- /// assert_eq!(0x0809A0A1, buf.get_u32_ne());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_u32_ne(&mut self) -> u32 {
- buf_get_impl!(self, u32::from_ne_bytes);
- }
-
- /// Gets a signed 32 bit integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08\x09\xA0\xA1 hello"[..];
- /// assert_eq!(0x0809A0A1, buf.get_i32());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_i32(&mut self) -> i32 {
- buf_get_impl!(self, i32::from_be_bytes);
- }
-
- /// Gets a signed 32 bit integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\xA1\xA0\x09\x08 hello"[..];
- /// assert_eq!(0x0809A0A1, buf.get_i32_le());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_i32_le(&mut self) -> i32 {
- buf_get_impl!(self, i32::from_le_bytes);
- }
-
- /// Gets a signed 32 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x08\x09\xA0\xA1 hello",
- /// false => b"\xA1\xA0\x09\x08 hello",
- /// };
- /// assert_eq!(0x0809A0A1, buf.get_i32_ne());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_i32_ne(&mut self) -> i32 {
- buf_get_impl!(self, i32::from_ne_bytes);
- }
-
- /// Gets an unsigned 64 bit integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08 hello"[..];
- /// assert_eq!(0x0102030405060708, buf.get_u64());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_u64(&mut self) -> u64 {
- buf_get_impl!(self, u64::from_be_bytes);
- }
-
- /// Gets an unsigned 64 bit integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08\x07\x06\x05\x04\x03\x02\x01 hello"[..];
- /// assert_eq!(0x0102030405060708, buf.get_u64_le());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_u64_le(&mut self) -> u64 {
- buf_get_impl!(self, u64::from_le_bytes);
- }
-
- /// Gets an unsigned 64 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x01\x02\x03\x04\x05\x06\x07\x08 hello",
- /// false => b"\x08\x07\x06\x05\x04\x03\x02\x01 hello",
- /// };
- /// assert_eq!(0x0102030405060708, buf.get_u64_ne());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_u64_ne(&mut self) -> u64 {
- buf_get_impl!(self, u64::from_ne_bytes);
- }
-
- /// Gets a signed 64 bit integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08 hello"[..];
- /// assert_eq!(0x0102030405060708, buf.get_i64());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_i64(&mut self) -> i64 {
- buf_get_impl!(self, i64::from_be_bytes);
- }
-
- /// Gets a signed 64 bit integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08\x07\x06\x05\x04\x03\x02\x01 hello"[..];
- /// assert_eq!(0x0102030405060708, buf.get_i64_le());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_i64_le(&mut self) -> i64 {
- buf_get_impl!(self, i64::from_le_bytes);
- }
-
- /// Gets a signed 64 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x01\x02\x03\x04\x05\x06\x07\x08 hello",
- /// false => b"\x08\x07\x06\x05\x04\x03\x02\x01 hello",
- /// };
- /// assert_eq!(0x0102030405060708, buf.get_i64_ne());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_i64_ne(&mut self) -> i64 {
- buf_get_impl!(self, i64::from_ne_bytes);
- }
-
- /// Gets an unsigned 128 bit integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16 hello"[..];
- /// assert_eq!(0x01020304050607080910111213141516, buf.get_u128());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_u128(&mut self) -> u128 {
- buf_get_impl!(self, u128::from_be_bytes);
- }
-
- /// Gets an unsigned 128 bit integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02\x01 hello"[..];
- /// assert_eq!(0x01020304050607080910111213141516, buf.get_u128_le());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_u128_le(&mut self) -> u128 {
- buf_get_impl!(self, u128::from_le_bytes);
- }
-
- /// Gets an unsigned 128 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16 hello",
- /// false => b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02\x01 hello",
- /// };
- /// assert_eq!(0x01020304050607080910111213141516, buf.get_u128_ne());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_u128_ne(&mut self) -> u128 {
- buf_get_impl!(self, u128::from_ne_bytes);
- }
-
- /// Gets a signed 128 bit integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16 hello"[..];
- /// assert_eq!(0x01020304050607080910111213141516, buf.get_i128());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_i128(&mut self) -> i128 {
- buf_get_impl!(self, i128::from_be_bytes);
- }
-
- /// Gets a signed 128 bit integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02\x01 hello"[..];
- /// assert_eq!(0x01020304050607080910111213141516, buf.get_i128_le());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_i128_le(&mut self) -> i128 {
- buf_get_impl!(self, i128::from_le_bytes);
- }
-
- /// Gets a signed 128 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16 hello",
- /// false => b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02\x01 hello",
- /// };
- /// assert_eq!(0x01020304050607080910111213141516, buf.get_i128_ne());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_i128_ne(&mut self) -> i128 {
- buf_get_impl!(self, i128::from_ne_bytes);
- }
-
- /// Gets an unsigned n-byte integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x01\x02\x03 hello"[..];
- /// assert_eq!(0x010203, buf.get_uint(3));
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`, or
- /// if `nbytes` is greater than 8.
- fn get_uint(&mut self, nbytes: usize) -> u64 {
- buf_get_impl!(be => self, u64, nbytes);
- }
-
- /// Gets an unsigned n-byte integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x03\x02\x01 hello"[..];
- /// assert_eq!(0x010203, buf.get_uint_le(3));
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`, or
- /// if `nbytes` is greater than 8.
- fn get_uint_le(&mut self, nbytes: usize) -> u64 {
- buf_get_impl!(le => self, u64, nbytes);
- }
-
- /// Gets an unsigned n-byte integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x01\x02\x03 hello",
- /// false => b"\x03\x02\x01 hello",
- /// };
- /// assert_eq!(0x010203, buf.get_uint_ne(3));
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`, or
- /// if `nbytes` is greater than 8.
- fn get_uint_ne(&mut self, nbytes: usize) -> u64 {
- if cfg!(target_endian = "big") {
- self.get_uint(nbytes)
- } else {
- self.get_uint_le(nbytes)
- }
- }
-
- /// Gets a signed n-byte integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x01\x02\x03 hello"[..];
- /// assert_eq!(0x010203, buf.get_int(3));
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`, or
- /// if `nbytes` is greater than 8.
- fn get_int(&mut self, nbytes: usize) -> i64 {
- sign_extend(self.get_uint(nbytes), nbytes)
- }
-
- /// Gets a signed n-byte integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x03\x02\x01 hello"[..];
- /// assert_eq!(0x010203, buf.get_int_le(3));
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`, or
- /// if `nbytes` is greater than 8.
- fn get_int_le(&mut self, nbytes: usize) -> i64 {
- sign_extend(self.get_uint_le(nbytes), nbytes)
- }
-
- /// Gets a signed n-byte integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x01\x02\x03 hello",
- /// false => b"\x03\x02\x01 hello",
- /// };
- /// assert_eq!(0x010203, buf.get_int_ne(3));
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`, or
- /// if `nbytes` is greater than 8.
- fn get_int_ne(&mut self, nbytes: usize) -> i64 {
- if cfg!(target_endian = "big") {
- self.get_int(nbytes)
- } else {
- self.get_int_le(nbytes)
- }
- }
-
- /// Gets an IEEE754 single-precision (4 bytes) floating point number from
- /// `self` in big-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x3F\x99\x99\x9A hello"[..];
- /// assert_eq!(1.2f32, buf.get_f32());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_f32(&mut self) -> f32 {
- f32::from_bits(self.get_u32())
- }
-
- /// Gets an IEEE754 single-precision (4 bytes) floating point number from
- /// `self` in little-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x9A\x99\x99\x3F hello"[..];
- /// assert_eq!(1.2f32, buf.get_f32_le());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_f32_le(&mut self) -> f32 {
- f32::from_bits(self.get_u32_le())
- }
-
- /// Gets an IEEE754 single-precision (4 bytes) floating point number from
- /// `self` in native-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x3F\x99\x99\x9A hello",
- /// false => b"\x9A\x99\x99\x3F hello",
- /// };
- /// assert_eq!(1.2f32, buf.get_f32_ne());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_f32_ne(&mut self) -> f32 {
- f32::from_bits(self.get_u32_ne())
- }
-
- /// Gets an IEEE754 double-precision (8 bytes) floating point number from
- /// `self` in big-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x3F\xF3\x33\x33\x33\x33\x33\x33 hello"[..];
- /// assert_eq!(1.2f64, buf.get_f64());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_f64(&mut self) -> f64 {
- f64::from_bits(self.get_u64())
- }
-
- /// Gets an IEEE754 double-precision (8 bytes) floating point number from
- /// `self` in little-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x33\x33\x33\x33\x33\x33\xF3\x3F hello"[..];
- /// assert_eq!(1.2f64, buf.get_f64_le());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_f64_le(&mut self) -> f64 {
- f64::from_bits(self.get_u64_le())
- }
-
- /// Gets an IEEE754 double-precision (8 bytes) floating point number from
- /// `self` in native-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x3F\xF3\x33\x33\x33\x33\x33\x33 hello",
- /// false => b"\x33\x33\x33\x33\x33\x33\xF3\x3F hello",
- /// };
- /// assert_eq!(1.2f64, buf.get_f64_ne());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining data in `self`.
- fn get_f64_ne(&mut self) -> f64 {
- f64::from_bits(self.get_u64_ne())
- }
-
- /// Copies bytes from `self` into `dst`.
- ///
- /// The cursor is advanced by the number of bytes copied. `self` must have
- /// enough remaining bytes to fill `dst`.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"hello world"[..];
- /// let mut dst = [0; 5];
- ///
- /// assert_eq!(Ok(()), buf.try_copy_to_slice(&mut dst));
- /// assert_eq!(&b"hello"[..], &dst);
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"hello world"[..];
- /// let mut dst = [0; 12];
- ///
- /// assert_eq!(Err(TryGetError{requested: 12, available: 11}), buf.try_copy_to_slice(&mut dst));
- /// assert_eq!(11, buf.remaining());
- /// ```
- fn try_copy_to_slice(&mut self, mut dst: &mut [u8]) -> Result<(), TryGetError> {
- if self.remaining() < dst.len() {
- return Err(TryGetError {
- requested: dst.len(),
- available: self.remaining(),
- });
- }
-
- while !dst.is_empty() {
- let src = self.chunk();
- let cnt = usize::min(src.len(), dst.len());
-
- dst[..cnt].copy_from_slice(&src[..cnt]);
- dst = &mut dst[cnt..];
-
- self.advance(cnt);
- }
- Ok(())
- }
-
- /// Gets an unsigned 8 bit integer from `self`.
- ///
- /// The current position is advanced by 1.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08 hello"[..];
- /// assert_eq!(Ok(0x08_u8), buf.try_get_u8());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b""[..];
- /// assert_eq!(Err(TryGetError{requested: 1, available: 0}), buf.try_get_u8());
- /// ```
- fn try_get_u8(&mut self) -> Result<u8, TryGetError> {
- if self.remaining() < 1 {
- return Err(TryGetError {
- requested: 1,
- available: self.remaining(),
- });
- }
- let ret = self.chunk()[0];
- self.advance(1);
- Ok(ret)
- }
-
- /// Gets a signed 8 bit integer from `self`.
- ///
- /// The current position is advanced by 1.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08 hello"[..];
- /// assert_eq!(Ok(0x08_i8), buf.try_get_i8());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b""[..];
- /// assert_eq!(Err(TryGetError{requested: 1, available: 0}), buf.try_get_i8());
- /// ```
- fn try_get_i8(&mut self) -> Result<i8, TryGetError> {
- if self.remaining() < 1 {
- return Err(TryGetError {
- requested: 1,
- available: self.remaining(),
- });
- }
- let ret = self.chunk()[0] as i8;
- self.advance(1);
- Ok(ret)
- }
-
- /// Gets an unsigned 16 bit integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08\x09 hello"[..];
- /// assert_eq!(Ok(0x0809_u16), buf.try_get_u16());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x08"[..];
- /// assert_eq!(Err(TryGetError{requested: 2, available: 1}), buf.try_get_u16());
- /// assert_eq!(1, buf.remaining());
- /// ```
- fn try_get_u16(&mut self) -> Result<u16, TryGetError> {
- buf_try_get_impl!(self, u16::from_be_bytes)
- }
-
- /// Gets an unsigned 16 bit integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x09\x08 hello"[..];
- /// assert_eq!(Ok(0x0809_u16), buf.try_get_u16_le());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x08"[..];
- /// assert_eq!(Err(TryGetError{requested: 2, available: 1}), buf.try_get_u16_le());
- /// assert_eq!(1, buf.remaining());
- /// ```
- fn try_get_u16_le(&mut self) -> Result<u16, TryGetError> {
- buf_try_get_impl!(self, u16::from_le_bytes)
- }
-
- /// Gets an unsigned 16 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x08\x09 hello",
- /// false => b"\x09\x08 hello",
- /// };
- /// assert_eq!(Ok(0x0809_u16), buf.try_get_u16_ne());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x08"[..];
- /// assert_eq!(Err(TryGetError{requested: 2, available: 1}), buf.try_get_u16_ne());
- /// assert_eq!(1, buf.remaining());
- /// ```
- fn try_get_u16_ne(&mut self) -> Result<u16, TryGetError> {
- buf_try_get_impl!(self, u16::from_ne_bytes)
- }
-
- /// Gets a signed 16 bit integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08\x09 hello"[..];
- /// assert_eq!(Ok(0x0809_i16), buf.try_get_i16());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x08"[..];
- /// assert_eq!(Err(TryGetError{requested: 2, available: 1}), buf.try_get_i16());
- /// assert_eq!(1, buf.remaining());
- /// ```
- fn try_get_i16(&mut self) -> Result<i16, TryGetError> {
- buf_try_get_impl!(self, i16::from_be_bytes)
- }
-
- /// Gets an signed 16 bit integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x09\x08 hello"[..];
- /// assert_eq!(Ok(0x0809_i16), buf.try_get_i16_le());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x08"[..];
- /// assert_eq!(Err(TryGetError{requested: 2, available: 1}), buf.try_get_i16_le());
- /// assert_eq!(1, buf.remaining());
- /// ```
- fn try_get_i16_le(&mut self) -> Result<i16, TryGetError> {
- buf_try_get_impl!(self, i16::from_le_bytes)
- }
-
- /// Gets a signed 16 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x08\x09 hello",
- /// false => b"\x09\x08 hello",
- /// };
- /// assert_eq!(Ok(0x0809_i16), buf.try_get_i16_ne());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x08"[..];
- /// assert_eq!(Err(TryGetError{requested: 2, available: 1}), buf.try_get_i16_ne());
- /// assert_eq!(1, buf.remaining());
- /// ```
- fn try_get_i16_ne(&mut self) -> Result<i16, TryGetError> {
- buf_try_get_impl!(self, i16::from_ne_bytes)
- }
-
- /// Gets an unsigned 32 bit integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08\x09\xA0\xA1 hello"[..];
- /// assert_eq!(Ok(0x0809A0A1), buf.try_get_u32());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x01\x02\x03"[..];
- /// assert_eq!(Err(TryGetError{requested: 4, available: 3}), buf.try_get_u32());
- /// assert_eq!(3, buf.remaining());
- /// ```
- fn try_get_u32(&mut self) -> Result<u32, TryGetError> {
- buf_try_get_impl!(self, u32::from_be_bytes)
- }
-
- /// Gets an unsigned 32 bit integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\xA1\xA0\x09\x08 hello"[..];
- /// assert_eq!(Ok(0x0809A0A1_u32), buf.try_get_u32_le());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x08\x09\xA0"[..];
- /// assert_eq!(Err(TryGetError{requested: 4, available: 3}), buf.try_get_u32_le());
- /// assert_eq!(3, buf.remaining());
- /// ```
- fn try_get_u32_le(&mut self) -> Result<u32, TryGetError> {
- buf_try_get_impl!(self, u32::from_le_bytes)
- }
-
- /// Gets an unsigned 32 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x08\x09\xA0\xA1 hello",
- /// false => b"\xA1\xA0\x09\x08 hello",
- /// };
- /// assert_eq!(Ok(0x0809A0A1_u32), buf.try_get_u32_ne());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x08\x09\xA0"[..];
- /// assert_eq!(Err(TryGetError{requested: 4, available: 3}), buf.try_get_u32_ne());
- /// assert_eq!(3, buf.remaining());
- /// ```
- fn try_get_u32_ne(&mut self) -> Result<u32, TryGetError> {
- buf_try_get_impl!(self, u32::from_ne_bytes)
- }
-
- /// Gets a signed 32 bit integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08\x09\xA0\xA1 hello"[..];
- /// assert_eq!(Ok(0x0809A0A1_i32), buf.try_get_i32());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x01\x02\x03"[..];
- /// assert_eq!(Err(TryGetError{requested: 4, available: 3}), buf.try_get_i32());
- /// assert_eq!(3, buf.remaining());
- /// ```
- fn try_get_i32(&mut self) -> Result<i32, TryGetError> {
- buf_try_get_impl!(self, i32::from_be_bytes)
- }
-
- /// Gets a signed 32 bit integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\xA1\xA0\x09\x08 hello"[..];
- /// assert_eq!(Ok(0x0809A0A1_i32), buf.try_get_i32_le());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x08\x09\xA0"[..];
- /// assert_eq!(Err(TryGetError{requested: 4, available: 3}), buf.try_get_i32_le());
- /// assert_eq!(3, buf.remaining());
- /// ```
- fn try_get_i32_le(&mut self) -> Result<i32, TryGetError> {
- buf_try_get_impl!(self, i32::from_le_bytes)
- }
-
- /// Gets a signed 32 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x08\x09\xA0\xA1 hello",
- /// false => b"\xA1\xA0\x09\x08 hello",
- /// };
- /// assert_eq!(Ok(0x0809A0A1_i32), buf.try_get_i32_ne());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x08\x09\xA0"[..];
- /// assert_eq!(Err(TryGetError{requested: 4, available: 3}), buf.try_get_i32_ne());
- /// assert_eq!(3, buf.remaining());
- /// ```
- fn try_get_i32_ne(&mut self) -> Result<i32, TryGetError> {
- buf_try_get_impl!(self, i32::from_ne_bytes)
- }
-
- /// Gets an unsigned 64 bit integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08 hello"[..];
- /// assert_eq!(Ok(0x0102030405060708_u64), buf.try_get_u64());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07"[..];
- /// assert_eq!(Err(TryGetError{requested: 8, available: 7}), buf.try_get_u64());
- /// assert_eq!(7, buf.remaining());
- /// ```
- fn try_get_u64(&mut self) -> Result<u64, TryGetError> {
- buf_try_get_impl!(self, u64::from_be_bytes)
- }
-
- /// Gets an unsigned 64 bit integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08\x07\x06\x05\x04\x03\x02\x01 hello"[..];
- /// assert_eq!(Ok(0x0102030405060708_u64), buf.try_get_u64_le());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x08\x07\x06\x05\x04\x03\x02"[..];
- /// assert_eq!(Err(TryGetError{requested: 8, available: 7}), buf.try_get_u64_le());
- /// assert_eq!(7, buf.remaining());
- /// ```
- fn try_get_u64_le(&mut self) -> Result<u64, TryGetError> {
- buf_try_get_impl!(self, u64::from_le_bytes)
- }
-
- /// Gets an unsigned 64 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x01\x02\x03\x04\x05\x06\x07\x08 hello",
- /// false => b"\x08\x07\x06\x05\x04\x03\x02\x01 hello",
- /// };
- /// assert_eq!(Ok(0x0102030405060708_u64), buf.try_get_u64_ne());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07"[..];
- /// assert_eq!(Err(TryGetError{requested: 8, available: 7}), buf.try_get_u64_ne());
- /// assert_eq!(7, buf.remaining());
- /// ```
- fn try_get_u64_ne(&mut self) -> Result<u64, TryGetError> {
- buf_try_get_impl!(self, u64::from_ne_bytes)
- }
-
- /// Gets a signed 64 bit integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08 hello"[..];
- /// assert_eq!(Ok(0x0102030405060708_i64), buf.try_get_i64());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07"[..];
- /// assert_eq!(Err(TryGetError{requested: 8, available: 7}), buf.try_get_i64());
- /// assert_eq!(7, buf.remaining());
- /// ```
- fn try_get_i64(&mut self) -> Result<i64, TryGetError> {
- buf_try_get_impl!(self, i64::from_be_bytes)
- }
-
- /// Gets a signed 64 bit integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x08\x07\x06\x05\x04\x03\x02\x01 hello"[..];
- /// assert_eq!(Ok(0x0102030405060708_i64), buf.try_get_i64_le());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x08\x07\x06\x05\x04\x03\x02"[..];
- /// assert_eq!(Err(TryGetError{requested: 8, available: 7}), buf.try_get_i64_le());
- /// assert_eq!(7, buf.remaining());
- /// ```
- fn try_get_i64_le(&mut self) -> Result<i64, TryGetError> {
- buf_try_get_impl!(self, i64::from_le_bytes)
- }
-
- /// Gets a signed 64 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x01\x02\x03\x04\x05\x06\x07\x08 hello",
- /// false => b"\x08\x07\x06\x05\x04\x03\x02\x01 hello",
- /// };
- /// assert_eq!(Ok(0x0102030405060708_i64), buf.try_get_i64_ne());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07"[..];
- /// assert_eq!(Err(TryGetError{requested: 8, available: 7}), buf.try_get_i64_ne());
- /// assert_eq!(7, buf.remaining());
- /// ```
- fn try_get_i64_ne(&mut self) -> Result<i64, TryGetError> {
- buf_try_get_impl!(self, i64::from_ne_bytes)
- }
-
- /// Gets an unsigned 128 bit integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16 hello"[..];
- /// assert_eq!(Ok(0x01020304050607080910111213141516_u128), buf.try_get_u128());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15"[..];
- /// assert_eq!(Err(TryGetError{requested: 16, available: 15}), buf.try_get_u128());
- /// assert_eq!(15, buf.remaining());
- /// ```
- fn try_get_u128(&mut self) -> Result<u128, TryGetError> {
- buf_try_get_impl!(self, u128::from_be_bytes)
- }
-
- /// Gets an unsigned 128 bit integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02\x01 hello"[..];
- /// assert_eq!(Ok(0x01020304050607080910111213141516_u128), buf.try_get_u128_le());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02"[..];
- /// assert_eq!(Err(TryGetError{requested: 16, available: 15}), buf.try_get_u128_le());
- /// assert_eq!(15, buf.remaining());
- /// ```
- fn try_get_u128_le(&mut self) -> Result<u128, TryGetError> {
- buf_try_get_impl!(self, u128::from_le_bytes)
- }
-
- /// Gets an unsigned 128 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16 hello",
- /// false => b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02\x01 hello",
- /// };
- /// assert_eq!(Ok(0x01020304050607080910111213141516_u128), buf.try_get_u128_ne());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15"[..];
- /// assert_eq!(Err(TryGetError{requested: 16, available: 15}), buf.try_get_u128_ne());
- /// assert_eq!(15, buf.remaining());
- /// ```
- fn try_get_u128_ne(&mut self) -> Result<u128, TryGetError> {
- buf_try_get_impl!(self, u128::from_ne_bytes)
- }
-
- /// Gets a signed 128 bit integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16 hello"[..];
- /// assert_eq!(Ok(0x01020304050607080910111213141516_i128), buf.try_get_i128());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15"[..];
- /// assert_eq!(Err(TryGetError{requested: 16, available: 15}), buf.try_get_i128());
- /// assert_eq!(15, buf.remaining());
- /// ```
- fn try_get_i128(&mut self) -> Result<i128, TryGetError> {
- buf_try_get_impl!(self, i128::from_be_bytes)
- }
-
- /// Gets a signed 128 bit integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02\x01 hello"[..];
- /// assert_eq!(Ok(0x01020304050607080910111213141516_i128), buf.try_get_i128_le());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02"[..];
- /// assert_eq!(Err(TryGetError{requested: 16, available: 15}), buf.try_get_i128_le());
- /// assert_eq!(15, buf.remaining());
- /// ```
- fn try_get_i128_le(&mut self) -> Result<i128, TryGetError> {
- buf_try_get_impl!(self, i128::from_le_bytes)
- }
-
- /// Gets a signed 128 bit integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16 hello",
- /// false => b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02\x01 hello",
- /// };
- /// assert_eq!(Ok(0x01020304050607080910111213141516_i128), buf.try_get_i128_ne());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15"[..];
- /// assert_eq!(Err(TryGetError{requested: 16, available: 15}), buf.try_get_i128_ne());
- /// assert_eq!(15, buf.remaining());
- /// ```
- fn try_get_i128_ne(&mut self) -> Result<i128, TryGetError> {
- buf_try_get_impl!(self, i128::from_ne_bytes)
- }
-
- /// Gets an unsigned n-byte integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x01\x02\x03 hello"[..];
- /// assert_eq!(Ok(0x010203_u64), buf.try_get_uint(3));
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x01\x02\x03"[..];
- /// assert_eq!(Err(TryGetError{requested: 4, available: 3}), buf.try_get_uint(4));
- /// assert_eq!(3, buf.remaining());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if `nbytes` > 8.
- fn try_get_uint(&mut self, nbytes: usize) -> Result<u64, TryGetError> {
- buf_try_get_impl!(be => self, u64, nbytes);
- }
-
- /// Gets an unsigned n-byte integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x03\x02\x01 hello"[..];
- /// assert_eq!(Ok(0x010203_u64), buf.try_get_uint_le(3));
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x01\x02\x03"[..];
- /// assert_eq!(Err(TryGetError{requested: 4, available: 3}), buf.try_get_uint_le(4));
- /// assert_eq!(3, buf.remaining());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if `nbytes` > 8.
- fn try_get_uint_le(&mut self, nbytes: usize) -> Result<u64, TryGetError> {
- buf_try_get_impl!(le => self, u64, nbytes);
- }
-
- /// Gets an unsigned n-byte integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x01\x02\x03 hello",
- /// false => b"\x03\x02\x01 hello",
- /// };
- /// assert_eq!(Ok(0x010203_u64), buf.try_get_uint_ne(3));
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x01\x02\x03",
- /// false => b"\x03\x02\x01",
- /// };
- /// assert_eq!(Err(TryGetError{requested: 4, available: 3}), buf.try_get_uint_ne(4));
- /// assert_eq!(3, buf.remaining());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if `nbytes` is greater than 8.
- fn try_get_uint_ne(&mut self, nbytes: usize) -> Result<u64, TryGetError> {
- if cfg!(target_endian = "big") {
- self.try_get_uint(nbytes)
- } else {
- self.try_get_uint_le(nbytes)
- }
- }
-
- /// Gets a signed n-byte integer from `self` in big-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x01\x02\x03 hello"[..];
- /// assert_eq!(Ok(0x010203_i64), buf.try_get_int(3));
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x01\x02\x03"[..];
- /// assert_eq!(Err(TryGetError{requested: 4, available: 3}), buf.try_get_int(4));
- /// assert_eq!(3, buf.remaining());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if `nbytes` is greater than 8.
- fn try_get_int(&mut self, nbytes: usize) -> Result<i64, TryGetError> {
- buf_try_get_impl!(be => self, i64, nbytes);
- }
-
- /// Gets a signed n-byte integer from `self` in little-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x03\x02\x01 hello"[..];
- /// assert_eq!(Ok(0x010203_i64), buf.try_get_int_le(3));
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x01\x02\x03"[..];
- /// assert_eq!(Err(TryGetError{requested: 4, available: 3}), buf.try_get_int_le(4));
- /// assert_eq!(3, buf.remaining());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if `nbytes` is greater than 8.
- fn try_get_int_le(&mut self, nbytes: usize) -> Result<i64, TryGetError> {
- buf_try_get_impl!(le => self, i64, nbytes);
- }
-
- /// Gets a signed n-byte integer from `self` in native-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x01\x02\x03 hello",
- /// false => b"\x03\x02\x01 hello",
- /// };
- /// assert_eq!(Ok(0x010203_i64), buf.try_get_int_ne(3));
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x01\x02\x03",
- /// false => b"\x03\x02\x01",
- /// };
- /// assert_eq!(Err(TryGetError{requested: 4, available: 3}), buf.try_get_int_ne(4));
- /// assert_eq!(3, buf.remaining());
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if `nbytes` is greater than 8.
- fn try_get_int_ne(&mut self, nbytes: usize) -> Result<i64, TryGetError> {
- if cfg!(target_endian = "big") {
- self.try_get_int(nbytes)
- } else {
- self.try_get_int_le(nbytes)
- }
- }
-
- /// Gets an IEEE754 single-precision (4 bytes) floating point number from
- /// `self` in big-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x3F\x99\x99\x9A hello"[..];
- /// assert_eq!(1.2f32, buf.get_f32());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x3F\x99\x99"[..];
- /// assert_eq!(Err(TryGetError{requested: 4, available: 3}), buf.try_get_f32());
- /// assert_eq!(3, buf.remaining());
- /// ```
- fn try_get_f32(&mut self) -> Result<f32, TryGetError> {
- Ok(f32::from_bits(self.try_get_u32()?))
- }
-
- /// Gets an IEEE754 single-precision (4 bytes) floating point number from
- /// `self` in little-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x9A\x99\x99\x3F hello"[..];
- /// assert_eq!(1.2f32, buf.get_f32_le());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x3F\x99\x99"[..];
- /// assert_eq!(Err(TryGetError{requested: 4, available: 3}), buf.try_get_f32_le());
- /// assert_eq!(3, buf.remaining());
- /// ```
- fn try_get_f32_le(&mut self) -> Result<f32, TryGetError> {
- Ok(f32::from_bits(self.try_get_u32_le()?))
- }
-
- /// Gets an IEEE754 single-precision (4 bytes) floating point number from
- /// `self` in native-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x3F\x99\x99\x9A hello",
- /// false => b"\x9A\x99\x99\x3F hello",
- /// };
- /// assert_eq!(1.2f32, buf.get_f32_ne());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x3F\x99\x99"[..];
- /// assert_eq!(Err(TryGetError{requested: 4, available: 3}), buf.try_get_f32_ne());
- /// assert_eq!(3, buf.remaining());
- /// ```
- fn try_get_f32_ne(&mut self) -> Result<f32, TryGetError> {
- Ok(f32::from_bits(self.try_get_u32_ne()?))
- }
-
- /// Gets an IEEE754 double-precision (8 bytes) floating point number from
- /// `self` in big-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x3F\xF3\x33\x33\x33\x33\x33\x33 hello"[..];
- /// assert_eq!(1.2f64, buf.get_f64());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x3F\xF3\x33\x33\x33\x33\x33"[..];
- /// assert_eq!(Err(TryGetError{requested: 8, available: 7}), buf.try_get_f64());
- /// assert_eq!(7, buf.remaining());
- /// ```
- fn try_get_f64(&mut self) -> Result<f64, TryGetError> {
- Ok(f64::from_bits(self.try_get_u64()?))
- }
-
- /// Gets an IEEE754 double-precision (8 bytes) floating point number from
- /// `self` in little-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = &b"\x33\x33\x33\x33\x33\x33\xF3\x3F hello"[..];
- /// assert_eq!(1.2f64, buf.get_f64_le());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x3F\xF3\x33\x33\x33\x33\x33"[..];
- /// assert_eq!(Err(TryGetError{requested: 8, available: 7}), buf.try_get_f64_le());
- /// assert_eq!(7, buf.remaining());
- /// ```
- fn try_get_f64_le(&mut self) -> Result<f64, TryGetError> {
- Ok(f64::from_bits(self.try_get_u64_le()?))
- }
-
- /// Gets an IEEE754 double-precision (8 bytes) floating point number from
- /// `self` in native-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// Returns `Err(TryGetError)` when there are not enough
- /// remaining bytes to read the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf: &[u8] = match cfg!(target_endian = "big") {
- /// true => b"\x3F\xF3\x33\x33\x33\x33\x33\x33 hello",
- /// false => b"\x33\x33\x33\x33\x33\x33\xF3\x3F hello",
- /// };
- /// assert_eq!(1.2f64, buf.get_f64_ne());
- /// assert_eq!(6, buf.remaining());
- /// ```
- ///
- /// ```
- /// use bytes::{Buf, TryGetError};
- ///
- /// let mut buf = &b"\x3F\xF3\x33\x33\x33\x33\x33"[..];
- /// assert_eq!(Err(TryGetError{requested: 8, available: 7}), buf.try_get_f64_ne());
- /// assert_eq!(7, buf.remaining());
- /// ```
- fn try_get_f64_ne(&mut self) -> Result<f64, TryGetError> {
- Ok(f64::from_bits(self.try_get_u64_ne()?))
- }
-
- /// Consumes `len` bytes inside self and returns new instance of `Bytes`
- /// with this data.
- ///
- /// This function may be optimized by the underlying type to avoid actual
- /// copies. For example, `Bytes` implementation will do a shallow copy
- /// (ref-count increment).
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let bytes = (&b"hello world"[..]).copy_to_bytes(5);
- /// assert_eq!(&bytes[..], &b"hello"[..]);
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if `len > self.remaining()`.
- fn copy_to_bytes(&mut self, len: usize) -> crate::Bytes {
- use super::BufMut;
-
- if self.remaining() < len {
- panic_advance(&TryGetError {
- requested: len,
- available: self.remaining(),
- });
- }
-
- let mut ret = crate::BytesMut::with_capacity(len);
- ret.put(self.take(len));
- ret.freeze()
- }
-
- /// Creates an adaptor which will read at most `limit` bytes from `self`.
- ///
- /// This function returns a new instance of `Buf` which will read at most
- /// `limit` bytes.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::{Buf, BufMut};
- ///
- /// let mut buf = b"hello world"[..].take(5);
- /// let mut dst = vec![];
- ///
- /// dst.put(&mut buf);
- /// assert_eq!(dst, b"hello");
- ///
- /// let mut buf = buf.into_inner();
- /// dst.clear();
- /// dst.put(&mut buf);
- /// assert_eq!(dst, b" world");
- /// ```
- fn take(self, limit: usize) -> Take<Self>
- where
- Self: Sized,
- {
- take::new(self, limit)
- }
-
- /// Creates an adaptor which will chain this buffer with another.
- ///
- /// The returned `Buf` instance will first consume all bytes from `self`.
- /// Afterwards the output is equivalent to the output of next.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut chain = b"hello "[..].chain(&b"world"[..]);
- ///
- /// let full = chain.copy_to_bytes(11);
- /// assert_eq!(full.chunk(), b"hello world");
- /// ```
- fn chain<U: Buf>(self, next: U) -> Chain<Self, U>
- where
- Self: Sized,
- {
- Chain::new(self, next)
- }
-
- /// Creates an adaptor which implements the `Read` trait for `self`.
- ///
- /// This function returns a new value which implements `Read` by adapting
- /// the `Read` trait functions to the `Buf` trait functions. Given that
- /// `Buf` operations are infallible, none of the `Read` functions will
- /// return with `Err`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::{Bytes, Buf};
- /// use std::io::Read;
- ///
- /// let buf = Bytes::from("hello world");
- ///
- /// let mut reader = buf.reader();
- /// let mut dst = [0; 1024];
- ///
- /// let num = reader.read(&mut dst).unwrap();
- ///
- /// assert_eq!(11, num);
- /// assert_eq!(&dst[..11], &b"hello world"[..]);
- /// ```
- #[cfg(feature = "std")]
- #[cfg_attr(docsrs, doc(cfg(feature = "std")))]
- fn reader(self) -> Reader<Self>
- where
- Self: Sized,
- {
- reader::new(self)
- }
-}
-
-macro_rules! deref_forward_buf {
- () => {
- #[inline]
- fn remaining(&self) -> usize {
- (**self).remaining()
- }
-
- #[inline]
- fn chunk(&self) -> &[u8] {
- (**self).chunk()
- }
-
- #[cfg(feature = "std")]
- #[inline]
- fn chunks_vectored<'b>(&'b self, dst: &mut [IoSlice<'b>]) -> usize {
- (**self).chunks_vectored(dst)
- }
-
- #[inline]
- fn advance(&mut self, cnt: usize) {
- (**self).advance(cnt)
- }
-
- #[inline]
- fn has_remaining(&self) -> bool {
- (**self).has_remaining()
- }
-
- #[inline]
- fn copy_to_slice(&mut self, dst: &mut [u8]) {
- (**self).copy_to_slice(dst)
- }
-
- #[inline]
- fn get_u8(&mut self) -> u8 {
- (**self).get_u8()
- }
-
- #[inline]
- fn get_i8(&mut self) -> i8 {
- (**self).get_i8()
- }
-
- #[inline]
- fn get_u16(&mut self) -> u16 {
- (**self).get_u16()
- }
-
- #[inline]
- fn get_u16_le(&mut self) -> u16 {
- (**self).get_u16_le()
- }
-
- #[inline]
- fn get_u16_ne(&mut self) -> u16 {
- (**self).get_u16_ne()
- }
-
- #[inline]
- fn get_i16(&mut self) -> i16 {
- (**self).get_i16()
- }
-
- #[inline]
- fn get_i16_le(&mut self) -> i16 {
- (**self).get_i16_le()
- }
-
- #[inline]
- fn get_i16_ne(&mut self) -> i16 {
- (**self).get_i16_ne()
- }
-
- #[inline]
- fn get_u32(&mut self) -> u32 {
- (**self).get_u32()
- }
-
- #[inline]
- fn get_u32_le(&mut self) -> u32 {
- (**self).get_u32_le()
- }
-
- #[inline]
- fn get_u32_ne(&mut self) -> u32 {
- (**self).get_u32_ne()
- }
-
- #[inline]
- fn get_i32(&mut self) -> i32 {
- (**self).get_i32()
- }
-
- #[inline]
- fn get_i32_le(&mut self) -> i32 {
- (**self).get_i32_le()
- }
-
- #[inline]
- fn get_i32_ne(&mut self) -> i32 {
- (**self).get_i32_ne()
- }
-
- #[inline]
- fn get_u64(&mut self) -> u64 {
- (**self).get_u64()
- }
-
- #[inline]
- fn get_u64_le(&mut self) -> u64 {
- (**self).get_u64_le()
- }
-
- #[inline]
- fn get_u64_ne(&mut self) -> u64 {
- (**self).get_u64_ne()
- }
-
- #[inline]
- fn get_i64(&mut self) -> i64 {
- (**self).get_i64()
- }
-
- #[inline]
- fn get_i64_le(&mut self) -> i64 {
- (**self).get_i64_le()
- }
-
- #[inline]
- fn get_i64_ne(&mut self) -> i64 {
- (**self).get_i64_ne()
- }
-
- #[inline]
- fn get_u128(&mut self) -> u128 {
- (**self).get_u128()
- }
-
- #[inline]
- fn get_u128_le(&mut self) -> u128 {
- (**self).get_u128_le()
- }
-
- #[inline]
- fn get_u128_ne(&mut self) -> u128 {
- (**self).get_u128_ne()
- }
-
- #[inline]
- fn get_i128(&mut self) -> i128 {
- (**self).get_i128()
- }
-
- #[inline]
- fn get_i128_le(&mut self) -> i128 {
- (**self).get_i128_le()
- }
-
- #[inline]
- fn get_i128_ne(&mut self) -> i128 {
- (**self).get_i128_ne()
- }
-
- #[inline]
- fn get_uint(&mut self, nbytes: usize) -> u64 {
- (**self).get_uint(nbytes)
- }
-
- #[inline]
- fn get_uint_le(&mut self, nbytes: usize) -> u64 {
- (**self).get_uint_le(nbytes)
- }
-
- #[inline]
- fn get_uint_ne(&mut self, nbytes: usize) -> u64 {
- (**self).get_uint_ne(nbytes)
- }
-
- #[inline]
- fn get_int(&mut self, nbytes: usize) -> i64 {
- (**self).get_int(nbytes)
- }
-
- #[inline]
- fn get_int_le(&mut self, nbytes: usize) -> i64 {
- (**self).get_int_le(nbytes)
- }
-
- #[inline]
- fn get_int_ne(&mut self, nbytes: usize) -> i64 {
- (**self).get_int_ne(nbytes)
- }
-
- #[inline]
- fn get_f32(&mut self) -> f32 {
- (**self).get_f32()
- }
-
- #[inline]
- fn get_f32_le(&mut self) -> f32 {
- (**self).get_f32_le()
- }
-
- #[inline]
- fn get_f32_ne(&mut self) -> f32 {
- (**self).get_f32_ne()
- }
-
- #[inline]
- fn get_f64(&mut self) -> f64 {
- (**self).get_f64()
- }
-
- #[inline]
- fn get_f64_le(&mut self) -> f64 {
- (**self).get_f64_le()
- }
-
- #[inline]
- fn get_f64_ne(&mut self) -> f64 {
- (**self).get_f64_ne()
- }
-
- #[inline]
- fn try_copy_to_slice(&mut self, dst: &mut [u8]) -> Result<(), TryGetError> {
- (**self).try_copy_to_slice(dst)
- }
-
- #[inline]
- fn try_get_u8(&mut self) -> Result<u8, TryGetError> {
- (**self).try_get_u8()
- }
-
- #[inline]
- fn try_get_i8(&mut self) -> Result<i8, TryGetError> {
- (**self).try_get_i8()
- }
-
- #[inline]
- fn try_get_u16(&mut self) -> Result<u16, TryGetError> {
- (**self).try_get_u16()
- }
-
- #[inline]
- fn try_get_u16_le(&mut self) -> Result<u16, TryGetError> {
- (**self).try_get_u16_le()
- }
-
- #[inline]
- fn try_get_u16_ne(&mut self) -> Result<u16, TryGetError> {
- (**self).try_get_u16_ne()
- }
-
- #[inline]
- fn try_get_i16(&mut self) -> Result<i16, TryGetError> {
- (**self).try_get_i16()
- }
-
- #[inline]
- fn try_get_i16_le(&mut self) -> Result<i16, TryGetError> {
- (**self).try_get_i16_le()
- }
-
- #[inline]
- fn try_get_i16_ne(&mut self) -> Result<i16, TryGetError> {
- (**self).try_get_i16_ne()
- }
-
- #[inline]
- fn try_get_u32(&mut self) -> Result<u32, TryGetError> {
- (**self).try_get_u32()
- }
-
- #[inline]
- fn try_get_u32_le(&mut self) -> Result<u32, TryGetError> {
- (**self).try_get_u32_le()
- }
-
- #[inline]
- fn try_get_u32_ne(&mut self) -> Result<u32, TryGetError> {
- (**self).try_get_u32_ne()
- }
-
- #[inline]
- fn try_get_i32(&mut self) -> Result<i32, TryGetError> {
- (**self).try_get_i32()
- }
-
- #[inline]
- fn try_get_i32_le(&mut self) -> Result<i32, TryGetError> {
- (**self).try_get_i32_le()
- }
-
- #[inline]
- fn try_get_i32_ne(&mut self) -> Result<i32, TryGetError> {
- (**self).try_get_i32_ne()
- }
-
- #[inline]
- fn try_get_u64(&mut self) -> Result<u64, TryGetError> {
- (**self).try_get_u64()
- }
-
- #[inline]
- fn try_get_u64_le(&mut self) -> Result<u64, TryGetError> {
- (**self).try_get_u64_le()
- }
-
- #[inline]
- fn try_get_u64_ne(&mut self) -> Result<u64, TryGetError> {
- (**self).try_get_u64_ne()
- }
-
- #[inline]
- fn try_get_i64(&mut self) -> Result<i64, TryGetError> {
- (**self).try_get_i64()
- }
-
- #[inline]
- fn try_get_i64_le(&mut self) -> Result<i64, TryGetError> {
- (**self).try_get_i64_le()
- }
-
- #[inline]
- fn try_get_i64_ne(&mut self) -> Result<i64, TryGetError> {
- (**self).try_get_i64_ne()
- }
-
- #[inline]
- fn try_get_u128(&mut self) -> Result<u128, TryGetError> {
- (**self).try_get_u128()
- }
-
- #[inline]
- fn try_get_u128_le(&mut self) -> Result<u128, TryGetError> {
- (**self).try_get_u128_le()
- }
-
- #[inline]
- fn try_get_u128_ne(&mut self) -> Result<u128, TryGetError> {
- (**self).try_get_u128_ne()
- }
-
- #[inline]
- fn try_get_i128(&mut self) -> Result<i128, TryGetError> {
- (**self).try_get_i128()
- }
-
- #[inline]
- fn try_get_i128_le(&mut self) -> Result<i128, TryGetError> {
- (**self).try_get_i128_le()
- }
-
- #[inline]
- fn try_get_i128_ne(&mut self) -> Result<i128, TryGetError> {
- (**self).try_get_i128_ne()
- }
-
- #[inline]
- fn try_get_uint(&mut self, nbytes: usize) -> Result<u64, TryGetError> {
- (**self).try_get_uint(nbytes)
- }
-
- #[inline]
- fn try_get_uint_le(&mut self, nbytes: usize) -> Result<u64, TryGetError> {
- (**self).try_get_uint_le(nbytes)
- }
-
- #[inline]
- fn try_get_uint_ne(&mut self, nbytes: usize) -> Result<u64, TryGetError> {
- (**self).try_get_uint_ne(nbytes)
- }
-
- #[inline]
- fn try_get_int(&mut self, nbytes: usize) -> Result<i64, TryGetError> {
- (**self).try_get_int(nbytes)
- }
-
- #[inline]
- fn try_get_int_le(&mut self, nbytes: usize) -> Result<i64, TryGetError> {
- (**self).try_get_int_le(nbytes)
- }
-
- #[inline]
- fn try_get_int_ne(&mut self, nbytes: usize) -> Result<i64, TryGetError> {
- (**self).try_get_int_ne(nbytes)
- }
-
- #[inline]
- fn try_get_f32(&mut self) -> Result<f32, TryGetError> {
- (**self).try_get_f32()
- }
-
- #[inline]
- fn try_get_f32_le(&mut self) -> Result<f32, TryGetError> {
- (**self).try_get_f32_le()
- }
-
- #[inline]
- fn try_get_f32_ne(&mut self) -> Result<f32, TryGetError> {
- (**self).try_get_f32_ne()
- }
-
- #[inline]
- fn try_get_f64(&mut self) -> Result<f64, TryGetError> {
- (**self).try_get_f64()
- }
-
- #[inline]
- fn try_get_f64_le(&mut self) -> Result<f64, TryGetError> {
- (**self).try_get_f64_le()
- }
-
- #[inline]
- fn try_get_f64_ne(&mut self) -> Result<f64, TryGetError> {
- (**self).try_get_f64_ne()
- }
-
- #[inline]
- fn copy_to_bytes(&mut self, len: usize) -> crate::Bytes {
- (**self).copy_to_bytes(len)
- }
- };
-}
-
-impl<T: Buf + ?Sized> Buf for &mut T {
- deref_forward_buf!();
-}
-
-impl<T: Buf + ?Sized> Buf for Box<T> {
- deref_forward_buf!();
-}
-
-impl Buf for &[u8] {
- #[inline]
- fn remaining(&self) -> usize {
- self.len()
- }
-
- #[inline]
- fn chunk(&self) -> &[u8] {
- self
- }
-
- #[inline]
- fn advance(&mut self, cnt: usize) {
- if self.len() < cnt {
- panic_advance(&TryGetError {
- requested: cnt,
- available: self.len(),
- });
- }
-
- *self = &self[cnt..];
- }
-
- #[inline]
- fn copy_to_slice(&mut self, dst: &mut [u8]) {
- if self.len() < dst.len() {
- panic_advance(&TryGetError {
- requested: dst.len(),
- available: self.len(),
- });
- }
-
- dst.copy_from_slice(&self[..dst.len()]);
- self.advance(dst.len());
- }
-}
-
-#[cfg(feature = "std")]
-impl<T: AsRef<[u8]>> Buf for std::io::Cursor<T> {
- #[inline]
- fn remaining(&self) -> usize {
- saturating_sub_usize_u64(self.get_ref().as_ref().len(), self.position())
- }
-
- #[inline]
- fn chunk(&self) -> &[u8] {
- let slice = self.get_ref().as_ref();
- let pos = min_u64_usize(self.position(), slice.len());
- &slice[pos..]
- }
-
- #[inline]
- fn advance(&mut self, cnt: usize) {
- let len = self.get_ref().as_ref().len();
- let pos = self.position();
-
- // We intentionally allow `cnt == 0` here even if `pos > len`.
- let max_cnt = saturating_sub_usize_u64(len, pos);
- if cnt > max_cnt {
- panic_advance(&TryGetError {
- requested: cnt,
- available: max_cnt,
- });
- }
-
- // This will not overflow because either `cnt == 0` or the sum is not
- // greater than `len`.
- self.set_position(pos + cnt as u64);
- }
-}
-
-// The existence of this function makes the compiler catch if the Buf
-// trait is "object-safe" or not.
-fn _assert_trait_object(_b: &dyn Buf) {}
diff --git a/vendor/bytes/src/buf/buf_mut.rs b/vendor/bytes/src/buf/buf_mut.rs
deleted file mode 100644
index 26645c6a..00000000
--- a/vendor/bytes/src/buf/buf_mut.rs
+++ /dev/null
@@ -1,1671 +0,0 @@
-use crate::buf::{limit, Chain, Limit, UninitSlice};
-#[cfg(feature = "std")]
-use crate::buf::{writer, Writer};
-use crate::{panic_advance, panic_does_not_fit, TryGetError};
-
-use core::{mem, ptr, usize};
-
-use alloc::{boxed::Box, vec::Vec};
-
-/// A trait for values that provide sequential write access to bytes.
-///
-/// Write bytes to a buffer
-///
-/// A buffer stores bytes in memory such that write operations are infallible.
-/// The underlying storage may or may not be in contiguous memory. A `BufMut`
-/// value is a cursor into the buffer. Writing to `BufMut` advances the cursor
-/// position.
-///
-/// The simplest `BufMut` is a `Vec<u8>`.
-///
-/// ```
-/// use bytes::BufMut;
-///
-/// let mut buf = vec![];
-///
-/// buf.put(&b"hello world"[..]);
-///
-/// assert_eq!(buf, b"hello world");
-/// ```
-pub unsafe trait BufMut {
- /// Returns the number of bytes that can be written from the current
- /// position until the end of the buffer is reached.
- ///
- /// This value is greater than or equal to the length of the slice returned
- /// by `chunk_mut()`.
- ///
- /// Writing to a `BufMut` may involve allocating more memory on the fly.
- /// Implementations may fail before reaching the number of bytes indicated
- /// by this method if they encounter an allocation failure.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut dst = [0; 10];
- /// let mut buf = &mut dst[..];
- ///
- /// let original_remaining = buf.remaining_mut();
- /// buf.put(&b"hello"[..]);
- ///
- /// assert_eq!(original_remaining - 5, buf.remaining_mut());
- /// ```
- ///
- /// # Implementer notes
- ///
- /// Implementations of `remaining_mut` should ensure that the return value
- /// does not change unless a call is made to `advance_mut` or any other
- /// function that is documented to change the `BufMut`'s current position.
- ///
- /// # Note
- ///
- /// `remaining_mut` may return value smaller than actual available space.
- fn remaining_mut(&self) -> usize;
-
- /// Advance the internal cursor of the BufMut
- ///
- /// The next call to `chunk_mut` will return a slice starting `cnt` bytes
- /// further into the underlying buffer.
- ///
- /// # Safety
- ///
- /// The caller must ensure that the next `cnt` bytes of `chunk` are
- /// initialized.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = Vec::with_capacity(16);
- ///
- /// // Write some data
- /// buf.chunk_mut()[0..2].copy_from_slice(b"he");
- /// unsafe { buf.advance_mut(2) };
- ///
- /// // write more bytes
- /// buf.chunk_mut()[0..3].copy_from_slice(b"llo");
- ///
- /// unsafe { buf.advance_mut(3); }
- ///
- /// assert_eq!(5, buf.len());
- /// assert_eq!(buf, b"hello");
- /// ```
- ///
- /// # Panics
- ///
- /// This function **may** panic if `cnt > self.remaining_mut()`.
- ///
- /// # Implementer notes
- ///
- /// It is recommended for implementations of `advance_mut` to panic if
- /// `cnt > self.remaining_mut()`. If the implementation does not panic,
- /// the call must behave as if `cnt == self.remaining_mut()`.
- ///
- /// A call with `cnt == 0` should never panic and be a no-op.
- unsafe fn advance_mut(&mut self, cnt: usize);
-
- /// Returns true if there is space in `self` for more bytes.
- ///
- /// This is equivalent to `self.remaining_mut() != 0`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut dst = [0; 5];
- /// let mut buf = &mut dst[..];
- ///
- /// assert!(buf.has_remaining_mut());
- ///
- /// buf.put(&b"hello"[..]);
- ///
- /// assert!(!buf.has_remaining_mut());
- /// ```
- #[inline]
- fn has_remaining_mut(&self) -> bool {
- self.remaining_mut() > 0
- }
-
- /// Returns a mutable slice starting at the current BufMut position and of
- /// length between 0 and `BufMut::remaining_mut()`. Note that this *can* be shorter than the
- /// whole remainder of the buffer (this allows non-continuous implementation).
- ///
- /// This is a lower level function. Most operations are done with other
- /// functions.
- ///
- /// The returned byte slice may represent uninitialized memory.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = Vec::with_capacity(16);
- ///
- /// unsafe {
- /// // MaybeUninit::as_mut_ptr
- /// buf.chunk_mut()[0..].as_mut_ptr().write(b'h');
- /// buf.chunk_mut()[1..].as_mut_ptr().write(b'e');
- ///
- /// buf.advance_mut(2);
- ///
- /// buf.chunk_mut()[0..].as_mut_ptr().write(b'l');
- /// buf.chunk_mut()[1..].as_mut_ptr().write(b'l');
- /// buf.chunk_mut()[2..].as_mut_ptr().write(b'o');
- ///
- /// buf.advance_mut(3);
- /// }
- ///
- /// assert_eq!(5, buf.len());
- /// assert_eq!(buf, b"hello");
- /// ```
- ///
- /// # Implementer notes
- ///
- /// This function should never panic. `chunk_mut()` should return an empty
- /// slice **if and only if** `remaining_mut()` returns 0. In other words,
- /// `chunk_mut()` returning an empty slice implies that `remaining_mut()` will
- /// return 0 and `remaining_mut()` returning 0 implies that `chunk_mut()` will
- /// return an empty slice.
- ///
- /// This function may trigger an out-of-memory abort if it tries to allocate
- /// memory and fails to do so.
- // The `chunk_mut` method was previously called `bytes_mut`. This alias makes the
- // rename more easily discoverable.
- #[cfg_attr(docsrs, doc(alias = "bytes_mut"))]
- fn chunk_mut(&mut self) -> &mut UninitSlice;
-
- /// Transfer bytes into `self` from `src` and advance the cursor by the
- /// number of bytes written.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- ///
- /// buf.put_u8(b'h');
- /// buf.put(&b"ello"[..]);
- /// buf.put(&b" world"[..]);
- ///
- /// assert_eq!(buf, b"hello world");
- /// ```
- ///
- /// # Panics
- ///
- /// Panics if `self` does not have enough capacity to contain `src`.
- #[inline]
- fn put<T: super::Buf>(&mut self, mut src: T)
- where
- Self: Sized,
- {
- if self.remaining_mut() < src.remaining() {
- panic_advance(&TryGetError {
- requested: src.remaining(),
- available: self.remaining_mut(),
- });
- }
-
- while src.has_remaining() {
- let s = src.chunk();
- let d = self.chunk_mut();
- let cnt = usize::min(s.len(), d.len());
-
- d[..cnt].copy_from_slice(&s[..cnt]);
-
- // SAFETY: We just initialized `cnt` bytes in `self`.
- unsafe { self.advance_mut(cnt) };
- src.advance(cnt);
- }
- }
-
- /// Transfer bytes into `self` from `src` and advance the cursor by the
- /// number of bytes written.
- ///
- /// `self` must have enough remaining capacity to contain all of `src`.
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut dst = [0; 6];
- ///
- /// {
- /// let mut buf = &mut dst[..];
- /// buf.put_slice(b"hello");
- ///
- /// assert_eq!(1, buf.remaining_mut());
- /// }
- ///
- /// assert_eq!(b"hello\0", &dst);
- /// ```
- #[inline]
- fn put_slice(&mut self, mut src: &[u8]) {
- if self.remaining_mut() < src.len() {
- panic_advance(&TryGetError {
- requested: src.len(),
- available: self.remaining_mut(),
- });
- }
-
- while !src.is_empty() {
- let dst = self.chunk_mut();
- let cnt = usize::min(src.len(), dst.len());
-
- dst[..cnt].copy_from_slice(&src[..cnt]);
- src = &src[cnt..];
-
- // SAFETY: We just initialized `cnt` bytes in `self`.
- unsafe { self.advance_mut(cnt) };
- }
- }
-
- /// Put `cnt` bytes `val` into `self`.
- ///
- /// Logically equivalent to calling `self.put_u8(val)` `cnt` times, but may work faster.
- ///
- /// `self` must have at least `cnt` remaining capacity.
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut dst = [0; 6];
- ///
- /// {
- /// let mut buf = &mut dst[..];
- /// buf.put_bytes(b'a', 4);
- ///
- /// assert_eq!(2, buf.remaining_mut());
- /// }
- ///
- /// assert_eq!(b"aaaa\0\0", &dst);
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_bytes(&mut self, val: u8, mut cnt: usize) {
- if self.remaining_mut() < cnt {
- panic_advance(&TryGetError {
- requested: cnt,
- available: self.remaining_mut(),
- })
- }
-
- while cnt > 0 {
- let dst = self.chunk_mut();
- let dst_len = usize::min(dst.len(), cnt);
- // SAFETY: The pointer is valid for `dst_len <= dst.len()` bytes.
- unsafe { core::ptr::write_bytes(dst.as_mut_ptr(), val, dst_len) };
- // SAFETY: We just initialized `dst_len` bytes in `self`.
- unsafe { self.advance_mut(dst_len) };
- cnt -= dst_len;
- }
- }
-
- /// Writes an unsigned 8 bit integer to `self`.
- ///
- /// The current position is advanced by 1.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_u8(0x01);
- /// assert_eq!(buf, b"\x01");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_u8(&mut self, n: u8) {
- let src = [n];
- self.put_slice(&src);
- }
-
- /// Writes a signed 8 bit integer to `self`.
- ///
- /// The current position is advanced by 1.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_i8(0x01);
- /// assert_eq!(buf, b"\x01");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_i8(&mut self, n: i8) {
- let src = [n as u8];
- self.put_slice(&src)
- }
-
- /// Writes an unsigned 16 bit integer to `self` in big-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_u16(0x0809);
- /// assert_eq!(buf, b"\x08\x09");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_u16(&mut self, n: u16) {
- self.put_slice(&n.to_be_bytes())
- }
-
- /// Writes an unsigned 16 bit integer to `self` in little-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_u16_le(0x0809);
- /// assert_eq!(buf, b"\x09\x08");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_u16_le(&mut self, n: u16) {
- self.put_slice(&n.to_le_bytes())
- }
-
- /// Writes an unsigned 16 bit integer to `self` in native-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_u16_ne(0x0809);
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(buf, b"\x08\x09");
- /// } else {
- /// assert_eq!(buf, b"\x09\x08");
- /// }
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_u16_ne(&mut self, n: u16) {
- self.put_slice(&n.to_ne_bytes())
- }
-
- /// Writes a signed 16 bit integer to `self` in big-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_i16(0x0809);
- /// assert_eq!(buf, b"\x08\x09");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_i16(&mut self, n: i16) {
- self.put_slice(&n.to_be_bytes())
- }
-
- /// Writes a signed 16 bit integer to `self` in little-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_i16_le(0x0809);
- /// assert_eq!(buf, b"\x09\x08");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_i16_le(&mut self, n: i16) {
- self.put_slice(&n.to_le_bytes())
- }
-
- /// Writes a signed 16 bit integer to `self` in native-endian byte order.
- ///
- /// The current position is advanced by 2.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_i16_ne(0x0809);
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(buf, b"\x08\x09");
- /// } else {
- /// assert_eq!(buf, b"\x09\x08");
- /// }
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_i16_ne(&mut self, n: i16) {
- self.put_slice(&n.to_ne_bytes())
- }
-
- /// Writes an unsigned 32 bit integer to `self` in big-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_u32(0x0809A0A1);
- /// assert_eq!(buf, b"\x08\x09\xA0\xA1");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_u32(&mut self, n: u32) {
- self.put_slice(&n.to_be_bytes())
- }
-
- /// Writes an unsigned 32 bit integer to `self` in little-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_u32_le(0x0809A0A1);
- /// assert_eq!(buf, b"\xA1\xA0\x09\x08");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_u32_le(&mut self, n: u32) {
- self.put_slice(&n.to_le_bytes())
- }
-
- /// Writes an unsigned 32 bit integer to `self` in native-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_u32_ne(0x0809A0A1);
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(buf, b"\x08\x09\xA0\xA1");
- /// } else {
- /// assert_eq!(buf, b"\xA1\xA0\x09\x08");
- /// }
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_u32_ne(&mut self, n: u32) {
- self.put_slice(&n.to_ne_bytes())
- }
-
- /// Writes a signed 32 bit integer to `self` in big-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_i32(0x0809A0A1);
- /// assert_eq!(buf, b"\x08\x09\xA0\xA1");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_i32(&mut self, n: i32) {
- self.put_slice(&n.to_be_bytes())
- }
-
- /// Writes a signed 32 bit integer to `self` in little-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_i32_le(0x0809A0A1);
- /// assert_eq!(buf, b"\xA1\xA0\x09\x08");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_i32_le(&mut self, n: i32) {
- self.put_slice(&n.to_le_bytes())
- }
-
- /// Writes a signed 32 bit integer to `self` in native-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_i32_ne(0x0809A0A1);
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(buf, b"\x08\x09\xA0\xA1");
- /// } else {
- /// assert_eq!(buf, b"\xA1\xA0\x09\x08");
- /// }
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_i32_ne(&mut self, n: i32) {
- self.put_slice(&n.to_ne_bytes())
- }
-
- /// Writes an unsigned 64 bit integer to `self` in the big-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_u64(0x0102030405060708);
- /// assert_eq!(buf, b"\x01\x02\x03\x04\x05\x06\x07\x08");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_u64(&mut self, n: u64) {
- self.put_slice(&n.to_be_bytes())
- }
-
- /// Writes an unsigned 64 bit integer to `self` in little-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_u64_le(0x0102030405060708);
- /// assert_eq!(buf, b"\x08\x07\x06\x05\x04\x03\x02\x01");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_u64_le(&mut self, n: u64) {
- self.put_slice(&n.to_le_bytes())
- }
-
- /// Writes an unsigned 64 bit integer to `self` in native-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_u64_ne(0x0102030405060708);
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(buf, b"\x01\x02\x03\x04\x05\x06\x07\x08");
- /// } else {
- /// assert_eq!(buf, b"\x08\x07\x06\x05\x04\x03\x02\x01");
- /// }
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_u64_ne(&mut self, n: u64) {
- self.put_slice(&n.to_ne_bytes())
- }
-
- /// Writes a signed 64 bit integer to `self` in the big-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_i64(0x0102030405060708);
- /// assert_eq!(buf, b"\x01\x02\x03\x04\x05\x06\x07\x08");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_i64(&mut self, n: i64) {
- self.put_slice(&n.to_be_bytes())
- }
-
- /// Writes a signed 64 bit integer to `self` in little-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_i64_le(0x0102030405060708);
- /// assert_eq!(buf, b"\x08\x07\x06\x05\x04\x03\x02\x01");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_i64_le(&mut self, n: i64) {
- self.put_slice(&n.to_le_bytes())
- }
-
- /// Writes a signed 64 bit integer to `self` in native-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_i64_ne(0x0102030405060708);
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(buf, b"\x01\x02\x03\x04\x05\x06\x07\x08");
- /// } else {
- /// assert_eq!(buf, b"\x08\x07\x06\x05\x04\x03\x02\x01");
- /// }
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_i64_ne(&mut self, n: i64) {
- self.put_slice(&n.to_ne_bytes())
- }
-
- /// Writes an unsigned 128 bit integer to `self` in the big-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_u128(0x01020304050607080910111213141516);
- /// assert_eq!(buf, b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_u128(&mut self, n: u128) {
- self.put_slice(&n.to_be_bytes())
- }
-
- /// Writes an unsigned 128 bit integer to `self` in little-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_u128_le(0x01020304050607080910111213141516);
- /// assert_eq!(buf, b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02\x01");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_u128_le(&mut self, n: u128) {
- self.put_slice(&n.to_le_bytes())
- }
-
- /// Writes an unsigned 128 bit integer to `self` in native-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_u128_ne(0x01020304050607080910111213141516);
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(buf, b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16");
- /// } else {
- /// assert_eq!(buf, b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02\x01");
- /// }
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_u128_ne(&mut self, n: u128) {
- self.put_slice(&n.to_ne_bytes())
- }
-
- /// Writes a signed 128 bit integer to `self` in the big-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_i128(0x01020304050607080910111213141516);
- /// assert_eq!(buf, b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_i128(&mut self, n: i128) {
- self.put_slice(&n.to_be_bytes())
- }
-
- /// Writes a signed 128 bit integer to `self` in little-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_i128_le(0x01020304050607080910111213141516);
- /// assert_eq!(buf, b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02\x01");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_i128_le(&mut self, n: i128) {
- self.put_slice(&n.to_le_bytes())
- }
-
- /// Writes a signed 128 bit integer to `self` in native-endian byte order.
- ///
- /// The current position is advanced by 16.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_i128_ne(0x01020304050607080910111213141516);
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(buf, b"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x10\x11\x12\x13\x14\x15\x16");
- /// } else {
- /// assert_eq!(buf, b"\x16\x15\x14\x13\x12\x11\x10\x09\x08\x07\x06\x05\x04\x03\x02\x01");
- /// }
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_i128_ne(&mut self, n: i128) {
- self.put_slice(&n.to_ne_bytes())
- }
-
- /// Writes an unsigned n-byte integer to `self` in big-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_uint(0x010203, 3);
- /// assert_eq!(buf, b"\x01\x02\x03");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self` or if `nbytes` is greater than 8.
- #[inline]
- fn put_uint(&mut self, n: u64, nbytes: usize) {
- let start = match mem::size_of_val(&n).checked_sub(nbytes) {
- Some(start) => start,
- None => panic_does_not_fit(nbytes, mem::size_of_val(&n)),
- };
-
- self.put_slice(&n.to_be_bytes()[start..]);
- }
-
- /// Writes an unsigned n-byte integer to `self` in the little-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_uint_le(0x010203, 3);
- /// assert_eq!(buf, b"\x03\x02\x01");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self` or if `nbytes` is greater than 8.
- #[inline]
- fn put_uint_le(&mut self, n: u64, nbytes: usize) {
- let slice = n.to_le_bytes();
- let slice = match slice.get(..nbytes) {
- Some(slice) => slice,
- None => panic_does_not_fit(nbytes, slice.len()),
- };
-
- self.put_slice(slice);
- }
-
- /// Writes an unsigned n-byte integer to `self` in the native-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_uint_ne(0x010203, 3);
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(buf, b"\x01\x02\x03");
- /// } else {
- /// assert_eq!(buf, b"\x03\x02\x01");
- /// }
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self` or if `nbytes` is greater than 8.
- #[inline]
- fn put_uint_ne(&mut self, n: u64, nbytes: usize) {
- if cfg!(target_endian = "big") {
- self.put_uint(n, nbytes)
- } else {
- self.put_uint_le(n, nbytes)
- }
- }
-
- /// Writes low `nbytes` of a signed integer to `self` in big-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_int(0x0504010203, 3);
- /// assert_eq!(buf, b"\x01\x02\x03");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self` or if `nbytes` is greater than 8.
- #[inline]
- fn put_int(&mut self, n: i64, nbytes: usize) {
- let start = match mem::size_of_val(&n).checked_sub(nbytes) {
- Some(start) => start,
- None => panic_does_not_fit(nbytes, mem::size_of_val(&n)),
- };
-
- self.put_slice(&n.to_be_bytes()[start..]);
- }
-
- /// Writes low `nbytes` of a signed integer to `self` in little-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_int_le(0x0504010203, 3);
- /// assert_eq!(buf, b"\x03\x02\x01");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self` or if `nbytes` is greater than 8.
- #[inline]
- fn put_int_le(&mut self, n: i64, nbytes: usize) {
- let slice = n.to_le_bytes();
- let slice = match slice.get(..nbytes) {
- Some(slice) => slice,
- None => panic_does_not_fit(nbytes, slice.len()),
- };
-
- self.put_slice(slice);
- }
-
- /// Writes low `nbytes` of a signed integer to `self` in native-endian byte order.
- ///
- /// The current position is advanced by `nbytes`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_int_ne(0x010203, 3);
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(buf, b"\x01\x02\x03");
- /// } else {
- /// assert_eq!(buf, b"\x03\x02\x01");
- /// }
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self` or if `nbytes` is greater than 8.
- #[inline]
- fn put_int_ne(&mut self, n: i64, nbytes: usize) {
- if cfg!(target_endian = "big") {
- self.put_int(n, nbytes)
- } else {
- self.put_int_le(n, nbytes)
- }
- }
-
- /// Writes an IEEE754 single-precision (4 bytes) floating point number to
- /// `self` in big-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_f32(1.2f32);
- /// assert_eq!(buf, b"\x3F\x99\x99\x9A");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_f32(&mut self, n: f32) {
- self.put_u32(n.to_bits());
- }
-
- /// Writes an IEEE754 single-precision (4 bytes) floating point number to
- /// `self` in little-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_f32_le(1.2f32);
- /// assert_eq!(buf, b"\x9A\x99\x99\x3F");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_f32_le(&mut self, n: f32) {
- self.put_u32_le(n.to_bits());
- }
-
- /// Writes an IEEE754 single-precision (4 bytes) floating point number to
- /// `self` in native-endian byte order.
- ///
- /// The current position is advanced by 4.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_f32_ne(1.2f32);
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(buf, b"\x3F\x99\x99\x9A");
- /// } else {
- /// assert_eq!(buf, b"\x9A\x99\x99\x3F");
- /// }
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_f32_ne(&mut self, n: f32) {
- self.put_u32_ne(n.to_bits());
- }
-
- /// Writes an IEEE754 double-precision (8 bytes) floating point number to
- /// `self` in big-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_f64(1.2f64);
- /// assert_eq!(buf, b"\x3F\xF3\x33\x33\x33\x33\x33\x33");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_f64(&mut self, n: f64) {
- self.put_u64(n.to_bits());
- }
-
- /// Writes an IEEE754 double-precision (8 bytes) floating point number to
- /// `self` in little-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_f64_le(1.2f64);
- /// assert_eq!(buf, b"\x33\x33\x33\x33\x33\x33\xF3\x3F");
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_f64_le(&mut self, n: f64) {
- self.put_u64_le(n.to_bits());
- }
-
- /// Writes an IEEE754 double-precision (8 bytes) floating point number to
- /// `self` in native-endian byte order.
- ///
- /// The current position is advanced by 8.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![];
- /// buf.put_f64_ne(1.2f64);
- /// if cfg!(target_endian = "big") {
- /// assert_eq!(buf, b"\x3F\xF3\x33\x33\x33\x33\x33\x33");
- /// } else {
- /// assert_eq!(buf, b"\x33\x33\x33\x33\x33\x33\xF3\x3F");
- /// }
- /// ```
- ///
- /// # Panics
- ///
- /// This function panics if there is not enough remaining capacity in
- /// `self`.
- #[inline]
- fn put_f64_ne(&mut self, n: f64) {
- self.put_u64_ne(n.to_bits());
- }
-
- /// Creates an adaptor which can write at most `limit` bytes to `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let arr = &mut [0u8; 128][..];
- /// assert_eq!(arr.remaining_mut(), 128);
- ///
- /// let dst = arr.limit(10);
- /// assert_eq!(dst.remaining_mut(), 10);
- /// ```
- #[inline]
- fn limit(self, limit: usize) -> Limit<Self>
- where
- Self: Sized,
- {
- limit::new(self, limit)
- }
-
- /// Creates an adaptor which implements the `Write` trait for `self`.
- ///
- /// This function returns a new value which implements `Write` by adapting
- /// the `Write` trait functions to the `BufMut` trait functions. Given that
- /// `BufMut` operations are infallible, none of the `Write` functions will
- /// return with `Err`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- /// use std::io::Write;
- ///
- /// let mut buf = vec![].writer();
- ///
- /// let num = buf.write(&b"hello world"[..]).unwrap();
- /// assert_eq!(11, num);
- ///
- /// let buf = buf.into_inner();
- ///
- /// assert_eq!(*buf, b"hello world"[..]);
- /// ```
- #[cfg(feature = "std")]
- #[cfg_attr(docsrs, doc(cfg(feature = "std")))]
- #[inline]
- fn writer(self) -> Writer<Self>
- where
- Self: Sized,
- {
- writer::new(self)
- }
-
- /// Creates an adapter which will chain this buffer with another.
- ///
- /// The returned `BufMut` instance will first write to all bytes from
- /// `self`. Afterwards, it will write to `next`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut a = [0u8; 5];
- /// let mut b = [0u8; 6];
- ///
- /// let mut chain = (&mut a[..]).chain_mut(&mut b[..]);
- ///
- /// chain.put_slice(b"hello world");
- ///
- /// assert_eq!(&a[..], b"hello");
- /// assert_eq!(&b[..], b" world");
- /// ```
- #[inline]
- fn chain_mut<U: BufMut>(self, next: U) -> Chain<Self, U>
- where
- Self: Sized,
- {
- Chain::new(self, next)
- }
-}
-
-macro_rules! deref_forward_bufmut {
- () => {
- #[inline]
- fn remaining_mut(&self) -> usize {
- (**self).remaining_mut()
- }
-
- #[inline]
- fn chunk_mut(&mut self) -> &mut UninitSlice {
- (**self).chunk_mut()
- }
-
- #[inline]
- unsafe fn advance_mut(&mut self, cnt: usize) {
- (**self).advance_mut(cnt)
- }
-
- #[inline]
- fn put_slice(&mut self, src: &[u8]) {
- (**self).put_slice(src)
- }
-
- #[inline]
- fn put_u8(&mut self, n: u8) {
- (**self).put_u8(n)
- }
-
- #[inline]
- fn put_i8(&mut self, n: i8) {
- (**self).put_i8(n)
- }
-
- #[inline]
- fn put_u16(&mut self, n: u16) {
- (**self).put_u16(n)
- }
-
- #[inline]
- fn put_u16_le(&mut self, n: u16) {
- (**self).put_u16_le(n)
- }
-
- #[inline]
- fn put_u16_ne(&mut self, n: u16) {
- (**self).put_u16_ne(n)
- }
-
- #[inline]
- fn put_i16(&mut self, n: i16) {
- (**self).put_i16(n)
- }
-
- #[inline]
- fn put_i16_le(&mut self, n: i16) {
- (**self).put_i16_le(n)
- }
-
- #[inline]
- fn put_i16_ne(&mut self, n: i16) {
- (**self).put_i16_ne(n)
- }
-
- #[inline]
- fn put_u32(&mut self, n: u32) {
- (**self).put_u32(n)
- }
-
- #[inline]
- fn put_u32_le(&mut self, n: u32) {
- (**self).put_u32_le(n)
- }
-
- #[inline]
- fn put_u32_ne(&mut self, n: u32) {
- (**self).put_u32_ne(n)
- }
-
- #[inline]
- fn put_i32(&mut self, n: i32) {
- (**self).put_i32(n)
- }
-
- #[inline]
- fn put_i32_le(&mut self, n: i32) {
- (**self).put_i32_le(n)
- }
-
- #[inline]
- fn put_i32_ne(&mut self, n: i32) {
- (**self).put_i32_ne(n)
- }
-
- #[inline]
- fn put_u64(&mut self, n: u64) {
- (**self).put_u64(n)
- }
-
- #[inline]
- fn put_u64_le(&mut self, n: u64) {
- (**self).put_u64_le(n)
- }
-
- #[inline]
- fn put_u64_ne(&mut self, n: u64) {
- (**self).put_u64_ne(n)
- }
-
- #[inline]
- fn put_i64(&mut self, n: i64) {
- (**self).put_i64(n)
- }
-
- #[inline]
- fn put_i64_le(&mut self, n: i64) {
- (**self).put_i64_le(n)
- }
-
- #[inline]
- fn put_i64_ne(&mut self, n: i64) {
- (**self).put_i64_ne(n)
- }
- };
-}
-
-unsafe impl<T: BufMut + ?Sized> BufMut for &mut T {
- deref_forward_bufmut!();
-}
-
-unsafe impl<T: BufMut + ?Sized> BufMut for Box<T> {
- deref_forward_bufmut!();
-}
-
-unsafe impl BufMut for &mut [u8] {
- #[inline]
- fn remaining_mut(&self) -> usize {
- self.len()
- }
-
- #[inline]
- fn chunk_mut(&mut self) -> &mut UninitSlice {
- UninitSlice::new(self)
- }
-
- #[inline]
- unsafe fn advance_mut(&mut self, cnt: usize) {
- if self.len() < cnt {
- panic_advance(&TryGetError {
- requested: cnt,
- available: self.len(),
- });
- }
-
- // Lifetime dance taken from `impl Write for &mut [u8]`.
- let (_, b) = core::mem::replace(self, &mut []).split_at_mut(cnt);
- *self = b;
- }
-
- #[inline]
- fn put_slice(&mut self, src: &[u8]) {
- if self.len() < src.len() {
- panic_advance(&TryGetError {
- requested: src.len(),
- available: self.len(),
- });
- }
-
- self[..src.len()].copy_from_slice(src);
- // SAFETY: We just initialized `src.len()` bytes.
- unsafe { self.advance_mut(src.len()) };
- }
-
- #[inline]
- fn put_bytes(&mut self, val: u8, cnt: usize) {
- if self.len() < cnt {
- panic_advance(&TryGetError {
- requested: cnt,
- available: self.len(),
- });
- }
-
- // SAFETY: We just checked that the pointer is valid for `cnt` bytes.
- unsafe {
- ptr::write_bytes(self.as_mut_ptr(), val, cnt);
- self.advance_mut(cnt);
- }
- }
-}
-
-unsafe impl BufMut for &mut [core::mem::MaybeUninit<u8>] {
- #[inline]
- fn remaining_mut(&self) -> usize {
- self.len()
- }
-
- #[inline]
- fn chunk_mut(&mut self) -> &mut UninitSlice {
- UninitSlice::uninit(self)
- }
-
- #[inline]
- unsafe fn advance_mut(&mut self, cnt: usize) {
- if self.len() < cnt {
- panic_advance(&TryGetError {
- requested: cnt,
- available: self.len(),
- });
- }
-
- // Lifetime dance taken from `impl Write for &mut [u8]`.
- let (_, b) = core::mem::replace(self, &mut []).split_at_mut(cnt);
- *self = b;
- }
-
- #[inline]
- fn put_slice(&mut self, src: &[u8]) {
- if self.len() < src.len() {
- panic_advance(&TryGetError {
- requested: src.len(),
- available: self.len(),
- });
- }
-
- // SAFETY: We just checked that the pointer is valid for `src.len()` bytes.
- unsafe {
- ptr::copy_nonoverlapping(src.as_ptr(), self.as_mut_ptr().cast(), src.len());
- self.advance_mut(src.len());
- }
- }
-
- #[inline]
- fn put_bytes(&mut self, val: u8, cnt: usize) {
- if self.len() < cnt {
- panic_advance(&TryGetError {
- requested: cnt,
- available: self.len(),
- });
- }
-
- // SAFETY: We just checked that the pointer is valid for `cnt` bytes.
- unsafe {
- ptr::write_bytes(self.as_mut_ptr() as *mut u8, val, cnt);
- self.advance_mut(cnt);
- }
- }
-}
-
-unsafe impl BufMut for Vec<u8> {
- #[inline]
- fn remaining_mut(&self) -> usize {
- // A vector can never have more than isize::MAX bytes
- core::isize::MAX as usize - self.len()
- }
-
- #[inline]
- unsafe fn advance_mut(&mut self, cnt: usize) {
- let len = self.len();
- let remaining = self.capacity() - len;
-
- if remaining < cnt {
- panic_advance(&TryGetError {
- requested: cnt,
- available: remaining,
- });
- }
-
- // Addition will not overflow since the sum is at most the capacity.
- self.set_len(len + cnt);
- }
-
- #[inline]
- fn chunk_mut(&mut self) -> &mut UninitSlice {
- if self.capacity() == self.len() {
- self.reserve(64); // Grow the vec
- }
-
- let cap = self.capacity();
- let len = self.len();
-
- let ptr = self.as_mut_ptr();
- // SAFETY: Since `ptr` is valid for `cap` bytes, `ptr.add(len)` must be
- // valid for `cap - len` bytes. The subtraction will not underflow since
- // `len <= cap`.
- unsafe { UninitSlice::from_raw_parts_mut(ptr.add(len), cap - len) }
- }
-
- // Specialize these methods so they can skip checking `remaining_mut`
- // and `advance_mut`.
- #[inline]
- fn put<T: super::Buf>(&mut self, mut src: T)
- where
- Self: Sized,
- {
- // In case the src isn't contiguous, reserve upfront.
- self.reserve(src.remaining());
-
- while src.has_remaining() {
- let s = src.chunk();
- let l = s.len();
- self.extend_from_slice(s);
- src.advance(l);
- }
- }
-
- #[inline]
- fn put_slice(&mut self, src: &[u8]) {
- self.extend_from_slice(src);
- }
-
- #[inline]
- fn put_bytes(&mut self, val: u8, cnt: usize) {
- // If the addition overflows, then the `resize` will fail.
- let new_len = self.len().saturating_add(cnt);
- self.resize(new_len, val);
- }
-}
-
-// The existence of this function makes the compiler catch if the BufMut
-// trait is "object-safe" or not.
-fn _assert_trait_object(_b: &dyn BufMut) {}
diff --git a/vendor/bytes/src/buf/chain.rs b/vendor/bytes/src/buf/chain.rs
deleted file mode 100644
index c8bc36de..00000000
--- a/vendor/bytes/src/buf/chain.rs
+++ /dev/null
@@ -1,240 +0,0 @@
-use crate::buf::{IntoIter, UninitSlice};
-use crate::{Buf, BufMut};
-
-#[cfg(feature = "std")]
-use std::io::IoSlice;
-
-/// A `Chain` sequences two buffers.
-///
-/// `Chain` is an adapter that links two underlying buffers and provides a
-/// continuous view across both buffers. It is able to sequence either immutable
-/// buffers ([`Buf`] values) or mutable buffers ([`BufMut`] values).
-///
-/// This struct is generally created by calling [`Buf::chain`]. Please see that
-/// function's documentation for more detail.
-///
-/// # Examples
-///
-/// ```
-/// use bytes::{Bytes, Buf};
-///
-/// let mut buf = (&b"hello "[..])
-/// .chain(&b"world"[..]);
-///
-/// let full: Bytes = buf.copy_to_bytes(11);
-/// assert_eq!(full[..], b"hello world"[..]);
-/// ```
-///
-/// [`Buf::chain`]: Buf::chain
-#[derive(Debug)]
-pub struct Chain<T, U> {
- a: T,
- b: U,
-}
-
-impl<T, U> Chain<T, U> {
- /// Creates a new `Chain` sequencing the provided values.
- pub(crate) fn new(a: T, b: U) -> Chain<T, U> {
- Chain { a, b }
- }
-
- /// Gets a reference to the first underlying `Buf`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let buf = (&b"hello"[..])
- /// .chain(&b"world"[..]);
- ///
- /// assert_eq!(buf.first_ref()[..], b"hello"[..]);
- /// ```
- pub fn first_ref(&self) -> &T {
- &self.a
- }
-
- /// Gets a mutable reference to the first underlying `Buf`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = (&b"hello"[..])
- /// .chain(&b"world"[..]);
- ///
- /// buf.first_mut().advance(1);
- ///
- /// let full = buf.copy_to_bytes(9);
- /// assert_eq!(full, b"elloworld"[..]);
- /// ```
- pub fn first_mut(&mut self) -> &mut T {
- &mut self.a
- }
-
- /// Gets a reference to the last underlying `Buf`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let buf = (&b"hello"[..])
- /// .chain(&b"world"[..]);
- ///
- /// assert_eq!(buf.last_ref()[..], b"world"[..]);
- /// ```
- pub fn last_ref(&self) -> &U {
- &self.b
- }
-
- /// Gets a mutable reference to the last underlying `Buf`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let mut buf = (&b"hello "[..])
- /// .chain(&b"world"[..]);
- ///
- /// buf.last_mut().advance(1);
- ///
- /// let full = buf.copy_to_bytes(10);
- /// assert_eq!(full, b"hello orld"[..]);
- /// ```
- pub fn last_mut(&mut self) -> &mut U {
- &mut self.b
- }
-
- /// Consumes this `Chain`, returning the underlying values.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Buf;
- ///
- /// let chain = (&b"hello"[..])
- /// .chain(&b"world"[..]);
- ///
- /// let (first, last) = chain.into_inner();
- /// assert_eq!(first[..], b"hello"[..]);
- /// assert_eq!(last[..], b"world"[..]);
- /// ```
- pub fn into_inner(self) -> (T, U) {
- (self.a, self.b)
- }
-}
-
-impl<T, U> Buf for Chain<T, U>
-where
- T: Buf,
- U: Buf,
-{
- fn remaining(&self) -> usize {
- self.a.remaining().saturating_add(self.b.remaining())
- }
-
- fn chunk(&self) -> &[u8] {
- if self.a.has_remaining() {
- self.a.chunk()
- } else {
- self.b.chunk()
- }
- }
-
- fn advance(&mut self, mut cnt: usize) {
- let a_rem = self.a.remaining();
-
- if a_rem != 0 {
- if a_rem >= cnt {
- self.a.advance(cnt);
- return;
- }
-
- // Consume what is left of a
- self.a.advance(a_rem);
-
- cnt -= a_rem;
- }
-
- self.b.advance(cnt);
- }
-
- #[cfg(feature = "std")]
- fn chunks_vectored<'a>(&'a self, dst: &mut [IoSlice<'a>]) -> usize {
- let mut n = self.a.chunks_vectored(dst);
- n += self.b.chunks_vectored(&mut dst[n..]);
- n
- }
-
- fn copy_to_bytes(&mut self, len: usize) -> crate::Bytes {
- let a_rem = self.a.remaining();
- if a_rem >= len {
- self.a.copy_to_bytes(len)
- } else if a_rem == 0 {
- self.b.copy_to_bytes(len)
- } else {
- assert!(
- len - a_rem <= self.b.remaining(),
- "`len` greater than remaining"
- );
- let mut ret = crate::BytesMut::with_capacity(len);
- ret.put(&mut self.a);
- ret.put((&mut self.b).take(len - a_rem));
- ret.freeze()
- }
- }
-}
-
-unsafe impl<T, U> BufMut for Chain<T, U>
-where
- T: BufMut,
- U: BufMut,
-{
- fn remaining_mut(&self) -> usize {
- self.a
- .remaining_mut()
- .saturating_add(self.b.remaining_mut())
- }
-
- fn chunk_mut(&mut self) -> &mut UninitSlice {
- if self.a.has_remaining_mut() {
- self.a.chunk_mut()
- } else {
- self.b.chunk_mut()
- }
- }
-
- unsafe fn advance_mut(&mut self, mut cnt: usize) {
- let a_rem = self.a.remaining_mut();
-
- if a_rem != 0 {
- if a_rem >= cnt {
- self.a.advance_mut(cnt);
- return;
- }
-
- // Consume what is left of a
- self.a.advance_mut(a_rem);
-
- cnt -= a_rem;
- }
-
- self.b.advance_mut(cnt);
- }
-}
-
-impl<T, U> IntoIterator for Chain<T, U>
-where
- T: Buf,
- U: Buf,
-{
- type Item = u8;
- type IntoIter = IntoIter<Chain<T, U>>;
-
- fn into_iter(self) -> Self::IntoIter {
- IntoIter::new(self)
- }
-}
diff --git a/vendor/bytes/src/buf/iter.rs b/vendor/bytes/src/buf/iter.rs
deleted file mode 100644
index 74f9b991..00000000
--- a/vendor/bytes/src/buf/iter.rs
+++ /dev/null
@@ -1,127 +0,0 @@
-use crate::Buf;
-
-/// Iterator over the bytes contained by the buffer.
-///
-/// # Examples
-///
-/// Basic usage:
-///
-/// ```
-/// use bytes::Bytes;
-///
-/// let buf = Bytes::from(&b"abc"[..]);
-/// let mut iter = buf.into_iter();
-///
-/// assert_eq!(iter.next(), Some(b'a'));
-/// assert_eq!(iter.next(), Some(b'b'));
-/// assert_eq!(iter.next(), Some(b'c'));
-/// assert_eq!(iter.next(), None);
-/// ```
-#[derive(Debug)]
-pub struct IntoIter<T> {
- inner: T,
-}
-
-impl<T> IntoIter<T> {
- /// Creates an iterator over the bytes contained by the buffer.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Bytes;
- ///
- /// let buf = Bytes::from_static(b"abc");
- /// let mut iter = buf.into_iter();
- ///
- /// assert_eq!(iter.next(), Some(b'a'));
- /// assert_eq!(iter.next(), Some(b'b'));
- /// assert_eq!(iter.next(), Some(b'c'));
- /// assert_eq!(iter.next(), None);
- /// ```
- pub fn new(inner: T) -> IntoIter<T> {
- IntoIter { inner }
- }
-
- /// Consumes this `IntoIter`, returning the underlying value.
- ///
- /// # Examples
- ///
- /// ```rust
- /// use bytes::{Buf, Bytes};
- ///
- /// let buf = Bytes::from(&b"abc"[..]);
- /// let mut iter = buf.into_iter();
- ///
- /// assert_eq!(iter.next(), Some(b'a'));
- ///
- /// let buf = iter.into_inner();
- /// assert_eq!(2, buf.remaining());
- /// ```
- pub fn into_inner(self) -> T {
- self.inner
- }
-
- /// Gets a reference to the underlying `Buf`.
- ///
- /// It is inadvisable to directly read from the underlying `Buf`.
- ///
- /// # Examples
- ///
- /// ```rust
- /// use bytes::{Buf, Bytes};
- ///
- /// let buf = Bytes::from(&b"abc"[..]);
- /// let mut iter = buf.into_iter();
- ///
- /// assert_eq!(iter.next(), Some(b'a'));
- ///
- /// assert_eq!(2, iter.get_ref().remaining());
- /// ```
- pub fn get_ref(&self) -> &T {
- &self.inner
- }
-
- /// Gets a mutable reference to the underlying `Buf`.
- ///
- /// It is inadvisable to directly read from the underlying `Buf`.
- ///
- /// # Examples
- ///
- /// ```rust
- /// use bytes::{Buf, BytesMut};
- ///
- /// let buf = BytesMut::from(&b"abc"[..]);
- /// let mut iter = buf.into_iter();
- ///
- /// assert_eq!(iter.next(), Some(b'a'));
- ///
- /// iter.get_mut().advance(1);
- ///
- /// assert_eq!(iter.next(), Some(b'c'));
- /// ```
- pub fn get_mut(&mut self) -> &mut T {
- &mut self.inner
- }
-}
-
-impl<T: Buf> Iterator for IntoIter<T> {
- type Item = u8;
-
- fn next(&mut self) -> Option<u8> {
- if !self.inner.has_remaining() {
- return None;
- }
-
- let b = self.inner.chunk()[0];
- self.inner.advance(1);
-
- Some(b)
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- let rem = self.inner.remaining();
- (rem, Some(rem))
- }
-}
-
-impl<T: Buf> ExactSizeIterator for IntoIter<T> {}
diff --git a/vendor/bytes/src/buf/limit.rs b/vendor/bytes/src/buf/limit.rs
deleted file mode 100644
index b422be53..00000000
--- a/vendor/bytes/src/buf/limit.rs
+++ /dev/null
@@ -1,75 +0,0 @@
-use crate::buf::UninitSlice;
-use crate::BufMut;
-
-use core::cmp;
-
-/// A `BufMut` adapter which limits the amount of bytes that can be written
-/// to an underlying buffer.
-#[derive(Debug)]
-pub struct Limit<T> {
- inner: T,
- limit: usize,
-}
-
-pub(super) fn new<T>(inner: T, limit: usize) -> Limit<T> {
- Limit { inner, limit }
-}
-
-impl<T> Limit<T> {
- /// Consumes this `Limit`, returning the underlying value.
- pub fn into_inner(self) -> T {
- self.inner
- }
-
- /// Gets a reference to the underlying `BufMut`.
- ///
- /// It is inadvisable to directly write to the underlying `BufMut`.
- pub fn get_ref(&self) -> &T {
- &self.inner
- }
-
- /// Gets a mutable reference to the underlying `BufMut`.
- ///
- /// It is inadvisable to directly write to the underlying `BufMut`.
- pub fn get_mut(&mut self) -> &mut T {
- &mut self.inner
- }
-
- /// Returns the maximum number of bytes that can be written
- ///
- /// # Note
- ///
- /// If the inner `BufMut` has fewer bytes than indicated by this method then
- /// that is the actual number of available bytes.
- pub fn limit(&self) -> usize {
- self.limit
- }
-
- /// Sets the maximum number of bytes that can be written.
- ///
- /// # Note
- ///
- /// If the inner `BufMut` has fewer bytes than `lim` then that is the actual
- /// number of available bytes.
- pub fn set_limit(&mut self, lim: usize) {
- self.limit = lim
- }
-}
-
-unsafe impl<T: BufMut> BufMut for Limit<T> {
- fn remaining_mut(&self) -> usize {
- cmp::min(self.inner.remaining_mut(), self.limit)
- }
-
- fn chunk_mut(&mut self) -> &mut UninitSlice {
- let bytes = self.inner.chunk_mut();
- let end = cmp::min(bytes.len(), self.limit);
- &mut bytes[..end]
- }
-
- unsafe fn advance_mut(&mut self, cnt: usize) {
- assert!(cnt <= self.limit);
- self.inner.advance_mut(cnt);
- self.limit -= cnt;
- }
-}
diff --git a/vendor/bytes/src/buf/mod.rs b/vendor/bytes/src/buf/mod.rs
deleted file mode 100644
index 1bf0a47e..00000000
--- a/vendor/bytes/src/buf/mod.rs
+++ /dev/null
@@ -1,39 +0,0 @@
-//! Utilities for working with buffers.
-//!
-//! A buffer is any structure that contains a sequence of bytes. The bytes may
-//! or may not be stored in contiguous memory. This module contains traits used
-//! to abstract over buffers as well as utilities for working with buffer types.
-//!
-//! # `Buf`, `BufMut`
-//!
-//! These are the two foundational traits for abstractly working with buffers.
-//! They can be thought as iterators for byte structures. They offer additional
-//! performance over `Iterator` by providing an API optimized for byte slices.
-//!
-//! See [`Buf`] and [`BufMut`] for more details.
-//!
-//! [rope]: https://en.wikipedia.org/wiki/Rope_(data_structure)
-
-mod buf_impl;
-mod buf_mut;
-mod chain;
-mod iter;
-mod limit;
-#[cfg(feature = "std")]
-mod reader;
-mod take;
-mod uninit_slice;
-mod vec_deque;
-#[cfg(feature = "std")]
-mod writer;
-
-pub use self::buf_impl::Buf;
-pub use self::buf_mut::BufMut;
-pub use self::chain::Chain;
-pub use self::iter::IntoIter;
-pub use self::limit::Limit;
-pub use self::take::Take;
-pub use self::uninit_slice::UninitSlice;
-
-#[cfg(feature = "std")]
-pub use self::{reader::Reader, writer::Writer};
diff --git a/vendor/bytes/src/buf/reader.rs b/vendor/bytes/src/buf/reader.rs
deleted file mode 100644
index 52149495..00000000
--- a/vendor/bytes/src/buf/reader.rs
+++ /dev/null
@@ -1,81 +0,0 @@
-use crate::Buf;
-
-use std::{cmp, io};
-
-/// A `Buf` adapter which implements `io::Read` for the inner value.
-///
-/// This struct is generally created by calling `reader()` on `Buf`. See
-/// documentation of [`reader()`](Buf::reader) for more
-/// details.
-#[derive(Debug)]
-pub struct Reader<B> {
- buf: B,
-}
-
-pub fn new<B>(buf: B) -> Reader<B> {
- Reader { buf }
-}
-
-impl<B: Buf> Reader<B> {
- /// Gets a reference to the underlying `Buf`.
- ///
- /// It is inadvisable to directly read from the underlying `Buf`.
- ///
- /// # Examples
- ///
- /// ```rust
- /// use bytes::Buf;
- ///
- /// let buf = b"hello world".reader();
- ///
- /// assert_eq!(b"hello world", buf.get_ref());
- /// ```
- pub fn get_ref(&self) -> &B {
- &self.buf
- }
-
- /// Gets a mutable reference to the underlying `Buf`.
- ///
- /// It is inadvisable to directly read from the underlying `Buf`.
- pub fn get_mut(&mut self) -> &mut B {
- &mut self.buf
- }
-
- /// Consumes this `Reader`, returning the underlying value.
- ///
- /// # Examples
- ///
- /// ```rust
- /// use bytes::Buf;
- /// use std::io;
- ///
- /// let mut buf = b"hello world".reader();
- /// let mut dst = vec![];
- ///
- /// io::copy(&mut buf, &mut dst).unwrap();
- ///
- /// let buf = buf.into_inner();
- /// assert_eq!(0, buf.remaining());
- /// ```
- pub fn into_inner(self) -> B {
- self.buf
- }
-}
-
-impl<B: Buf + Sized> io::Read for Reader<B> {
- fn read(&mut self, dst: &mut [u8]) -> io::Result<usize> {
- let len = cmp::min(self.buf.remaining(), dst.len());
-
- Buf::copy_to_slice(&mut self.buf, &mut dst[0..len]);
- Ok(len)
- }
-}
-
-impl<B: Buf + Sized> io::BufRead for Reader<B> {
- fn fill_buf(&mut self) -> io::Result<&[u8]> {
- Ok(self.buf.chunk())
- }
- fn consume(&mut self, amt: usize) {
- self.buf.advance(amt)
- }
-}
diff --git a/vendor/bytes/src/buf/take.rs b/vendor/bytes/src/buf/take.rs
deleted file mode 100644
index acfeef6e..00000000
--- a/vendor/bytes/src/buf/take.rs
+++ /dev/null
@@ -1,204 +0,0 @@
-use crate::Buf;
-
-use core::cmp;
-
-#[cfg(feature = "std")]
-use std::io::IoSlice;
-
-/// A `Buf` adapter which limits the bytes read from an underlying buffer.
-///
-/// This struct is generally created by calling `take()` on `Buf`. See
-/// documentation of [`take()`](Buf::take) for more details.
-#[derive(Debug)]
-pub struct Take<T> {
- inner: T,
- limit: usize,
-}
-
-pub fn new<T>(inner: T, limit: usize) -> Take<T> {
- Take { inner, limit }
-}
-
-impl<T> Take<T> {
- /// Consumes this `Take`, returning the underlying value.
- ///
- /// # Examples
- ///
- /// ```rust
- /// use bytes::{Buf, BufMut};
- ///
- /// let mut buf = b"hello world".take(2);
- /// let mut dst = vec![];
- ///
- /// dst.put(&mut buf);
- /// assert_eq!(*dst, b"he"[..]);
- ///
- /// let mut buf = buf.into_inner();
- ///
- /// dst.clear();
- /// dst.put(&mut buf);
- /// assert_eq!(*dst, b"llo world"[..]);
- /// ```
- pub fn into_inner(self) -> T {
- self.inner
- }
-
- /// Gets a reference to the underlying `Buf`.
- ///
- /// It is inadvisable to directly read from the underlying `Buf`.
- ///
- /// # Examples
- ///
- /// ```rust
- /// use bytes::Buf;
- ///
- /// let buf = b"hello world".take(2);
- ///
- /// assert_eq!(11, buf.get_ref().remaining());
- /// ```
- pub fn get_ref(&self) -> &T {
- &self.inner
- }
-
- /// Gets a mutable reference to the underlying `Buf`.
- ///
- /// It is inadvisable to directly read from the underlying `Buf`.
- ///
- /// # Examples
- ///
- /// ```rust
- /// use bytes::{Buf, BufMut};
- ///
- /// let mut buf = b"hello world".take(2);
- /// let mut dst = vec![];
- ///
- /// buf.get_mut().advance(2);
- ///
- /// dst.put(&mut buf);
- /// assert_eq!(*dst, b"ll"[..]);
- /// ```
- pub fn get_mut(&mut self) -> &mut T {
- &mut self.inner
- }
-
- /// Returns the maximum number of bytes that can be read.
- ///
- /// # Note
- ///
- /// If the inner `Buf` has fewer bytes than indicated by this method then
- /// that is the actual number of available bytes.
- ///
- /// # Examples
- ///
- /// ```rust
- /// use bytes::Buf;
- ///
- /// let mut buf = b"hello world".take(2);
- ///
- /// assert_eq!(2, buf.limit());
- /// assert_eq!(b'h', buf.get_u8());
- /// assert_eq!(1, buf.limit());
- /// ```
- pub fn limit(&self) -> usize {
- self.limit
- }
-
- /// Sets the maximum number of bytes that can be read.
- ///
- /// # Note
- ///
- /// If the inner `Buf` has fewer bytes than `lim` then that is the actual
- /// number of available bytes.
- ///
- /// # Examples
- ///
- /// ```rust
- /// use bytes::{Buf, BufMut};
- ///
- /// let mut buf = b"hello world".take(2);
- /// let mut dst = vec![];
- ///
- /// dst.put(&mut buf);
- /// assert_eq!(*dst, b"he"[..]);
- ///
- /// dst.clear();
- ///
- /// buf.set_limit(3);
- /// dst.put(&mut buf);
- /// assert_eq!(*dst, b"llo"[..]);
- /// ```
- pub fn set_limit(&mut self, lim: usize) {
- self.limit = lim
- }
-}
-
-impl<T: Buf> Buf for Take<T> {
- fn remaining(&self) -> usize {
- cmp::min(self.inner.remaining(), self.limit)
- }
-
- fn chunk(&self) -> &[u8] {
- let bytes = self.inner.chunk();
- &bytes[..cmp::min(bytes.len(), self.limit)]
- }
-
- fn advance(&mut self, cnt: usize) {
- assert!(cnt <= self.limit);
- self.inner.advance(cnt);
- self.limit -= cnt;
- }
-
- fn copy_to_bytes(&mut self, len: usize) -> crate::Bytes {
- assert!(len <= self.remaining(), "`len` greater than remaining");
-
- let r = self.inner.copy_to_bytes(len);
- self.limit -= len;
- r
- }
-
- #[cfg(feature = "std")]
- fn chunks_vectored<'a>(&'a self, dst: &mut [IoSlice<'a>]) -> usize {
- if self.limit == 0 {
- return 0;
- }
-
- const LEN: usize = 16;
- let mut slices: [IoSlice<'a>; LEN] = [
- IoSlice::new(&[]),
- IoSlice::new(&[]),
- IoSlice::new(&[]),
- IoSlice::new(&[]),
- IoSlice::new(&[]),
- IoSlice::new(&[]),
- IoSlice::new(&[]),
- IoSlice::new(&[]),
- IoSlice::new(&[]),
- IoSlice::new(&[]),
- IoSlice::new(&[]),
- IoSlice::new(&[]),
- IoSlice::new(&[]),
- IoSlice::new(&[]),
- IoSlice::new(&[]),
- IoSlice::new(&[]),
- ];
-
- let cnt = self
- .inner
- .chunks_vectored(&mut slices[..dst.len().min(LEN)]);
- let mut limit = self.limit;
- for (i, (dst, slice)) in dst[..cnt].iter_mut().zip(slices.iter()).enumerate() {
- if let Some(buf) = slice.get(..limit) {
- // SAFETY: We could do this safely with `IoSlice::advance` if we had a larger MSRV.
- let buf = unsafe { std::mem::transmute::<&[u8], &'a [u8]>(buf) };
- *dst = IoSlice::new(buf);
- return i + 1;
- } else {
- // SAFETY: We could do this safely with `IoSlice::advance` if we had a larger MSRV.
- let buf = unsafe { std::mem::transmute::<&[u8], &'a [u8]>(slice) };
- *dst = IoSlice::new(buf);
- limit -= slice.len();
- }
- }
- cnt
- }
-}
diff --git a/vendor/bytes/src/buf/uninit_slice.rs b/vendor/bytes/src/buf/uninit_slice.rs
deleted file mode 100644
index aea096ae..00000000
--- a/vendor/bytes/src/buf/uninit_slice.rs
+++ /dev/null
@@ -1,257 +0,0 @@
-use core::fmt;
-use core::mem::MaybeUninit;
-use core::ops::{
- Index, IndexMut, Range, RangeFrom, RangeFull, RangeInclusive, RangeTo, RangeToInclusive,
-};
-
-/// Uninitialized byte slice.
-///
-/// Returned by `BufMut::chunk_mut()`, the referenced byte slice may be
-/// uninitialized. The wrapper provides safe access without introducing
-/// undefined behavior.
-///
-/// The safety invariants of this wrapper are:
-///
-/// 1. Reading from an `UninitSlice` is undefined behavior.
-/// 2. Writing uninitialized bytes to an `UninitSlice` is undefined behavior.
-///
-/// The difference between `&mut UninitSlice` and `&mut [MaybeUninit<u8>]` is
-/// that it is possible in safe code to write uninitialized bytes to an
-/// `&mut [MaybeUninit<u8>]`, which this type prohibits.
-#[repr(transparent)]
-pub struct UninitSlice([MaybeUninit<u8>]);
-
-impl UninitSlice {
- /// Creates a `&mut UninitSlice` wrapping a slice of initialised memory.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::buf::UninitSlice;
- ///
- /// let mut buffer = [0u8; 64];
- /// let slice = UninitSlice::new(&mut buffer[..]);
- /// ```
- #[inline]
- pub fn new(slice: &mut [u8]) -> &mut UninitSlice {
- unsafe { &mut *(slice as *mut [u8] as *mut [MaybeUninit<u8>] as *mut UninitSlice) }
- }
-
- /// Creates a `&mut UninitSlice` wrapping a slice of uninitialised memory.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::buf::UninitSlice;
- /// use core::mem::MaybeUninit;
- ///
- /// let mut buffer = [MaybeUninit::uninit(); 64];
- /// let slice = UninitSlice::uninit(&mut buffer[..]);
- ///
- /// let mut vec = Vec::with_capacity(1024);
- /// let spare: &mut UninitSlice = vec.spare_capacity_mut().into();
- /// ```
- #[inline]
- pub fn uninit(slice: &mut [MaybeUninit<u8>]) -> &mut UninitSlice {
- unsafe { &mut *(slice as *mut [MaybeUninit<u8>] as *mut UninitSlice) }
- }
-
- fn uninit_ref(slice: &[MaybeUninit<u8>]) -> &UninitSlice {
- unsafe { &*(slice as *const [MaybeUninit<u8>] as *const UninitSlice) }
- }
-
- /// Create a `&mut UninitSlice` from a pointer and a length.
- ///
- /// # Safety
- ///
- /// The caller must ensure that `ptr` references a valid memory region owned
- /// by the caller representing a byte slice for the duration of `'a`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::buf::UninitSlice;
- ///
- /// let bytes = b"hello world".to_vec();
- /// let ptr = bytes.as_ptr() as *mut _;
- /// let len = bytes.len();
- ///
- /// let slice = unsafe { UninitSlice::from_raw_parts_mut(ptr, len) };
- /// ```
- #[inline]
- pub unsafe fn from_raw_parts_mut<'a>(ptr: *mut u8, len: usize) -> &'a mut UninitSlice {
- let maybe_init: &mut [MaybeUninit<u8>] =
- core::slice::from_raw_parts_mut(ptr as *mut _, len);
- Self::uninit(maybe_init)
- }
-
- /// Write a single byte at the specified offset.
- ///
- /// # Panics
- ///
- /// The function panics if `index` is out of bounds.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::buf::UninitSlice;
- ///
- /// let mut data = [b'f', b'o', b'o'];
- /// let slice = unsafe { UninitSlice::from_raw_parts_mut(data.as_mut_ptr(), 3) };
- ///
- /// slice.write_byte(0, b'b');
- ///
- /// assert_eq!(b"boo", &data[..]);
- /// ```
- #[inline]
- pub fn write_byte(&mut self, index: usize, byte: u8) {
- assert!(index < self.len());
-
- unsafe { self[index..].as_mut_ptr().write(byte) }
- }
-
- /// Copies bytes from `src` into `self`.
- ///
- /// The length of `src` must be the same as `self`.
- ///
- /// # Panics
- ///
- /// The function panics if `src` has a different length than `self`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::buf::UninitSlice;
- ///
- /// let mut data = [b'f', b'o', b'o'];
- /// let slice = unsafe { UninitSlice::from_raw_parts_mut(data.as_mut_ptr(), 3) };
- ///
- /// slice.copy_from_slice(b"bar");
- ///
- /// assert_eq!(b"bar", &data[..]);
- /// ```
- #[inline]
- pub fn copy_from_slice(&mut self, src: &[u8]) {
- use core::ptr;
-
- assert_eq!(self.len(), src.len());
-
- unsafe {
- ptr::copy_nonoverlapping(src.as_ptr(), self.as_mut_ptr(), self.len());
- }
- }
-
- /// Return a raw pointer to the slice's buffer.
- ///
- /// # Safety
- ///
- /// The caller **must not** read from the referenced memory and **must not**
- /// write **uninitialized** bytes to the slice either.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut data = [0, 1, 2];
- /// let mut slice = &mut data[..];
- /// let ptr = BufMut::chunk_mut(&mut slice).as_mut_ptr();
- /// ```
- #[inline]
- pub fn as_mut_ptr(&mut self) -> *mut u8 {
- self.0.as_mut_ptr() as *mut _
- }
-
- /// Return a `&mut [MaybeUninit<u8>]` to this slice's buffer.
- ///
- /// # Safety
- ///
- /// The caller **must not** read from the referenced memory and **must not** write
- /// **uninitialized** bytes to the slice either. This is because `BufMut` implementation
- /// that created the `UninitSlice` knows which parts are initialized. Writing uninitialized
- /// bytes to the slice may cause the `BufMut` to read those bytes and trigger undefined
- /// behavior.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut data = [0, 1, 2];
- /// let mut slice = &mut data[..];
- /// unsafe {
- /// let uninit_slice = BufMut::chunk_mut(&mut slice).as_uninit_slice_mut();
- /// };
- /// ```
- #[inline]
- pub unsafe fn as_uninit_slice_mut(&mut self) -> &mut [MaybeUninit<u8>] {
- &mut self.0
- }
-
- /// Returns the number of bytes in the slice.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BufMut;
- ///
- /// let mut data = [0, 1, 2];
- /// let mut slice = &mut data[..];
- /// let len = BufMut::chunk_mut(&mut slice).len();
- ///
- /// assert_eq!(len, 3);
- /// ```
- #[inline]
- pub fn len(&self) -> usize {
- self.0.len()
- }
-}
-
-impl fmt::Debug for UninitSlice {
- fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
- fmt.debug_struct("UninitSlice[...]").finish()
- }
-}
-
-impl<'a> From<&'a mut [u8]> for &'a mut UninitSlice {
- fn from(slice: &'a mut [u8]) -> Self {
- UninitSlice::new(slice)
- }
-}
-
-impl<'a> From<&'a mut [MaybeUninit<u8>]> for &'a mut UninitSlice {
- fn from(slice: &'a mut [MaybeUninit<u8>]) -> Self {
- UninitSlice::uninit(slice)
- }
-}
-
-macro_rules! impl_index {
- ($($t:ty),*) => {
- $(
- impl Index<$t> for UninitSlice {
- type Output = UninitSlice;
-
- #[inline]
- fn index(&self, index: $t) -> &UninitSlice {
- UninitSlice::uninit_ref(&self.0[index])
- }
- }
-
- impl IndexMut<$t> for UninitSlice {
- #[inline]
- fn index_mut(&mut self, index: $t) -> &mut UninitSlice {
- UninitSlice::uninit(&mut self.0[index])
- }
- }
- )*
- };
-}
-
-impl_index!(
- Range<usize>,
- RangeFrom<usize>,
- RangeFull,
- RangeInclusive<usize>,
- RangeTo<usize>,
- RangeToInclusive<usize>
-);
diff --git a/vendor/bytes/src/buf/vec_deque.rs b/vendor/bytes/src/buf/vec_deque.rs
deleted file mode 100644
index 55d5636b..00000000
--- a/vendor/bytes/src/buf/vec_deque.rs
+++ /dev/null
@@ -1,40 +0,0 @@
-use alloc::collections::VecDeque;
-#[cfg(feature = "std")]
-use std::io;
-
-use super::Buf;
-
-impl Buf for VecDeque<u8> {
- fn remaining(&self) -> usize {
- self.len()
- }
-
- fn chunk(&self) -> &[u8] {
- let (s1, s2) = self.as_slices();
- if s1.is_empty() {
- s2
- } else {
- s1
- }
- }
-
- #[cfg(feature = "std")]
- fn chunks_vectored<'a>(&'a self, dst: &mut [io::IoSlice<'a>]) -> usize {
- if self.is_empty() || dst.is_empty() {
- return 0;
- }
-
- let (s1, s2) = self.as_slices();
- dst[0] = io::IoSlice::new(s1);
- if s2.is_empty() || dst.len() == 1 {
- return 1;
- }
-
- dst[1] = io::IoSlice::new(s2);
- 2
- }
-
- fn advance(&mut self, cnt: usize) {
- self.drain(..cnt);
- }
-}
diff --git a/vendor/bytes/src/buf/writer.rs b/vendor/bytes/src/buf/writer.rs
deleted file mode 100644
index e72348f4..00000000
--- a/vendor/bytes/src/buf/writer.rs
+++ /dev/null
@@ -1,88 +0,0 @@
-use crate::BufMut;
-
-use std::{cmp, io};
-
-/// A `BufMut` adapter which implements `io::Write` for the inner value.
-///
-/// This struct is generally created by calling `writer()` on `BufMut`. See
-/// documentation of [`writer()`](BufMut::writer) for more
-/// details.
-#[derive(Debug)]
-pub struct Writer<B> {
- buf: B,
-}
-
-pub fn new<B>(buf: B) -> Writer<B> {
- Writer { buf }
-}
-
-impl<B: BufMut> Writer<B> {
- /// Gets a reference to the underlying `BufMut`.
- ///
- /// It is inadvisable to directly write to the underlying `BufMut`.
- ///
- /// # Examples
- ///
- /// ```rust
- /// use bytes::BufMut;
- ///
- /// let buf = Vec::with_capacity(1024).writer();
- ///
- /// assert_eq!(1024, buf.get_ref().capacity());
- /// ```
- pub fn get_ref(&self) -> &B {
- &self.buf
- }
-
- /// Gets a mutable reference to the underlying `BufMut`.
- ///
- /// It is inadvisable to directly write to the underlying `BufMut`.
- ///
- /// # Examples
- ///
- /// ```rust
- /// use bytes::BufMut;
- ///
- /// let mut buf = vec![].writer();
- ///
- /// buf.get_mut().reserve(1024);
- ///
- /// assert_eq!(1024, buf.get_ref().capacity());
- /// ```
- pub fn get_mut(&mut self) -> &mut B {
- &mut self.buf
- }
-
- /// Consumes this `Writer`, returning the underlying value.
- ///
- /// # Examples
- ///
- /// ```rust
- /// use bytes::BufMut;
- /// use std::io;
- ///
- /// let mut buf = vec![].writer();
- /// let mut src = &b"hello world"[..];
- ///
- /// io::copy(&mut src, &mut buf).unwrap();
- ///
- /// let buf = buf.into_inner();
- /// assert_eq!(*buf, b"hello world"[..]);
- /// ```
- pub fn into_inner(self) -> B {
- self.buf
- }
-}
-
-impl<B: BufMut + Sized> io::Write for Writer<B> {
- fn write(&mut self, src: &[u8]) -> io::Result<usize> {
- let n = cmp::min(self.buf.remaining_mut(), src.len());
-
- self.buf.put_slice(&src[..n]);
- Ok(n)
- }
-
- fn flush(&mut self) -> io::Result<()> {
- Ok(())
- }
-}
diff --git a/vendor/bytes/src/bytes.rs b/vendor/bytes/src/bytes.rs
deleted file mode 100644
index cdb6ea55..00000000
--- a/vendor/bytes/src/bytes.rs
+++ /dev/null
@@ -1,1680 +0,0 @@
-use core::iter::FromIterator;
-use core::mem::{self, ManuallyDrop};
-use core::ops::{Deref, RangeBounds};
-use core::ptr::NonNull;
-use core::{cmp, fmt, hash, ptr, slice, usize};
-
-use alloc::{
- alloc::{dealloc, Layout},
- borrow::Borrow,
- boxed::Box,
- string::String,
- vec::Vec,
-};
-
-use crate::buf::IntoIter;
-#[allow(unused)]
-use crate::loom::sync::atomic::AtomicMut;
-use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
-use crate::{offset_from, Buf, BytesMut};
-
-/// A cheaply cloneable and sliceable chunk of contiguous memory.
-///
-/// `Bytes` is an efficient container for storing and operating on contiguous
-/// slices of memory. It is intended for use primarily in networking code, but
-/// could have applications elsewhere as well.
-///
-/// `Bytes` values facilitate zero-copy network programming by allowing multiple
-/// `Bytes` objects to point to the same underlying memory.
-///
-/// `Bytes` does not have a single implementation. It is an interface, whose
-/// exact behavior is implemented through dynamic dispatch in several underlying
-/// implementations of `Bytes`.
-///
-/// All `Bytes` implementations must fulfill the following requirements:
-/// - They are cheaply cloneable and thereby shareable between an unlimited amount
-/// of components, for example by modifying a reference count.
-/// - Instances can be sliced to refer to a subset of the original buffer.
-///
-/// ```
-/// use bytes::Bytes;
-///
-/// let mut mem = Bytes::from("Hello world");
-/// let a = mem.slice(0..5);
-///
-/// assert_eq!(a, "Hello");
-///
-/// let b = mem.split_to(6);
-///
-/// assert_eq!(mem, "world");
-/// assert_eq!(b, "Hello ");
-/// ```
-///
-/// # Memory layout
-///
-/// The `Bytes` struct itself is fairly small, limited to 4 `usize` fields used
-/// to track information about which segment of the underlying memory the
-/// `Bytes` handle has access to.
-///
-/// `Bytes` keeps both a pointer to the shared state containing the full memory
-/// slice and a pointer to the start of the region visible by the handle.
-/// `Bytes` also tracks the length of its view into the memory.
-///
-/// # Sharing
-///
-/// `Bytes` contains a vtable, which allows implementations of `Bytes` to define
-/// how sharing/cloning is implemented in detail.
-/// When `Bytes::clone()` is called, `Bytes` will call the vtable function for
-/// cloning the backing storage in order to share it behind multiple `Bytes`
-/// instances.
-///
-/// For `Bytes` implementations which refer to constant memory (e.g. created
-/// via `Bytes::from_static()`) the cloning implementation will be a no-op.
-///
-/// For `Bytes` implementations which point to a reference counted shared storage
-/// (e.g. an `Arc<[u8]>`), sharing will be implemented by increasing the
-/// reference count.
-///
-/// Due to this mechanism, multiple `Bytes` instances may point to the same
-/// shared memory region.
-/// Each `Bytes` instance can point to different sections within that
-/// memory region, and `Bytes` instances may or may not have overlapping views
-/// into the memory.
-///
-/// The following diagram visualizes a scenario where 2 `Bytes` instances make
-/// use of an `Arc`-based backing storage, and provide access to different views:
-///
-/// ```text
-///
-/// Arc ptrs ┌─────────┐
-/// ________________________ / │ Bytes 2 │
-/// / └─────────┘
-/// / ┌───────────┐ | |
-/// |_________/ │ Bytes 1 │ | |
-/// | └───────────┘ | |
-/// | | | ___/ data | tail
-/// | data | tail |/ |
-/// v v v v
-/// ┌─────┬─────┬───────────┬───────────────┬─────┐
-/// │ Arc │ │ │ │ │
-/// └─────┴─────┴───────────┴───────────────┴─────┘
-/// ```
-pub struct Bytes {
- ptr: *const u8,
- len: usize,
- // inlined "trait object"
- data: AtomicPtr<()>,
- vtable: &'static Vtable,
-}
-
-pub(crate) struct Vtable {
- /// fn(data, ptr, len)
- pub clone: unsafe fn(&AtomicPtr<()>, *const u8, usize) -> Bytes,
- /// fn(data, ptr, len)
- ///
- /// takes `Bytes` to value
- pub to_vec: unsafe fn(&AtomicPtr<()>, *const u8, usize) -> Vec<u8>,
- pub to_mut: unsafe fn(&AtomicPtr<()>, *const u8, usize) -> BytesMut,
- /// fn(data)
- pub is_unique: unsafe fn(&AtomicPtr<()>) -> bool,
- /// fn(data, ptr, len)
- pub drop: unsafe fn(&mut AtomicPtr<()>, *const u8, usize),
-}
-
-impl Bytes {
- /// Creates a new empty `Bytes`.
- ///
- /// This will not allocate and the returned `Bytes` handle will be empty.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Bytes;
- ///
- /// let b = Bytes::new();
- /// assert_eq!(&b[..], b"");
- /// ```
- #[inline]
- #[cfg(not(all(loom, test)))]
- pub const fn new() -> Self {
- // Make it a named const to work around
- // "unsizing casts are not allowed in const fn"
- const EMPTY: &[u8] = &[];
- Bytes::from_static(EMPTY)
- }
-
- /// Creates a new empty `Bytes`.
- #[cfg(all(loom, test))]
- pub fn new() -> Self {
- const EMPTY: &[u8] = &[];
- Bytes::from_static(EMPTY)
- }
-
- /// Creates a new `Bytes` from a static slice.
- ///
- /// The returned `Bytes` will point directly to the static slice. There is
- /// no allocating or copying.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Bytes;
- ///
- /// let b = Bytes::from_static(b"hello");
- /// assert_eq!(&b[..], b"hello");
- /// ```
- #[inline]
- #[cfg(not(all(loom, test)))]
- pub const fn from_static(bytes: &'static [u8]) -> Self {
- Bytes {
- ptr: bytes.as_ptr(),
- len: bytes.len(),
- data: AtomicPtr::new(ptr::null_mut()),
- vtable: &STATIC_VTABLE,
- }
- }
-
- /// Creates a new `Bytes` from a static slice.
- #[cfg(all(loom, test))]
- pub fn from_static(bytes: &'static [u8]) -> Self {
- Bytes {
- ptr: bytes.as_ptr(),
- len: bytes.len(),
- data: AtomicPtr::new(ptr::null_mut()),
- vtable: &STATIC_VTABLE,
- }
- }
-
- /// Creates a new `Bytes` with length zero and the given pointer as the address.
- fn new_empty_with_ptr(ptr: *const u8) -> Self {
- debug_assert!(!ptr.is_null());
-
- // Detach this pointer's provenance from whichever allocation it came from, and reattach it
- // to the provenance of the fake ZST [u8;0] at the same address.
- let ptr = without_provenance(ptr as usize);
-
- Bytes {
- ptr,
- len: 0,
- data: AtomicPtr::new(ptr::null_mut()),
- vtable: &STATIC_VTABLE,
- }
- }
-
- /// Create [Bytes] with a buffer whose lifetime is controlled
- /// via an explicit owner.
- ///
- /// A common use case is to zero-copy construct from mapped memory.
- ///
- /// ```
- /// # struct File;
- /// #
- /// # impl File {
- /// # pub fn open(_: &str) -> Result<Self, ()> {
- /// # Ok(Self)
- /// # }
- /// # }
- /// #
- /// # mod memmap2 {
- /// # pub struct Mmap;
- /// #
- /// # impl Mmap {
- /// # pub unsafe fn map(_file: &super::File) -> Result<Self, ()> {
- /// # Ok(Self)
- /// # }
- /// # }
- /// #
- /// # impl AsRef<[u8]> for Mmap {
- /// # fn as_ref(&self) -> &[u8] {
- /// # b"buf"
- /// # }
- /// # }
- /// # }
- /// use bytes::Bytes;
- /// use memmap2::Mmap;
- ///
- /// # fn main() -> Result<(), ()> {
- /// let file = File::open("upload_bundle.tar.gz")?;
- /// let mmap = unsafe { Mmap::map(&file) }?;
- /// let b = Bytes::from_owner(mmap);
- /// # Ok(())
- /// # }
- /// ```
- ///
- /// The `owner` will be transferred to the constructed [Bytes] object, which
- /// will ensure it is dropped once all remaining clones of the constructed
- /// object are dropped. The owner will then be responsible for dropping the
- /// specified region of memory as part of its [Drop] implementation.
- ///
- /// Note that converting [Bytes] constructed from an owner into a [BytesMut]
- /// will always create a deep copy of the buffer into newly allocated memory.
- pub fn from_owner<T>(owner: T) -> Self
- where
- T: AsRef<[u8]> + Send + 'static,
- {
- // Safety & Miri:
- // The ownership of `owner` is first transferred to the `Owned` wrapper and `Bytes` object.
- // This ensures that the owner is pinned in memory, allowing us to call `.as_ref()` safely
- // since the lifetime of the owner is controlled by the lifetime of the new `Bytes` object,
- // and the lifetime of the resulting borrowed `&[u8]` matches that of the owner.
- // Note that this remains safe so long as we only call `.as_ref()` once.
- //
- // There are some additional special considerations here:
- // * We rely on Bytes's Drop impl to clean up memory should `.as_ref()` panic.
- // * Setting the `ptr` and `len` on the bytes object last (after moving the owner to
- // Bytes) allows Miri checks to pass since it avoids obtaining the `&[u8]` slice
- // from a stack-owned Box.
- // More details on this: https://github.com/tokio-rs/bytes/pull/742/#discussion_r1813375863
- // and: https://github.com/tokio-rs/bytes/pull/742/#discussion_r1813316032
-
- let owned = Box::into_raw(Box::new(Owned {
- lifetime: OwnedLifetime {
- ref_cnt: AtomicUsize::new(1),
- drop: owned_box_and_drop::<T>,
- },
- owner,
- }));
-
- let mut ret = Bytes {
- ptr: NonNull::dangling().as_ptr(),
- len: 0,
- data: AtomicPtr::new(owned.cast()),
- vtable: &OWNED_VTABLE,
- };
-
- let buf = unsafe { &*owned }.owner.as_ref();
- ret.ptr = buf.as_ptr();
- ret.len = buf.len();
-
- ret
- }
-
- /// Returns the number of bytes contained in this `Bytes`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Bytes;
- ///
- /// let b = Bytes::from(&b"hello"[..]);
- /// assert_eq!(b.len(), 5);
- /// ```
- #[inline]
- pub const fn len(&self) -> usize {
- self.len
- }
-
- /// Returns true if the `Bytes` has a length of 0.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Bytes;
- ///
- /// let b = Bytes::new();
- /// assert!(b.is_empty());
- /// ```
- #[inline]
- pub const fn is_empty(&self) -> bool {
- self.len == 0
- }
-
- /// Returns true if this is the only reference to the data and
- /// `Into<BytesMut>` would avoid cloning the underlying buffer.
- ///
- /// Always returns false if the data is backed by a [static slice](Bytes::from_static),
- /// or an [owner](Bytes::from_owner).
- ///
- /// The result of this method may be invalidated immediately if another
- /// thread clones this value while this is being called. Ensure you have
- /// unique access to this value (`&mut Bytes`) first if you need to be
- /// certain the result is valid (i.e. for safety reasons).
- /// # Examples
- ///
- /// ```
- /// use bytes::Bytes;
- ///
- /// let a = Bytes::from(vec![1, 2, 3]);
- /// assert!(a.is_unique());
- /// let b = a.clone();
- /// assert!(!a.is_unique());
- /// ```
- pub fn is_unique(&self) -> bool {
- unsafe { (self.vtable.is_unique)(&self.data) }
- }
-
- /// Creates `Bytes` instance from slice, by copying it.
- pub fn copy_from_slice(data: &[u8]) -> Self {
- data.to_vec().into()
- }
-
- /// Returns a slice of self for the provided range.
- ///
- /// This will increment the reference count for the underlying memory and
- /// return a new `Bytes` handle set to the slice.
- ///
- /// This operation is `O(1)`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Bytes;
- ///
- /// let a = Bytes::from(&b"hello world"[..]);
- /// let b = a.slice(2..5);
- ///
- /// assert_eq!(&b[..], b"llo");
- /// ```
- ///
- /// # Panics
- ///
- /// Requires that `begin <= end` and `end <= self.len()`, otherwise slicing
- /// will panic.
- pub fn slice(&self, range: impl RangeBounds<usize>) -> Self {
- use core::ops::Bound;
-
- let len = self.len();
-
- let begin = match range.start_bound() {
- Bound::Included(&n) => n,
- Bound::Excluded(&n) => n.checked_add(1).expect("out of range"),
- Bound::Unbounded => 0,
- };
-
- let end = match range.end_bound() {
- Bound::Included(&n) => n.checked_add(1).expect("out of range"),
- Bound::Excluded(&n) => n,
- Bound::Unbounded => len,
- };
-
- assert!(
- begin <= end,
- "range start must not be greater than end: {:?} <= {:?}",
- begin,
- end,
- );
- assert!(
- end <= len,
- "range end out of bounds: {:?} <= {:?}",
- end,
- len,
- );
-
- if end == begin {
- return Bytes::new();
- }
-
- let mut ret = self.clone();
-
- ret.len = end - begin;
- ret.ptr = unsafe { ret.ptr.add(begin) };
-
- ret
- }
-
- /// Returns a slice of self that is equivalent to the given `subset`.
- ///
- /// When processing a `Bytes` buffer with other tools, one often gets a
- /// `&[u8]` which is in fact a slice of the `Bytes`, i.e. a subset of it.
- /// This function turns that `&[u8]` into another `Bytes`, as if one had
- /// called `self.slice()` with the offsets that correspond to `subset`.
- ///
- /// This operation is `O(1)`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Bytes;
- ///
- /// let bytes = Bytes::from(&b"012345678"[..]);
- /// let as_slice = bytes.as_ref();
- /// let subset = &as_slice[2..6];
- /// let subslice = bytes.slice_ref(&subset);
- /// assert_eq!(&subslice[..], b"2345");
- /// ```
- ///
- /// # Panics
- ///
- /// Requires that the given `sub` slice is in fact contained within the
- /// `Bytes` buffer; otherwise this function will panic.
- pub fn slice_ref(&self, subset: &[u8]) -> Self {
- // Empty slice and empty Bytes may have their pointers reset
- // so explicitly allow empty slice to be a subslice of any slice.
- if subset.is_empty() {
- return Bytes::new();
- }
-
- let bytes_p = self.as_ptr() as usize;
- let bytes_len = self.len();
-
- let sub_p = subset.as_ptr() as usize;
- let sub_len = subset.len();
-
- assert!(
- sub_p >= bytes_p,
- "subset pointer ({:p}) is smaller than self pointer ({:p})",
- subset.as_ptr(),
- self.as_ptr(),
- );
- assert!(
- sub_p + sub_len <= bytes_p + bytes_len,
- "subset is out of bounds: self = ({:p}, {}), subset = ({:p}, {})",
- self.as_ptr(),
- bytes_len,
- subset.as_ptr(),
- sub_len,
- );
-
- let sub_offset = sub_p - bytes_p;
-
- self.slice(sub_offset..(sub_offset + sub_len))
- }
-
- /// Splits the bytes into two at the given index.
- ///
- /// Afterwards `self` contains elements `[0, at)`, and the returned `Bytes`
- /// contains elements `[at, len)`. It's guaranteed that the memory does not
- /// move, that is, the address of `self` does not change, and the address of
- /// the returned slice is `at` bytes after that.
- ///
- /// This is an `O(1)` operation that just increases the reference count and
- /// sets a few indices.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Bytes;
- ///
- /// let mut a = Bytes::from(&b"hello world"[..]);
- /// let b = a.split_off(5);
- ///
- /// assert_eq!(&a[..], b"hello");
- /// assert_eq!(&b[..], b" world");
- /// ```
- ///
- /// # Panics
- ///
- /// Panics if `at > len`.
- #[must_use = "consider Bytes::truncate if you don't need the other half"]
- pub fn split_off(&mut self, at: usize) -> Self {
- if at == self.len() {
- return Bytes::new_empty_with_ptr(self.ptr.wrapping_add(at));
- }
-
- if at == 0 {
- return mem::replace(self, Bytes::new_empty_with_ptr(self.ptr));
- }
-
- assert!(
- at <= self.len(),
- "split_off out of bounds: {:?} <= {:?}",
- at,
- self.len(),
- );
-
- let mut ret = self.clone();
-
- self.len = at;
-
- unsafe { ret.inc_start(at) };
-
- ret
- }
-
- /// Splits the bytes into two at the given index.
- ///
- /// Afterwards `self` contains elements `[at, len)`, and the returned
- /// `Bytes` contains elements `[0, at)`.
- ///
- /// This is an `O(1)` operation that just increases the reference count and
- /// sets a few indices.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Bytes;
- ///
- /// let mut a = Bytes::from(&b"hello world"[..]);
- /// let b = a.split_to(5);
- ///
- /// assert_eq!(&a[..], b" world");
- /// assert_eq!(&b[..], b"hello");
- /// ```
- ///
- /// # Panics
- ///
- /// Panics if `at > len`.
- #[must_use = "consider Bytes::advance if you don't need the other half"]
- pub fn split_to(&mut self, at: usize) -> Self {
- if at == self.len() {
- let end_ptr = self.ptr.wrapping_add(at);
- return mem::replace(self, Bytes::new_empty_with_ptr(end_ptr));
- }
-
- if at == 0 {
- return Bytes::new_empty_with_ptr(self.ptr);
- }
-
- assert!(
- at <= self.len(),
- "split_to out of bounds: {:?} <= {:?}",
- at,
- self.len(),
- );
-
- let mut ret = self.clone();
-
- unsafe { self.inc_start(at) };
-
- ret.len = at;
- ret
- }
-
- /// Shortens the buffer, keeping the first `len` bytes and dropping the
- /// rest.
- ///
- /// If `len` is greater than the buffer's current length, this has no
- /// effect.
- ///
- /// The [split_off](`Self::split_off()`) method can emulate `truncate`, but this causes the
- /// excess bytes to be returned instead of dropped.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Bytes;
- ///
- /// let mut buf = Bytes::from(&b"hello world"[..]);
- /// buf.truncate(5);
- /// assert_eq!(buf, b"hello"[..]);
- /// ```
- #[inline]
- pub fn truncate(&mut self, len: usize) {
- if len < self.len {
- // The Vec "promotable" vtables do not store the capacity,
- // so we cannot truncate while using this repr. We *have* to
- // promote using `split_off` so the capacity can be stored.
- if self.vtable as *const Vtable == &PROMOTABLE_EVEN_VTABLE
- || self.vtable as *const Vtable == &PROMOTABLE_ODD_VTABLE
- {
- drop(self.split_off(len));
- } else {
- self.len = len;
- }
- }
- }
-
- /// Clears the buffer, removing all data.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::Bytes;
- ///
- /// let mut buf = Bytes::from(&b"hello world"[..]);
- /// buf.clear();
- /// assert!(buf.is_empty());
- /// ```
- #[inline]
- pub fn clear(&mut self) {
- self.truncate(0);
- }
-
- /// Try to convert self into `BytesMut`.
- ///
- /// If `self` is unique for the entire original buffer, this will succeed
- /// and return a `BytesMut` with the contents of `self` without copying.
- /// If `self` is not unique for the entire original buffer, this will fail
- /// and return self.
- ///
- /// This will also always fail if the buffer was constructed via either
- /// [from_owner](Bytes::from_owner) or [from_static](Bytes::from_static).
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::{Bytes, BytesMut};
- ///
- /// let bytes = Bytes::from(b"hello".to_vec());
- /// assert_eq!(bytes.try_into_mut(), Ok(BytesMut::from(&b"hello"[..])));
- /// ```
- pub fn try_into_mut(self) -> Result<BytesMut, Bytes> {
- if self.is_unique() {
- Ok(self.into())
- } else {
- Err(self)
- }
- }
-
- #[inline]
- pub(crate) unsafe fn with_vtable(
- ptr: *const u8,
- len: usize,
- data: AtomicPtr<()>,
- vtable: &'static Vtable,
- ) -> Bytes {
- Bytes {
- ptr,
- len,
- data,
- vtable,
- }
- }
-
- // private
-
- #[inline]
- fn as_slice(&self) -> &[u8] {
- unsafe { slice::from_raw_parts(self.ptr, self.len) }
- }
-
- #[inline]
- unsafe fn inc_start(&mut self, by: usize) {
- // should already be asserted, but debug assert for tests
- debug_assert!(self.len >= by, "internal: inc_start out of bounds");
- self.len -= by;
- self.ptr = self.ptr.add(by);
- }
-}
-
-// Vtable must enforce this behavior
-unsafe impl Send for Bytes {}
-unsafe impl Sync for Bytes {}
-
-impl Drop for Bytes {
- #[inline]
- fn drop(&mut self) {
- unsafe { (self.vtable.drop)(&mut self.data, self.ptr, self.len) }
- }
-}
-
-impl Clone for Bytes {
- #[inline]
- fn clone(&self) -> Bytes {
- unsafe { (self.vtable.clone)(&self.data, self.ptr, self.len) }
- }
-}
-
-impl Buf for Bytes {
- #[inline]
- fn remaining(&self) -> usize {
- self.len()
- }
-
- #[inline]
- fn chunk(&self) -> &[u8] {
- self.as_slice()
- }
-
- #[inline]
- fn advance(&mut self, cnt: usize) {
- assert!(
- cnt <= self.len(),
- "cannot advance past `remaining`: {:?} <= {:?}",
- cnt,
- self.len(),
- );
-
- unsafe {
- self.inc_start(cnt);
- }
- }
-
- fn copy_to_bytes(&mut self, len: usize) -> Self {
- self.split_to(len)
- }
-}
-
-impl Deref for Bytes {
- type Target = [u8];
-
- #[inline]
- fn deref(&self) -> &[u8] {
- self.as_slice()
- }
-}
-
-impl AsRef<[u8]> for Bytes {
- #[inline]
- fn as_ref(&self) -> &[u8] {
- self.as_slice()
- }
-}
-
-impl hash::Hash for Bytes {
- fn hash<H>(&self, state: &mut H)
- where
- H: hash::Hasher,
- {
- self.as_slice().hash(state);
- }
-}
-
-impl Borrow<[u8]> for Bytes {
- fn borrow(&self) -> &[u8] {
- self.as_slice()
- }
-}
-
-impl IntoIterator for Bytes {
- type Item = u8;
- type IntoIter = IntoIter<Bytes>;
-
- fn into_iter(self) -> Self::IntoIter {
- IntoIter::new(self)
- }
-}
-
-impl<'a> IntoIterator for &'a Bytes {
- type Item = &'a u8;
- type IntoIter = core::slice::Iter<'a, u8>;
-
- fn into_iter(self) -> Self::IntoIter {
- self.as_slice().iter()
- }
-}
-
-impl FromIterator<u8> for Bytes {
- fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
- Vec::from_iter(into_iter).into()
- }
-}
-
-// impl Eq
-
-impl PartialEq for Bytes {
- fn eq(&self, other: &Bytes) -> bool {
- self.as_slice() == other.as_slice()
- }
-}
-
-impl PartialOrd for Bytes {
- fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
- self.as_slice().partial_cmp(other.as_slice())
- }
-}
-
-impl Ord for Bytes {
- fn cmp(&self, other: &Bytes) -> cmp::Ordering {
- self.as_slice().cmp(other.as_slice())
- }
-}
-
-impl Eq for Bytes {}
-
-impl PartialEq<[u8]> for Bytes {
- fn eq(&self, other: &[u8]) -> bool {
- self.as_slice() == other
- }
-}
-
-impl PartialOrd<[u8]> for Bytes {
- fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
- self.as_slice().partial_cmp(other)
- }
-}
-
-impl PartialEq<Bytes> for [u8] {
- fn eq(&self, other: &Bytes) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<Bytes> for [u8] {
- fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
- <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
- }
-}
-
-impl PartialEq<str> for Bytes {
- fn eq(&self, other: &str) -> bool {
- self.as_slice() == other.as_bytes()
- }
-}
-
-impl PartialOrd<str> for Bytes {
- fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
- self.as_slice().partial_cmp(other.as_bytes())
- }
-}
-
-impl PartialEq<Bytes> for str {
- fn eq(&self, other: &Bytes) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<Bytes> for str {
- fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
- <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
- }
-}
-
-impl PartialEq<Vec<u8>> for Bytes {
- fn eq(&self, other: &Vec<u8>) -> bool {
- *self == other[..]
- }
-}
-
-impl PartialOrd<Vec<u8>> for Bytes {
- fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
- self.as_slice().partial_cmp(&other[..])
- }
-}
-
-impl PartialEq<Bytes> for Vec<u8> {
- fn eq(&self, other: &Bytes) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<Bytes> for Vec<u8> {
- fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
- <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
- }
-}
-
-impl PartialEq<String> for Bytes {
- fn eq(&self, other: &String) -> bool {
- *self == other[..]
- }
-}
-
-impl PartialOrd<String> for Bytes {
- fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
- self.as_slice().partial_cmp(other.as_bytes())
- }
-}
-
-impl PartialEq<Bytes> for String {
- fn eq(&self, other: &Bytes) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<Bytes> for String {
- fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
- <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
- }
-}
-
-impl PartialEq<Bytes> for &[u8] {
- fn eq(&self, other: &Bytes) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<Bytes> for &[u8] {
- fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
- <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
- }
-}
-
-impl PartialEq<Bytes> for &str {
- fn eq(&self, other: &Bytes) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<Bytes> for &str {
- fn partial_cmp(&self, other: &Bytes) -> Option<cmp::Ordering> {
- <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
- }
-}
-
-impl<'a, T: ?Sized> PartialEq<&'a T> for Bytes
-where
- Bytes: PartialEq<T>,
-{
- fn eq(&self, other: &&'a T) -> bool {
- *self == **other
- }
-}
-
-impl<'a, T: ?Sized> PartialOrd<&'a T> for Bytes
-where
- Bytes: PartialOrd<T>,
-{
- fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
- self.partial_cmp(&**other)
- }
-}
-
-// impl From
-
-impl Default for Bytes {
- #[inline]
- fn default() -> Bytes {
- Bytes::new()
- }
-}
-
-impl From<&'static [u8]> for Bytes {
- fn from(slice: &'static [u8]) -> Bytes {
- Bytes::from_static(slice)
- }
-}
-
-impl From<&'static str> for Bytes {
- fn from(slice: &'static str) -> Bytes {
- Bytes::from_static(slice.as_bytes())
- }
-}
-
-impl From<Vec<u8>> for Bytes {
- fn from(vec: Vec<u8>) -> Bytes {
- let mut vec = ManuallyDrop::new(vec);
- let ptr = vec.as_mut_ptr();
- let len = vec.len();
- let cap = vec.capacity();
-
- // Avoid an extra allocation if possible.
- if len == cap {
- let vec = ManuallyDrop::into_inner(vec);
- return Bytes::from(vec.into_boxed_slice());
- }
-
- let shared = Box::new(Shared {
- buf: ptr,
- cap,
- ref_cnt: AtomicUsize::new(1),
- });
-
- let shared = Box::into_raw(shared);
- // The pointer should be aligned, so this assert should
- // always succeed.
- debug_assert!(
- 0 == (shared as usize & KIND_MASK),
- "internal: Box<Shared> should have an aligned pointer",
- );
- Bytes {
- ptr,
- len,
- data: AtomicPtr::new(shared as _),
- vtable: &SHARED_VTABLE,
- }
- }
-}
-
-impl From<Box<[u8]>> for Bytes {
- fn from(slice: Box<[u8]>) -> Bytes {
- // Box<[u8]> doesn't contain a heap allocation for empty slices,
- // so the pointer isn't aligned enough for the KIND_VEC stashing to
- // work.
- if slice.is_empty() {
- return Bytes::new();
- }
-
- let len = slice.len();
- let ptr = Box::into_raw(slice) as *mut u8;
-
- if ptr as usize & 0x1 == 0 {
- let data = ptr_map(ptr, |addr| addr | KIND_VEC);
- Bytes {
- ptr,
- len,
- data: AtomicPtr::new(data.cast()),
- vtable: &PROMOTABLE_EVEN_VTABLE,
- }
- } else {
- Bytes {
- ptr,
- len,
- data: AtomicPtr::new(ptr.cast()),
- vtable: &PROMOTABLE_ODD_VTABLE,
- }
- }
- }
-}
-
-impl From<Bytes> for BytesMut {
- /// Convert self into `BytesMut`.
- ///
- /// If `bytes` is unique for the entire original buffer, this will return a
- /// `BytesMut` with the contents of `bytes` without copying.
- /// If `bytes` is not unique for the entire original buffer, this will make
- /// a copy of `bytes` subset of the original buffer in a new `BytesMut`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::{Bytes, BytesMut};
- ///
- /// let bytes = Bytes::from(b"hello".to_vec());
- /// assert_eq!(BytesMut::from(bytes), BytesMut::from(&b"hello"[..]));
- /// ```
- fn from(bytes: Bytes) -> Self {
- let bytes = ManuallyDrop::new(bytes);
- unsafe { (bytes.vtable.to_mut)(&bytes.data, bytes.ptr, bytes.len) }
- }
-}
-
-impl From<String> for Bytes {
- fn from(s: String) -> Bytes {
- Bytes::from(s.into_bytes())
- }
-}
-
-impl From<Bytes> for Vec<u8> {
- fn from(bytes: Bytes) -> Vec<u8> {
- let bytes = ManuallyDrop::new(bytes);
- unsafe { (bytes.vtable.to_vec)(&bytes.data, bytes.ptr, bytes.len) }
- }
-}
-
-// ===== impl Vtable =====
-
-impl fmt::Debug for Vtable {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.debug_struct("Vtable")
- .field("clone", &(self.clone as *const ()))
- .field("drop", &(self.drop as *const ()))
- .finish()
- }
-}
-
-// ===== impl StaticVtable =====
-
-const STATIC_VTABLE: Vtable = Vtable {
- clone: static_clone,
- to_vec: static_to_vec,
- to_mut: static_to_mut,
- is_unique: static_is_unique,
- drop: static_drop,
-};
-
-unsafe fn static_clone(_: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
- let slice = slice::from_raw_parts(ptr, len);
- Bytes::from_static(slice)
-}
-
-unsafe fn static_to_vec(_: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
- let slice = slice::from_raw_parts(ptr, len);
- slice.to_vec()
-}
-
-unsafe fn static_to_mut(_: &AtomicPtr<()>, ptr: *const u8, len: usize) -> BytesMut {
- let slice = slice::from_raw_parts(ptr, len);
- BytesMut::from(slice)
-}
-
-fn static_is_unique(_: &AtomicPtr<()>) -> bool {
- false
-}
-
-unsafe fn static_drop(_: &mut AtomicPtr<()>, _: *const u8, _: usize) {
- // nothing to drop for &'static [u8]
-}
-
-// ===== impl OwnedVtable =====
-
-#[repr(C)]
-struct OwnedLifetime {
- ref_cnt: AtomicUsize,
- drop: unsafe fn(*mut ()),
-}
-
-#[repr(C)]
-struct Owned<T> {
- lifetime: OwnedLifetime,
- owner: T,
-}
-
-unsafe fn owned_box_and_drop<T>(ptr: *mut ()) {
- let b: Box<Owned<T>> = Box::from_raw(ptr as _);
- drop(b);
-}
-
-unsafe fn owned_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
- let owned = data.load(Ordering::Relaxed);
- let ref_cnt = &(*owned.cast::<OwnedLifetime>()).ref_cnt;
- let old_cnt = ref_cnt.fetch_add(1, Ordering::Relaxed);
- if old_cnt > usize::MAX >> 1 {
- crate::abort()
- }
-
- Bytes {
- ptr,
- len,
- data: AtomicPtr::new(owned as _),
- vtable: &OWNED_VTABLE,
- }
-}
-
-unsafe fn owned_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
- let slice = slice::from_raw_parts(ptr, len);
- let vec = slice.to_vec();
- owned_drop_impl(data.load(Ordering::Relaxed));
- vec
-}
-
-unsafe fn owned_to_mut(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> BytesMut {
- BytesMut::from_vec(owned_to_vec(data, ptr, len))
-}
-
-unsafe fn owned_is_unique(_data: &AtomicPtr<()>) -> bool {
- false
-}
-
-unsafe fn owned_drop_impl(owned: *mut ()) {
- let lifetime = owned.cast::<OwnedLifetime>();
- let ref_cnt = &(*lifetime).ref_cnt;
-
- let old_cnt = ref_cnt.fetch_sub(1, Ordering::Release);
- debug_assert!(
- old_cnt > 0 && old_cnt <= usize::MAX >> 1,
- "expected non-zero refcount and no underflow"
- );
- if old_cnt != 1 {
- return;
- }
- ref_cnt.load(Ordering::Acquire);
-
- let drop_fn = &(*lifetime).drop;
- drop_fn(owned)
-}
-
-unsafe fn owned_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) {
- let owned = data.load(Ordering::Relaxed);
- owned_drop_impl(owned);
-}
-
-static OWNED_VTABLE: Vtable = Vtable {
- clone: owned_clone,
- to_vec: owned_to_vec,
- to_mut: owned_to_mut,
- is_unique: owned_is_unique,
- drop: owned_drop,
-};
-
-// ===== impl PromotableVtable =====
-
-static PROMOTABLE_EVEN_VTABLE: Vtable = Vtable {
- clone: promotable_even_clone,
- to_vec: promotable_even_to_vec,
- to_mut: promotable_even_to_mut,
- is_unique: promotable_is_unique,
- drop: promotable_even_drop,
-};
-
-static PROMOTABLE_ODD_VTABLE: Vtable = Vtable {
- clone: promotable_odd_clone,
- to_vec: promotable_odd_to_vec,
- to_mut: promotable_odd_to_mut,
- is_unique: promotable_is_unique,
- drop: promotable_odd_drop,
-};
-
-unsafe fn promotable_even_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
- let shared = data.load(Ordering::Acquire);
- let kind = shared as usize & KIND_MASK;
-
- if kind == KIND_ARC {
- shallow_clone_arc(shared.cast(), ptr, len)
- } else {
- debug_assert_eq!(kind, KIND_VEC);
- let buf = ptr_map(shared.cast(), |addr| addr & !KIND_MASK);
- shallow_clone_vec(data, shared, buf, ptr, len)
- }
-}
-
-unsafe fn promotable_to_vec(
- data: &AtomicPtr<()>,
- ptr: *const u8,
- len: usize,
- f: fn(*mut ()) -> *mut u8,
-) -> Vec<u8> {
- let shared = data.load(Ordering::Acquire);
- let kind = shared as usize & KIND_MASK;
-
- if kind == KIND_ARC {
- shared_to_vec_impl(shared.cast(), ptr, len)
- } else {
- // If Bytes holds a Vec, then the offset must be 0.
- debug_assert_eq!(kind, KIND_VEC);
-
- let buf = f(shared);
-
- let cap = offset_from(ptr, buf) + len;
-
- // Copy back buffer
- ptr::copy(ptr, buf, len);
-
- Vec::from_raw_parts(buf, len, cap)
- }
-}
-
-unsafe fn promotable_to_mut(
- data: &AtomicPtr<()>,
- ptr: *const u8,
- len: usize,
- f: fn(*mut ()) -> *mut u8,
-) -> BytesMut {
- let shared = data.load(Ordering::Acquire);
- let kind = shared as usize & KIND_MASK;
-
- if kind == KIND_ARC {
- shared_to_mut_impl(shared.cast(), ptr, len)
- } else {
- // KIND_VEC is a view of an underlying buffer at a certain offset.
- // The ptr + len always represents the end of that buffer.
- // Before truncating it, it is first promoted to KIND_ARC.
- // Thus, we can safely reconstruct a Vec from it without leaking memory.
- debug_assert_eq!(kind, KIND_VEC);
-
- let buf = f(shared);
- let off = offset_from(ptr, buf);
- let cap = off + len;
- let v = Vec::from_raw_parts(buf, cap, cap);
-
- let mut b = BytesMut::from_vec(v);
- b.advance_unchecked(off);
- b
- }
-}
-
-unsafe fn promotable_even_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
- promotable_to_vec(data, ptr, len, |shared| {
- ptr_map(shared.cast(), |addr| addr & !KIND_MASK)
- })
-}
-
-unsafe fn promotable_even_to_mut(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> BytesMut {
- promotable_to_mut(data, ptr, len, |shared| {
- ptr_map(shared.cast(), |addr| addr & !KIND_MASK)
- })
-}
-
-unsafe fn promotable_even_drop(data: &mut AtomicPtr<()>, ptr: *const u8, len: usize) {
- data.with_mut(|shared| {
- let shared = *shared;
- let kind = shared as usize & KIND_MASK;
-
- if kind == KIND_ARC {
- release_shared(shared.cast());
- } else {
- debug_assert_eq!(kind, KIND_VEC);
- let buf = ptr_map(shared.cast(), |addr| addr & !KIND_MASK);
- free_boxed_slice(buf, ptr, len);
- }
- });
-}
-
-unsafe fn promotable_odd_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
- let shared = data.load(Ordering::Acquire);
- let kind = shared as usize & KIND_MASK;
-
- if kind == KIND_ARC {
- shallow_clone_arc(shared as _, ptr, len)
- } else {
- debug_assert_eq!(kind, KIND_VEC);
- shallow_clone_vec(data, shared, shared.cast(), ptr, len)
- }
-}
-
-unsafe fn promotable_odd_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
- promotable_to_vec(data, ptr, len, |shared| shared.cast())
-}
-
-unsafe fn promotable_odd_to_mut(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> BytesMut {
- promotable_to_mut(data, ptr, len, |shared| shared.cast())
-}
-
-unsafe fn promotable_odd_drop(data: &mut AtomicPtr<()>, ptr: *const u8, len: usize) {
- data.with_mut(|shared| {
- let shared = *shared;
- let kind = shared as usize & KIND_MASK;
-
- if kind == KIND_ARC {
- release_shared(shared.cast());
- } else {
- debug_assert_eq!(kind, KIND_VEC);
-
- free_boxed_slice(shared.cast(), ptr, len);
- }
- });
-}
-
-unsafe fn promotable_is_unique(data: &AtomicPtr<()>) -> bool {
- let shared = data.load(Ordering::Acquire);
- let kind = shared as usize & KIND_MASK;
-
- if kind == KIND_ARC {
- let ref_cnt = (*shared.cast::<Shared>()).ref_cnt.load(Ordering::Relaxed);
- ref_cnt == 1
- } else {
- true
- }
-}
-
-unsafe fn free_boxed_slice(buf: *mut u8, offset: *const u8, len: usize) {
- let cap = offset_from(offset, buf) + len;
- dealloc(buf, Layout::from_size_align(cap, 1).unwrap())
-}
-
-// ===== impl SharedVtable =====
-
-struct Shared {
- // Holds arguments to dealloc upon Drop, but otherwise doesn't use them
- buf: *mut u8,
- cap: usize,
- ref_cnt: AtomicUsize,
-}
-
-impl Drop for Shared {
- fn drop(&mut self) {
- unsafe { dealloc(self.buf, Layout::from_size_align(self.cap, 1).unwrap()) }
- }
-}
-
-// Assert that the alignment of `Shared` is divisible by 2.
-// This is a necessary invariant since we depend on allocating `Shared` a
-// shared object to implicitly carry the `KIND_ARC` flag in its pointer.
-// This flag is set when the LSB is 0.
-const _: [(); 0 - mem::align_of::<Shared>() % 2] = []; // Assert that the alignment of `Shared` is divisible by 2.
-
-static SHARED_VTABLE: Vtable = Vtable {
- clone: shared_clone,
- to_vec: shared_to_vec,
- to_mut: shared_to_mut,
- is_unique: shared_is_unique,
- drop: shared_drop,
-};
-
-const KIND_ARC: usize = 0b0;
-const KIND_VEC: usize = 0b1;
-const KIND_MASK: usize = 0b1;
-
-unsafe fn shared_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
- let shared = data.load(Ordering::Relaxed);
- shallow_clone_arc(shared as _, ptr, len)
-}
-
-unsafe fn shared_to_vec_impl(shared: *mut Shared, ptr: *const u8, len: usize) -> Vec<u8> {
- // Check that the ref_cnt is 1 (unique).
- //
- // If it is unique, then it is set to 0 with AcqRel fence for the same
- // reason in release_shared.
- //
- // Otherwise, we take the other branch and call release_shared.
- if (*shared)
- .ref_cnt
- .compare_exchange(1, 0, Ordering::AcqRel, Ordering::Relaxed)
- .is_ok()
- {
- // Deallocate the `Shared` instance without running its destructor.
- let shared = *Box::from_raw(shared);
- let shared = ManuallyDrop::new(shared);
- let buf = shared.buf;
- let cap = shared.cap;
-
- // Copy back buffer
- ptr::copy(ptr, buf, len);
-
- Vec::from_raw_parts(buf, len, cap)
- } else {
- let v = slice::from_raw_parts(ptr, len).to_vec();
- release_shared(shared);
- v
- }
-}
-
-unsafe fn shared_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
- shared_to_vec_impl(data.load(Ordering::Relaxed).cast(), ptr, len)
-}
-
-unsafe fn shared_to_mut_impl(shared: *mut Shared, ptr: *const u8, len: usize) -> BytesMut {
- // The goal is to check if the current handle is the only handle
- // that currently has access to the buffer. This is done by
- // checking if the `ref_cnt` is currently 1.
- //
- // The `Acquire` ordering synchronizes with the `Release` as
- // part of the `fetch_sub` in `release_shared`. The `fetch_sub`
- // operation guarantees that any mutations done in other threads
- // are ordered before the `ref_cnt` is decremented. As such,
- // this `Acquire` will guarantee that those mutations are
- // visible to the current thread.
- //
- // Otherwise, we take the other branch, copy the data and call `release_shared`.
- if (*shared).ref_cnt.load(Ordering::Acquire) == 1 {
- // Deallocate the `Shared` instance without running its destructor.
- let shared = *Box::from_raw(shared);
- let shared = ManuallyDrop::new(shared);
- let buf = shared.buf;
- let cap = shared.cap;
-
- // Rebuild Vec
- let off = offset_from(ptr, buf);
- let v = Vec::from_raw_parts(buf, len + off, cap);
-
- let mut b = BytesMut::from_vec(v);
- b.advance_unchecked(off);
- b
- } else {
- // Copy the data from Shared in a new Vec, then release it
- let v = slice::from_raw_parts(ptr, len).to_vec();
- release_shared(shared);
- BytesMut::from_vec(v)
- }
-}
-
-unsafe fn shared_to_mut(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> BytesMut {
- shared_to_mut_impl(data.load(Ordering::Relaxed).cast(), ptr, len)
-}
-
-pub(crate) unsafe fn shared_is_unique(data: &AtomicPtr<()>) -> bool {
- let shared = data.load(Ordering::Acquire);
- let ref_cnt = (*shared.cast::<Shared>()).ref_cnt.load(Ordering::Relaxed);
- ref_cnt == 1
-}
-
-unsafe fn shared_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) {
- data.with_mut(|shared| {
- release_shared(shared.cast());
- });
-}
-
-unsafe fn shallow_clone_arc(shared: *mut Shared, ptr: *const u8, len: usize) -> Bytes {
- let old_size = (*shared).ref_cnt.fetch_add(1, Ordering::Relaxed);
-
- if old_size > usize::MAX >> 1 {
- crate::abort();
- }
-
- Bytes {
- ptr,
- len,
- data: AtomicPtr::new(shared as _),
- vtable: &SHARED_VTABLE,
- }
-}
-
-#[cold]
-unsafe fn shallow_clone_vec(
- atom: &AtomicPtr<()>,
- ptr: *const (),
- buf: *mut u8,
- offset: *const u8,
- len: usize,
-) -> Bytes {
- // If the buffer is still tracked in a `Vec<u8>`. It is time to
- // promote the vec to an `Arc`. This could potentially be called
- // concurrently, so some care must be taken.
-
- // First, allocate a new `Shared` instance containing the
- // `Vec` fields. It's important to note that `ptr`, `len`,
- // and `cap` cannot be mutated without having `&mut self`.
- // This means that these fields will not be concurrently
- // updated and since the buffer hasn't been promoted to an
- // `Arc`, those three fields still are the components of the
- // vector.
- let shared = Box::new(Shared {
- buf,
- cap: offset_from(offset, buf) + len,
- // Initialize refcount to 2. One for this reference, and one
- // for the new clone that will be returned from
- // `shallow_clone`.
- ref_cnt: AtomicUsize::new(2),
- });
-
- let shared = Box::into_raw(shared);
-
- // The pointer should be aligned, so this assert should
- // always succeed.
- debug_assert!(
- 0 == (shared as usize & KIND_MASK),
- "internal: Box<Shared> should have an aligned pointer",
- );
-
- // Try compare & swapping the pointer into the `arc` field.
- // `Release` is used synchronize with other threads that
- // will load the `arc` field.
- //
- // If the `compare_exchange` fails, then the thread lost the
- // race to promote the buffer to shared. The `Acquire`
- // ordering will synchronize with the `compare_exchange`
- // that happened in the other thread and the `Shared`
- // pointed to by `actual` will be visible.
- match atom.compare_exchange(ptr as _, shared as _, Ordering::AcqRel, Ordering::Acquire) {
- Ok(actual) => {
- debug_assert!(actual as usize == ptr as usize);
- // The upgrade was successful, the new handle can be
- // returned.
- Bytes {
- ptr: offset,
- len,
- data: AtomicPtr::new(shared as _),
- vtable: &SHARED_VTABLE,
- }
- }
- Err(actual) => {
- // The upgrade failed, a concurrent clone happened. Release
- // the allocation that was made in this thread, it will not
- // be needed.
- let shared = Box::from_raw(shared);
- mem::forget(*shared);
-
- // Buffer already promoted to shared storage, so increment ref
- // count.
- shallow_clone_arc(actual as _, offset, len)
- }
- }
-}
-
-unsafe fn release_shared(ptr: *mut Shared) {
- // `Shared` storage... follow the drop steps from Arc.
- if (*ptr).ref_cnt.fetch_sub(1, Ordering::Release) != 1 {
- return;
- }
-
- // This fence is needed to prevent reordering of use of the data and
- // deletion of the data. Because it is marked `Release`, the decreasing
- // of the reference count synchronizes with this `Acquire` fence. This
- // means that use of the data happens before decreasing the reference
- // count, which happens before this fence, which happens before the
- // deletion of the data.
- //
- // As explained in the [Boost documentation][1],
- //
- // > It is important to enforce any possible access to the object in one
- // > thread (through an existing reference) to *happen before* deleting
- // > the object in a different thread. This is achieved by a "release"
- // > operation after dropping a reference (any access to the object
- // > through this reference must obviously happened before), and an
- // > "acquire" operation before deleting the object.
- //
- // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
- //
- // Thread sanitizer does not support atomic fences. Use an atomic load
- // instead.
- (*ptr).ref_cnt.load(Ordering::Acquire);
-
- // Drop the data
- drop(Box::from_raw(ptr));
-}
-
-// Ideally we would always use this version of `ptr_map` since it is strict
-// provenance compatible, but it results in worse codegen. We will however still
-// use it on miri because it gives better diagnostics for people who test bytes
-// code with miri.
-//
-// See https://github.com/tokio-rs/bytes/pull/545 for more info.
-#[cfg(miri)]
-fn ptr_map<F>(ptr: *mut u8, f: F) -> *mut u8
-where
- F: FnOnce(usize) -> usize,
-{
- let old_addr = ptr as usize;
- let new_addr = f(old_addr);
- let diff = new_addr.wrapping_sub(old_addr);
- ptr.wrapping_add(diff)
-}
-
-#[cfg(not(miri))]
-fn ptr_map<F>(ptr: *mut u8, f: F) -> *mut u8
-where
- F: FnOnce(usize) -> usize,
-{
- let old_addr = ptr as usize;
- let new_addr = f(old_addr);
- new_addr as *mut u8
-}
-
-fn without_provenance(ptr: usize) -> *const u8 {
- core::ptr::null::<u8>().wrapping_add(ptr)
-}
-
-// compile-fails
-
-/// ```compile_fail
-/// use bytes::Bytes;
-/// #[deny(unused_must_use)]
-/// {
-/// let mut b1 = Bytes::from("hello world");
-/// b1.split_to(6);
-/// }
-/// ```
-fn _split_to_must_use() {}
-
-/// ```compile_fail
-/// use bytes::Bytes;
-/// #[deny(unused_must_use)]
-/// {
-/// let mut b1 = Bytes::from("hello world");
-/// b1.split_off(6);
-/// }
-/// ```
-fn _split_off_must_use() {}
-
-// fuzz tests
-#[cfg(all(test, loom))]
-mod fuzz {
- use loom::sync::Arc;
- use loom::thread;
-
- use super::Bytes;
- #[test]
- fn bytes_cloning_vec() {
- loom::model(|| {
- let a = Bytes::from(b"abcdefgh".to_vec());
- let addr = a.as_ptr() as usize;
-
- // test the Bytes::clone is Sync by putting it in an Arc
- let a1 = Arc::new(a);
- let a2 = a1.clone();
-
- let t1 = thread::spawn(move || {
- let b: Bytes = (*a1).clone();
- assert_eq!(b.as_ptr() as usize, addr);
- });
-
- let t2 = thread::spawn(move || {
- let b: Bytes = (*a2).clone();
- assert_eq!(b.as_ptr() as usize, addr);
- });
-
- t1.join().unwrap();
- t2.join().unwrap();
- });
- }
-}
diff --git a/vendor/bytes/src/bytes_mut.rs b/vendor/bytes/src/bytes_mut.rs
deleted file mode 100644
index d5db5124..00000000
--- a/vendor/bytes/src/bytes_mut.rs
+++ /dev/null
@@ -1,1921 +0,0 @@
-use core::iter::FromIterator;
-use core::mem::{self, ManuallyDrop, MaybeUninit};
-use core::ops::{Deref, DerefMut};
-use core::ptr::{self, NonNull};
-use core::{cmp, fmt, hash, isize, slice, usize};
-
-use alloc::{
- borrow::{Borrow, BorrowMut},
- boxed::Box,
- string::String,
- vec,
- vec::Vec,
-};
-
-use crate::buf::{IntoIter, UninitSlice};
-use crate::bytes::Vtable;
-#[allow(unused)]
-use crate::loom::sync::atomic::AtomicMut;
-use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
-use crate::{offset_from, Buf, BufMut, Bytes, TryGetError};
-
-/// A unique reference to a contiguous slice of memory.
-///
-/// `BytesMut` represents a unique view into a potentially shared memory region.
-/// Given the uniqueness guarantee, owners of `BytesMut` handles are able to
-/// mutate the memory.
-///
-/// `BytesMut` can be thought of as containing a `buf: Arc<Vec<u8>>`, an offset
-/// into `buf`, a slice length, and a guarantee that no other `BytesMut` for the
-/// same `buf` overlaps with its slice. That guarantee means that a write lock
-/// is not required.
-///
-/// # Growth
-///
-/// `BytesMut`'s `BufMut` implementation will implicitly grow its buffer as
-/// necessary. However, explicitly reserving the required space up-front before
-/// a series of inserts will be more efficient.
-///
-/// # Examples
-///
-/// ```
-/// use bytes::{BytesMut, BufMut};
-///
-/// let mut buf = BytesMut::with_capacity(64);
-///
-/// buf.put_u8(b'h');
-/// buf.put_u8(b'e');
-/// buf.put(&b"llo"[..]);
-///
-/// assert_eq!(&buf[..], b"hello");
-///
-/// // Freeze the buffer so that it can be shared
-/// let a = buf.freeze();
-///
-/// // This does not allocate, instead `b` points to the same memory.
-/// let b = a.clone();
-///
-/// assert_eq!(&a[..], b"hello");
-/// assert_eq!(&b[..], b"hello");
-/// ```
-pub struct BytesMut {
- ptr: NonNull<u8>,
- len: usize,
- cap: usize,
- data: *mut Shared,
-}
-
-// Thread-safe reference-counted container for the shared storage. This mostly
-// the same as `core::sync::Arc` but without the weak counter. The ref counting
-// fns are based on the ones found in `std`.
-//
-// The main reason to use `Shared` instead of `core::sync::Arc` is that it ends
-// up making the overall code simpler and easier to reason about. This is due to
-// some of the logic around setting `Inner::arc` and other ways the `arc` field
-// is used. Using `Arc` ended up requiring a number of funky transmutes and
-// other shenanigans to make it work.
-struct Shared {
- vec: Vec<u8>,
- original_capacity_repr: usize,
- ref_count: AtomicUsize,
-}
-
-// Assert that the alignment of `Shared` is divisible by 2.
-// This is a necessary invariant since we depend on allocating `Shared` a
-// shared object to implicitly carry the `KIND_ARC` flag in its pointer.
-// This flag is set when the LSB is 0.
-const _: [(); 0 - mem::align_of::<Shared>() % 2] = []; // Assert that the alignment of `Shared` is divisible by 2.
-
-// Buffer storage strategy flags.
-const KIND_ARC: usize = 0b0;
-const KIND_VEC: usize = 0b1;
-const KIND_MASK: usize = 0b1;
-
-// The max original capacity value. Any `Bytes` allocated with a greater initial
-// capacity will default to this.
-const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17;
-// The original capacity algorithm will not take effect unless the originally
-// allocated capacity was at least 1kb in size.
-const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10;
-// The original capacity is stored in powers of 2 starting at 1kb to a max of
-// 64kb. Representing it as such requires only 3 bits of storage.
-const ORIGINAL_CAPACITY_MASK: usize = 0b11100;
-const ORIGINAL_CAPACITY_OFFSET: usize = 2;
-
-const VEC_POS_OFFSET: usize = 5;
-// When the storage is in the `Vec` representation, the pointer can be advanced
-// at most this value. This is due to the amount of storage available to track
-// the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY
-// bits.
-const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET;
-const NOT_VEC_POS_MASK: usize = 0b11111;
-
-#[cfg(target_pointer_width = "64")]
-const PTR_WIDTH: usize = 64;
-#[cfg(target_pointer_width = "32")]
-const PTR_WIDTH: usize = 32;
-
-/*
- *
- * ===== BytesMut =====
- *
- */
-
-impl BytesMut {
- /// Creates a new `BytesMut` with the specified capacity.
- ///
- /// The returned `BytesMut` will be able to hold at least `capacity` bytes
- /// without reallocating.
- ///
- /// It is important to note that this function does not specify the length
- /// of the returned `BytesMut`, but only the capacity.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::{BytesMut, BufMut};
- ///
- /// let mut bytes = BytesMut::with_capacity(64);
- ///
- /// // `bytes` contains no data, even though there is capacity
- /// assert_eq!(bytes.len(), 0);
- ///
- /// bytes.put(&b"hello world"[..]);
- ///
- /// assert_eq!(&bytes[..], b"hello world");
- /// ```
- #[inline]
- pub fn with_capacity(capacity: usize) -> BytesMut {
- BytesMut::from_vec(Vec::with_capacity(capacity))
- }
-
- /// Creates a new `BytesMut` with default capacity.
- ///
- /// Resulting object has length 0 and unspecified capacity.
- /// This function does not allocate.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::{BytesMut, BufMut};
- ///
- /// let mut bytes = BytesMut::new();
- ///
- /// assert_eq!(0, bytes.len());
- ///
- /// bytes.reserve(2);
- /// bytes.put_slice(b"xy");
- ///
- /// assert_eq!(&b"xy"[..], &bytes[..]);
- /// ```
- #[inline]
- pub fn new() -> BytesMut {
- BytesMut::with_capacity(0)
- }
-
- /// Returns the number of bytes contained in this `BytesMut`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let b = BytesMut::from(&b"hello"[..]);
- /// assert_eq!(b.len(), 5);
- /// ```
- #[inline]
- pub fn len(&self) -> usize {
- self.len
- }
-
- /// Returns true if the `BytesMut` has a length of 0.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let b = BytesMut::with_capacity(64);
- /// assert!(b.is_empty());
- /// ```
- #[inline]
- pub fn is_empty(&self) -> bool {
- self.len == 0
- }
-
- /// Returns the number of bytes the `BytesMut` can hold without reallocating.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let b = BytesMut::with_capacity(64);
- /// assert_eq!(b.capacity(), 64);
- /// ```
- #[inline]
- pub fn capacity(&self) -> usize {
- self.cap
- }
-
- /// Converts `self` into an immutable `Bytes`.
- ///
- /// The conversion is zero cost and is used to indicate that the slice
- /// referenced by the handle will no longer be mutated. Once the conversion
- /// is done, the handle can be cloned and shared across threads.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::{BytesMut, BufMut};
- /// use std::thread;
- ///
- /// let mut b = BytesMut::with_capacity(64);
- /// b.put(&b"hello world"[..]);
- /// let b1 = b.freeze();
- /// let b2 = b1.clone();
- ///
- /// let th = thread::spawn(move || {
- /// assert_eq!(&b1[..], b"hello world");
- /// });
- ///
- /// assert_eq!(&b2[..], b"hello world");
- /// th.join().unwrap();
- /// ```
- #[inline]
- pub fn freeze(self) -> Bytes {
- let bytes = ManuallyDrop::new(self);
- if bytes.kind() == KIND_VEC {
- // Just re-use `Bytes` internal Vec vtable
- unsafe {
- let off = bytes.get_vec_pos();
- let vec = rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off);
- let mut b: Bytes = vec.into();
- b.advance(off);
- b
- }
- } else {
- debug_assert_eq!(bytes.kind(), KIND_ARC);
-
- let ptr = bytes.ptr.as_ptr();
- let len = bytes.len;
- let data = AtomicPtr::new(bytes.data.cast());
- unsafe { Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE) }
- }
- }
-
- /// Creates a new `BytesMut` containing `len` zeros.
- ///
- /// The resulting object has a length of `len` and a capacity greater
- /// than or equal to `len`. The entire length of the object will be filled
- /// with zeros.
- ///
- /// On some platforms or allocators this function may be faster than
- /// a manual implementation.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let zeros = BytesMut::zeroed(42);
- ///
- /// assert!(zeros.capacity() >= 42);
- /// assert_eq!(zeros.len(), 42);
- /// zeros.into_iter().for_each(|x| assert_eq!(x, 0));
- /// ```
- pub fn zeroed(len: usize) -> BytesMut {
- BytesMut::from_vec(vec![0; len])
- }
-
- /// Splits the bytes into two at the given index.
- ///
- /// Afterwards `self` contains elements `[0, at)`, and the returned
- /// `BytesMut` contains elements `[at, capacity)`. It's guaranteed that the
- /// memory does not move, that is, the address of `self` does not change,
- /// and the address of the returned slice is `at` bytes after that.
- ///
- /// This is an `O(1)` operation that just increases the reference count
- /// and sets a few indices.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut a = BytesMut::from(&b"hello world"[..]);
- /// let mut b = a.split_off(5);
- ///
- /// a[0] = b'j';
- /// b[0] = b'!';
- ///
- /// assert_eq!(&a[..], b"jello");
- /// assert_eq!(&b[..], b"!world");
- /// ```
- ///
- /// # Panics
- ///
- /// Panics if `at > capacity`.
- #[must_use = "consider BytesMut::truncate if you don't need the other half"]
- pub fn split_off(&mut self, at: usize) -> BytesMut {
- assert!(
- at <= self.capacity(),
- "split_off out of bounds: {:?} <= {:?}",
- at,
- self.capacity(),
- );
- unsafe {
- let mut other = self.shallow_clone();
- // SAFETY: We've checked that `at` <= `self.capacity()` above.
- other.advance_unchecked(at);
- self.cap = at;
- self.len = cmp::min(self.len, at);
- other
- }
- }
-
- /// Removes the bytes from the current view, returning them in a new
- /// `BytesMut` handle.
- ///
- /// Afterwards, `self` will be empty, but will retain any additional
- /// capacity that it had before the operation. This is identical to
- /// `self.split_to(self.len())`.
- ///
- /// This is an `O(1)` operation that just increases the reference count and
- /// sets a few indices.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::{BytesMut, BufMut};
- ///
- /// let mut buf = BytesMut::with_capacity(1024);
- /// buf.put(&b"hello world"[..]);
- ///
- /// let other = buf.split();
- ///
- /// assert!(buf.is_empty());
- /// assert_eq!(1013, buf.capacity());
- ///
- /// assert_eq!(other, b"hello world"[..]);
- /// ```
- #[must_use = "consider BytesMut::clear if you don't need the other half"]
- pub fn split(&mut self) -> BytesMut {
- let len = self.len();
- self.split_to(len)
- }
-
- /// Splits the buffer into two at the given index.
- ///
- /// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut`
- /// contains elements `[0, at)`.
- ///
- /// This is an `O(1)` operation that just increases the reference count and
- /// sets a few indices.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut a = BytesMut::from(&b"hello world"[..]);
- /// let mut b = a.split_to(5);
- ///
- /// a[0] = b'!';
- /// b[0] = b'j';
- ///
- /// assert_eq!(&a[..], b"!world");
- /// assert_eq!(&b[..], b"jello");
- /// ```
- ///
- /// # Panics
- ///
- /// Panics if `at > len`.
- #[must_use = "consider BytesMut::advance if you don't need the other half"]
- pub fn split_to(&mut self, at: usize) -> BytesMut {
- assert!(
- at <= self.len(),
- "split_to out of bounds: {:?} <= {:?}",
- at,
- self.len(),
- );
-
- unsafe {
- let mut other = self.shallow_clone();
- // SAFETY: We've checked that `at` <= `self.len()` and we know that `self.len()` <=
- // `self.capacity()`.
- self.advance_unchecked(at);
- other.cap = at;
- other.len = at;
- other
- }
- }
-
- /// Shortens the buffer, keeping the first `len` bytes and dropping the
- /// rest.
- ///
- /// If `len` is greater than the buffer's current length, this has no
- /// effect.
- ///
- /// Existing underlying capacity is preserved.
- ///
- /// The [split_off](`Self::split_off()`) method can emulate `truncate`, but this causes the
- /// excess bytes to be returned instead of dropped.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut buf = BytesMut::from(&b"hello world"[..]);
- /// buf.truncate(5);
- /// assert_eq!(buf, b"hello"[..]);
- /// ```
- pub fn truncate(&mut self, len: usize) {
- if len <= self.len() {
- // SAFETY: Shrinking the buffer cannot expose uninitialized bytes.
- unsafe { self.set_len(len) };
- }
- }
-
- /// Clears the buffer, removing all data. Existing capacity is preserved.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut buf = BytesMut::from(&b"hello world"[..]);
- /// buf.clear();
- /// assert!(buf.is_empty());
- /// ```
- pub fn clear(&mut self) {
- // SAFETY: Setting the length to zero cannot expose uninitialized bytes.
- unsafe { self.set_len(0) };
- }
-
- /// Resizes the buffer so that `len` is equal to `new_len`.
- ///
- /// If `new_len` is greater than `len`, the buffer is extended by the
- /// difference with each additional byte set to `value`. If `new_len` is
- /// less than `len`, the buffer is simply truncated.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut buf = BytesMut::new();
- ///
- /// buf.resize(3, 0x1);
- /// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]);
- ///
- /// buf.resize(2, 0x2);
- /// assert_eq!(&buf[..], &[0x1, 0x1]);
- ///
- /// buf.resize(4, 0x3);
- /// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]);
- /// ```
- pub fn resize(&mut self, new_len: usize, value: u8) {
- let additional = if let Some(additional) = new_len.checked_sub(self.len()) {
- additional
- } else {
- self.truncate(new_len);
- return;
- };
-
- if additional == 0 {
- return;
- }
-
- self.reserve(additional);
- let dst = self.spare_capacity_mut().as_mut_ptr();
- // SAFETY: `spare_capacity_mut` returns a valid, properly aligned pointer and we've
- // reserved enough space to write `additional` bytes.
- unsafe { ptr::write_bytes(dst, value, additional) };
-
- // SAFETY: There are at least `new_len` initialized bytes in the buffer so no
- // uninitialized bytes are being exposed.
- unsafe { self.set_len(new_len) };
- }
-
- /// Sets the length of the buffer.
- ///
- /// This will explicitly set the size of the buffer without actually
- /// modifying the data, so it is up to the caller to ensure that the data
- /// has been initialized.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut b = BytesMut::from(&b"hello world"[..]);
- ///
- /// unsafe {
- /// b.set_len(5);
- /// }
- ///
- /// assert_eq!(&b[..], b"hello");
- ///
- /// unsafe {
- /// b.set_len(11);
- /// }
- ///
- /// assert_eq!(&b[..], b"hello world");
- /// ```
- #[inline]
- pub unsafe fn set_len(&mut self, len: usize) {
- debug_assert!(len <= self.cap, "set_len out of bounds");
- self.len = len;
- }
-
- /// Reserves capacity for at least `additional` more bytes to be inserted
- /// into the given `BytesMut`.
- ///
- /// More than `additional` bytes may be reserved in order to avoid frequent
- /// reallocations. A call to `reserve` may result in an allocation.
- ///
- /// Before allocating new buffer space, the function will attempt to reclaim
- /// space in the existing buffer. If the current handle references a view
- /// into a larger original buffer, and all other handles referencing part
- /// of the same original buffer have been dropped, then the current view
- /// can be copied/shifted to the front of the buffer and the handle can take
- /// ownership of the full buffer, provided that the full buffer is large
- /// enough to fit the requested additional capacity.
- ///
- /// This optimization will only happen if shifting the data from the current
- /// view to the front of the buffer is not too expensive in terms of the
- /// (amortized) time required. The precise condition is subject to change;
- /// as of now, the length of the data being shifted needs to be at least as
- /// large as the distance that it's shifted by. If the current view is empty
- /// and the original buffer is large enough to fit the requested additional
- /// capacity, then reallocations will never happen.
- ///
- /// # Examples
- ///
- /// In the following example, a new buffer is allocated.
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut buf = BytesMut::from(&b"hello"[..]);
- /// buf.reserve(64);
- /// assert!(buf.capacity() >= 69);
- /// ```
- ///
- /// In the following example, the existing buffer is reclaimed.
- ///
- /// ```
- /// use bytes::{BytesMut, BufMut};
- ///
- /// let mut buf = BytesMut::with_capacity(128);
- /// buf.put(&[0; 64][..]);
- ///
- /// let ptr = buf.as_ptr();
- /// let other = buf.split();
- ///
- /// assert!(buf.is_empty());
- /// assert_eq!(buf.capacity(), 64);
- ///
- /// drop(other);
- /// buf.reserve(128);
- ///
- /// assert_eq!(buf.capacity(), 128);
- /// assert_eq!(buf.as_ptr(), ptr);
- /// ```
- ///
- /// # Panics
- ///
- /// Panics if the new capacity overflows `usize`.
- #[inline]
- pub fn reserve(&mut self, additional: usize) {
- let len = self.len();
- let rem = self.capacity() - len;
-
- if additional <= rem {
- // The handle can already store at least `additional` more bytes, so
- // there is no further work needed to be done.
- return;
- }
-
- // will always succeed
- let _ = self.reserve_inner(additional, true);
- }
-
- // In separate function to allow the short-circuits in `reserve` and `try_reclaim` to
- // be inline-able. Significantly helps performance. Returns false if it did not succeed.
- fn reserve_inner(&mut self, additional: usize, allocate: bool) -> bool {
- let len = self.len();
- let kind = self.kind();
-
- if kind == KIND_VEC {
- // If there's enough free space before the start of the buffer, then
- // just copy the data backwards and reuse the already-allocated
- // space.
- //
- // Otherwise, since backed by a vector, use `Vec::reserve`
- //
- // We need to make sure that this optimization does not kill the
- // amortized runtimes of BytesMut's operations.
- unsafe {
- let off = self.get_vec_pos();
-
- // Only reuse space if we can satisfy the requested additional space.
- //
- // Also check if the value of `off` suggests that enough bytes
- // have been read to account for the overhead of shifting all
- // the data (in an amortized analysis).
- // Hence the condition `off >= self.len()`.
- //
- // This condition also already implies that the buffer is going
- // to be (at least) half-empty in the end; so we do not break
- // the (amortized) runtime with future resizes of the underlying
- // `Vec`.
- //
- // [For more details check issue #524, and PR #525.]
- if self.capacity() - self.len() + off >= additional && off >= self.len() {
- // There's enough space, and it's not too much overhead:
- // reuse the space!
- //
- // Just move the pointer back to the start after copying
- // data back.
- let base_ptr = self.ptr.as_ptr().sub(off);
- // Since `off >= self.len()`, the two regions don't overlap.
- ptr::copy_nonoverlapping(self.ptr.as_ptr(), base_ptr, self.len);
- self.ptr = vptr(base_ptr);
- self.set_vec_pos(0);
-
- // Length stays constant, but since we moved backwards we
- // can gain capacity back.
- self.cap += off;
- } else {
- if !allocate {
- return false;
- }
- // Not enough space, or reusing might be too much overhead:
- // allocate more space!
- let mut v =
- ManuallyDrop::new(rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off));
- v.reserve(additional);
-
- // Update the info
- self.ptr = vptr(v.as_mut_ptr().add(off));
- self.cap = v.capacity() - off;
- debug_assert_eq!(self.len, v.len() - off);
- }
-
- return true;
- }
- }
-
- debug_assert_eq!(kind, KIND_ARC);
- let shared: *mut Shared = self.data;
-
- // Reserving involves abandoning the currently shared buffer and
- // allocating a new vector with the requested capacity.
- //
- // Compute the new capacity
- let mut new_cap = match len.checked_add(additional) {
- Some(new_cap) => new_cap,
- None if !allocate => return false,
- None => panic!("overflow"),
- };
-
- unsafe {
- // First, try to reclaim the buffer. This is possible if the current
- // handle is the only outstanding handle pointing to the buffer.
- if (*shared).is_unique() {
- // This is the only handle to the buffer. It can be reclaimed.
- // However, before doing the work of copying data, check to make
- // sure that the vector has enough capacity.
- let v = &mut (*shared).vec;
-
- let v_capacity = v.capacity();
- let ptr = v.as_mut_ptr();
-
- let offset = offset_from(self.ptr.as_ptr(), ptr);
-
- // Compare the condition in the `kind == KIND_VEC` case above
- // for more details.
- if v_capacity >= new_cap + offset {
- self.cap = new_cap;
- // no copy is necessary
- } else if v_capacity >= new_cap && offset >= len {
- // The capacity is sufficient, and copying is not too much
- // overhead: reclaim the buffer!
-
- // `offset >= len` means: no overlap
- ptr::copy_nonoverlapping(self.ptr.as_ptr(), ptr, len);
-
- self.ptr = vptr(ptr);
- self.cap = v.capacity();
- } else {
- if !allocate {
- return false;
- }
- // calculate offset
- let off = (self.ptr.as_ptr() as usize) - (v.as_ptr() as usize);
-
- // new_cap is calculated in terms of `BytesMut`, not the underlying
- // `Vec`, so it does not take the offset into account.
- //
- // Thus we have to manually add it here.
- new_cap = new_cap.checked_add(off).expect("overflow");
-
- // The vector capacity is not sufficient. The reserve request is
- // asking for more than the initial buffer capacity. Allocate more
- // than requested if `new_cap` is not much bigger than the current
- // capacity.
- //
- // There are some situations, using `reserve_exact` that the
- // buffer capacity could be below `original_capacity`, so do a
- // check.
- let double = v.capacity().checked_shl(1).unwrap_or(new_cap);
-
- new_cap = cmp::max(double, new_cap);
-
- // No space - allocate more
- //
- // The length field of `Shared::vec` is not used by the `BytesMut`;
- // instead we use the `len` field in the `BytesMut` itself. However,
- // when calling `reserve`, it doesn't guarantee that data stored in
- // the unused capacity of the vector is copied over to the new
- // allocation, so we need to ensure that we don't have any data we
- // care about in the unused capacity before calling `reserve`.
- debug_assert!(off + len <= v.capacity());
- v.set_len(off + len);
- v.reserve(new_cap - v.len());
-
- // Update the info
- self.ptr = vptr(v.as_mut_ptr().add(off));
- self.cap = v.capacity() - off;
- }
-
- return true;
- }
- }
- if !allocate {
- return false;
- }
-
- let original_capacity_repr = unsafe { (*shared).original_capacity_repr };
- let original_capacity = original_capacity_from_repr(original_capacity_repr);
-
- new_cap = cmp::max(new_cap, original_capacity);
-
- // Create a new vector to store the data
- let mut v = ManuallyDrop::new(Vec::with_capacity(new_cap));
-
- // Copy the bytes
- v.extend_from_slice(self.as_ref());
-
- // Release the shared handle. This must be done *after* the bytes are
- // copied.
- unsafe { release_shared(shared) };
-
- // Update self
- let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
- self.data = invalid_ptr(data);
- self.ptr = vptr(v.as_mut_ptr());
- self.cap = v.capacity();
- debug_assert_eq!(self.len, v.len());
- return true;
- }
-
- /// Attempts to cheaply reclaim already allocated capacity for at least `additional` more
- /// bytes to be inserted into the given `BytesMut` and returns `true` if it succeeded.
- ///
- /// `try_reclaim` behaves exactly like `reserve`, except that it never allocates new storage
- /// and returns a `bool` indicating whether it was successful in doing so:
- ///
- /// `try_reclaim` returns false under these conditions:
- /// - The spare capacity left is less than `additional` bytes AND
- /// - The existing allocation cannot be reclaimed cheaply or it was less than
- /// `additional` bytes in size
- ///
- /// Reclaiming the allocation cheaply is possible if the `BytesMut` has no outstanding
- /// references through other `BytesMut`s or `Bytes` which point to the same underlying
- /// storage.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut buf = BytesMut::with_capacity(64);
- /// assert_eq!(true, buf.try_reclaim(64));
- /// assert_eq!(64, buf.capacity());
- ///
- /// buf.extend_from_slice(b"abcd");
- /// let mut split = buf.split();
- /// assert_eq!(60, buf.capacity());
- /// assert_eq!(4, split.capacity());
- /// assert_eq!(false, split.try_reclaim(64));
- /// assert_eq!(false, buf.try_reclaim(64));
- /// // The split buffer is filled with "abcd"
- /// assert_eq!(false, split.try_reclaim(4));
- /// // buf is empty and has capacity for 60 bytes
- /// assert_eq!(true, buf.try_reclaim(60));
- ///
- /// drop(buf);
- /// assert_eq!(false, split.try_reclaim(64));
- ///
- /// split.clear();
- /// assert_eq!(4, split.capacity());
- /// assert_eq!(true, split.try_reclaim(64));
- /// assert_eq!(64, split.capacity());
- /// ```
- // I tried splitting out try_reclaim_inner after the short circuits, but it was inlined
- // regardless with Rust 1.78.0 so probably not worth it
- #[inline]
- #[must_use = "consider BytesMut::reserve if you need an infallible reservation"]
- pub fn try_reclaim(&mut self, additional: usize) -> bool {
- let len = self.len();
- let rem = self.capacity() - len;
-
- if additional <= rem {
- // The handle can already store at least `additional` more bytes, so
- // there is no further work needed to be done.
- return true;
- }
-
- self.reserve_inner(additional, false)
- }
-
- /// Appends given bytes to this `BytesMut`.
- ///
- /// If this `BytesMut` object does not have enough capacity, it is resized
- /// first.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut buf = BytesMut::with_capacity(0);
- /// buf.extend_from_slice(b"aaabbb");
- /// buf.extend_from_slice(b"cccddd");
- ///
- /// assert_eq!(b"aaabbbcccddd", &buf[..]);
- /// ```
- #[inline]
- pub fn extend_from_slice(&mut self, extend: &[u8]) {
- let cnt = extend.len();
- self.reserve(cnt);
-
- unsafe {
- let dst = self.spare_capacity_mut();
- // Reserved above
- debug_assert!(dst.len() >= cnt);
-
- ptr::copy_nonoverlapping(extend.as_ptr(), dst.as_mut_ptr().cast(), cnt);
- }
-
- unsafe {
- self.advance_mut(cnt);
- }
- }
-
- /// Absorbs a `BytesMut` that was previously split off.
- ///
- /// If the two `BytesMut` objects were previously contiguous and not mutated
- /// in a way that causes re-allocation i.e., if `other` was created by
- /// calling `split_off` on this `BytesMut`, then this is an `O(1)` operation
- /// that just decreases a reference count and sets a few indices.
- /// Otherwise this method degenerates to
- /// `self.extend_from_slice(other.as_ref())`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut buf = BytesMut::with_capacity(64);
- /// buf.extend_from_slice(b"aaabbbcccddd");
- ///
- /// let split = buf.split_off(6);
- /// assert_eq!(b"aaabbb", &buf[..]);
- /// assert_eq!(b"cccddd", &split[..]);
- ///
- /// buf.unsplit(split);
- /// assert_eq!(b"aaabbbcccddd", &buf[..]);
- /// ```
- pub fn unsplit(&mut self, other: BytesMut) {
- if self.is_empty() {
- *self = other;
- return;
- }
-
- if let Err(other) = self.try_unsplit(other) {
- self.extend_from_slice(other.as_ref());
- }
- }
-
- // private
-
- // For now, use a `Vec` to manage the memory for us, but we may want to
- // change that in the future to some alternate allocator strategy.
- //
- // Thus, we don't expose an easy way to construct from a `Vec` since an
- // internal change could make a simple pattern (`BytesMut::from(vec)`)
- // suddenly a lot more expensive.
- #[inline]
- pub(crate) fn from_vec(vec: Vec<u8>) -> BytesMut {
- let mut vec = ManuallyDrop::new(vec);
- let ptr = vptr(vec.as_mut_ptr());
- let len = vec.len();
- let cap = vec.capacity();
-
- let original_capacity_repr = original_capacity_to_repr(cap);
- let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
-
- BytesMut {
- ptr,
- len,
- cap,
- data: invalid_ptr(data),
- }
- }
-
- #[inline]
- fn as_slice(&self) -> &[u8] {
- unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) }
- }
-
- #[inline]
- fn as_slice_mut(&mut self) -> &mut [u8] {
- unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) }
- }
-
- /// Advance the buffer without bounds checking.
- ///
- /// # SAFETY
- ///
- /// The caller must ensure that `count` <= `self.cap`.
- pub(crate) unsafe fn advance_unchecked(&mut self, count: usize) {
- // Setting the start to 0 is a no-op, so return early if this is the
- // case.
- if count == 0 {
- return;
- }
-
- debug_assert!(count <= self.cap, "internal: set_start out of bounds");
-
- let kind = self.kind();
-
- if kind == KIND_VEC {
- // Setting the start when in vec representation is a little more
- // complicated. First, we have to track how far ahead the
- // "start" of the byte buffer from the beginning of the vec. We
- // also have to ensure that we don't exceed the maximum shift.
- let pos = self.get_vec_pos() + count;
-
- if pos <= MAX_VEC_POS {
- self.set_vec_pos(pos);
- } else {
- // The repr must be upgraded to ARC. This will never happen
- // on 64 bit systems and will only happen on 32 bit systems
- // when shifting past 134,217,727 bytes. As such, we don't
- // worry too much about performance here.
- self.promote_to_shared(/*ref_count = */ 1);
- }
- }
-
- // Updating the start of the view is setting `ptr` to point to the
- // new start and updating the `len` field to reflect the new length
- // of the view.
- self.ptr = vptr(self.ptr.as_ptr().add(count));
- self.len = self.len.checked_sub(count).unwrap_or(0);
- self.cap -= count;
- }
-
- fn try_unsplit(&mut self, other: BytesMut) -> Result<(), BytesMut> {
- if other.capacity() == 0 {
- return Ok(());
- }
-
- let ptr = unsafe { self.ptr.as_ptr().add(self.len) };
- if ptr == other.ptr.as_ptr()
- && self.kind() == KIND_ARC
- && other.kind() == KIND_ARC
- && self.data == other.data
- {
- // Contiguous blocks, just combine directly
- self.len += other.len;
- self.cap += other.cap;
- Ok(())
- } else {
- Err(other)
- }
- }
-
- #[inline]
- fn kind(&self) -> usize {
- self.data as usize & KIND_MASK
- }
-
- unsafe fn promote_to_shared(&mut self, ref_cnt: usize) {
- debug_assert_eq!(self.kind(), KIND_VEC);
- debug_assert!(ref_cnt == 1 || ref_cnt == 2);
-
- let original_capacity_repr =
- (self.data as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET;
-
- // The vec offset cannot be concurrently mutated, so there
- // should be no danger reading it.
- let off = (self.data as usize) >> VEC_POS_OFFSET;
-
- // First, allocate a new `Shared` instance containing the
- // `Vec` fields. It's important to note that `ptr`, `len`,
- // and `cap` cannot be mutated without having `&mut self`.
- // This means that these fields will not be concurrently
- // updated and since the buffer hasn't been promoted to an
- // `Arc`, those three fields still are the components of the
- // vector.
- let shared = Box::new(Shared {
- vec: rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off),
- original_capacity_repr,
- ref_count: AtomicUsize::new(ref_cnt),
- });
-
- let shared = Box::into_raw(shared);
-
- // The pointer should be aligned, so this assert should
- // always succeed.
- debug_assert_eq!(shared as usize & KIND_MASK, KIND_ARC);
-
- self.data = shared;
- }
-
- /// Makes an exact shallow clone of `self`.
- ///
- /// The kind of `self` doesn't matter, but this is unsafe
- /// because the clone will have the same offsets. You must
- /// be sure the returned value to the user doesn't allow
- /// two views into the same range.
- #[inline]
- unsafe fn shallow_clone(&mut self) -> BytesMut {
- if self.kind() == KIND_ARC {
- increment_shared(self.data);
- ptr::read(self)
- } else {
- self.promote_to_shared(/*ref_count = */ 2);
- ptr::read(self)
- }
- }
-
- #[inline]
- unsafe fn get_vec_pos(&self) -> usize {
- debug_assert_eq!(self.kind(), KIND_VEC);
-
- self.data as usize >> VEC_POS_OFFSET
- }
-
- #[inline]
- unsafe fn set_vec_pos(&mut self, pos: usize) {
- debug_assert_eq!(self.kind(), KIND_VEC);
- debug_assert!(pos <= MAX_VEC_POS);
-
- self.data = invalid_ptr((pos << VEC_POS_OFFSET) | (self.data as usize & NOT_VEC_POS_MASK));
- }
-
- /// Returns the remaining spare capacity of the buffer as a slice of `MaybeUninit<u8>`.
- ///
- /// The returned slice can be used to fill the buffer with data (e.g. by
- /// reading from a file) before marking the data as initialized using the
- /// [`set_len`] method.
- ///
- /// [`set_len`]: BytesMut::set_len
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// // Allocate buffer big enough for 10 bytes.
- /// let mut buf = BytesMut::with_capacity(10);
- ///
- /// // Fill in the first 3 elements.
- /// let uninit = buf.spare_capacity_mut();
- /// uninit[0].write(0);
- /// uninit[1].write(1);
- /// uninit[2].write(2);
- ///
- /// // Mark the first 3 bytes of the buffer as being initialized.
- /// unsafe {
- /// buf.set_len(3);
- /// }
- ///
- /// assert_eq!(&buf[..], &[0, 1, 2]);
- /// ```
- #[inline]
- pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<u8>] {
- unsafe {
- let ptr = self.ptr.as_ptr().add(self.len);
- let len = self.cap - self.len;
-
- slice::from_raw_parts_mut(ptr.cast(), len)
- }
- }
-}
-
-impl Drop for BytesMut {
- fn drop(&mut self) {
- let kind = self.kind();
-
- if kind == KIND_VEC {
- unsafe {
- let off = self.get_vec_pos();
-
- // Vector storage, free the vector
- let _ = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off);
- }
- } else if kind == KIND_ARC {
- unsafe { release_shared(self.data) };
- }
- }
-}
-
-impl Buf for BytesMut {
- #[inline]
- fn remaining(&self) -> usize {
- self.len()
- }
-
- #[inline]
- fn chunk(&self) -> &[u8] {
- self.as_slice()
- }
-
- #[inline]
- fn advance(&mut self, cnt: usize) {
- assert!(
- cnt <= self.remaining(),
- "cannot advance past `remaining`: {:?} <= {:?}",
- cnt,
- self.remaining(),
- );
- unsafe {
- // SAFETY: We've checked that `cnt` <= `self.remaining()` and we know that
- // `self.remaining()` <= `self.cap`.
- self.advance_unchecked(cnt);
- }
- }
-
- fn copy_to_bytes(&mut self, len: usize) -> Bytes {
- self.split_to(len).freeze()
- }
-}
-
-unsafe impl BufMut for BytesMut {
- #[inline]
- fn remaining_mut(&self) -> usize {
- usize::MAX - self.len()
- }
-
- #[inline]
- unsafe fn advance_mut(&mut self, cnt: usize) {
- let remaining = self.cap - self.len();
- if cnt > remaining {
- super::panic_advance(&TryGetError {
- requested: cnt,
- available: remaining,
- });
- }
- // Addition won't overflow since it is at most `self.cap`.
- self.len = self.len() + cnt;
- }
-
- #[inline]
- fn chunk_mut(&mut self) -> &mut UninitSlice {
- if self.capacity() == self.len() {
- self.reserve(64);
- }
- self.spare_capacity_mut().into()
- }
-
- // Specialize these methods so they can skip checking `remaining_mut`
- // and `advance_mut`.
-
- fn put<T: Buf>(&mut self, mut src: T)
- where
- Self: Sized,
- {
- while src.has_remaining() {
- let s = src.chunk();
- let l = s.len();
- self.extend_from_slice(s);
- src.advance(l);
- }
- }
-
- fn put_slice(&mut self, src: &[u8]) {
- self.extend_from_slice(src);
- }
-
- fn put_bytes(&mut self, val: u8, cnt: usize) {
- self.reserve(cnt);
- unsafe {
- let dst = self.spare_capacity_mut();
- // Reserved above
- debug_assert!(dst.len() >= cnt);
-
- ptr::write_bytes(dst.as_mut_ptr(), val, cnt);
-
- self.advance_mut(cnt);
- }
- }
-}
-
-impl AsRef<[u8]> for BytesMut {
- #[inline]
- fn as_ref(&self) -> &[u8] {
- self.as_slice()
- }
-}
-
-impl Deref for BytesMut {
- type Target = [u8];
-
- #[inline]
- fn deref(&self) -> &[u8] {
- self.as_ref()
- }
-}
-
-impl AsMut<[u8]> for BytesMut {
- #[inline]
- fn as_mut(&mut self) -> &mut [u8] {
- self.as_slice_mut()
- }
-}
-
-impl DerefMut for BytesMut {
- #[inline]
- fn deref_mut(&mut self) -> &mut [u8] {
- self.as_mut()
- }
-}
-
-impl<'a> From<&'a [u8]> for BytesMut {
- fn from(src: &'a [u8]) -> BytesMut {
- BytesMut::from_vec(src.to_vec())
- }
-}
-
-impl<'a> From<&'a str> for BytesMut {
- fn from(src: &'a str) -> BytesMut {
- BytesMut::from(src.as_bytes())
- }
-}
-
-impl From<BytesMut> for Bytes {
- fn from(src: BytesMut) -> Bytes {
- src.freeze()
- }
-}
-
-impl PartialEq for BytesMut {
- fn eq(&self, other: &BytesMut) -> bool {
- self.as_slice() == other.as_slice()
- }
-}
-
-impl PartialOrd for BytesMut {
- fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
- self.as_slice().partial_cmp(other.as_slice())
- }
-}
-
-impl Ord for BytesMut {
- fn cmp(&self, other: &BytesMut) -> cmp::Ordering {
- self.as_slice().cmp(other.as_slice())
- }
-}
-
-impl Eq for BytesMut {}
-
-impl Default for BytesMut {
- #[inline]
- fn default() -> BytesMut {
- BytesMut::new()
- }
-}
-
-impl hash::Hash for BytesMut {
- fn hash<H>(&self, state: &mut H)
- where
- H: hash::Hasher,
- {
- let s: &[u8] = self.as_ref();
- s.hash(state);
- }
-}
-
-impl Borrow<[u8]> for BytesMut {
- fn borrow(&self) -> &[u8] {
- self.as_ref()
- }
-}
-
-impl BorrowMut<[u8]> for BytesMut {
- fn borrow_mut(&mut self) -> &mut [u8] {
- self.as_mut()
- }
-}
-
-impl fmt::Write for BytesMut {
- #[inline]
- fn write_str(&mut self, s: &str) -> fmt::Result {
- if self.remaining_mut() >= s.len() {
- self.put_slice(s.as_bytes());
- Ok(())
- } else {
- Err(fmt::Error)
- }
- }
-
- #[inline]
- fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result {
- fmt::write(self, args)
- }
-}
-
-impl Clone for BytesMut {
- fn clone(&self) -> BytesMut {
- BytesMut::from(&self[..])
- }
-}
-
-impl IntoIterator for BytesMut {
- type Item = u8;
- type IntoIter = IntoIter<BytesMut>;
-
- fn into_iter(self) -> Self::IntoIter {
- IntoIter::new(self)
- }
-}
-
-impl<'a> IntoIterator for &'a BytesMut {
- type Item = &'a u8;
- type IntoIter = core::slice::Iter<'a, u8>;
-
- fn into_iter(self) -> Self::IntoIter {
- self.as_ref().iter()
- }
-}
-
-impl Extend<u8> for BytesMut {
- fn extend<T>(&mut self, iter: T)
- where
- T: IntoIterator<Item = u8>,
- {
- let iter = iter.into_iter();
-
- let (lower, _) = iter.size_hint();
- self.reserve(lower);
-
- // TODO: optimize
- // 1. If self.kind() == KIND_VEC, use Vec::extend
- for b in iter {
- self.put_u8(b);
- }
- }
-}
-
-impl<'a> Extend<&'a u8> for BytesMut {
- fn extend<T>(&mut self, iter: T)
- where
- T: IntoIterator<Item = &'a u8>,
- {
- self.extend(iter.into_iter().copied())
- }
-}
-
-impl Extend<Bytes> for BytesMut {
- fn extend<T>(&mut self, iter: T)
- where
- T: IntoIterator<Item = Bytes>,
- {
- for bytes in iter {
- self.extend_from_slice(&bytes)
- }
- }
-}
-
-impl FromIterator<u8> for BytesMut {
- fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
- BytesMut::from_vec(Vec::from_iter(into_iter))
- }
-}
-
-impl<'a> FromIterator<&'a u8> for BytesMut {
- fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self {
- BytesMut::from_iter(into_iter.into_iter().copied())
- }
-}
-
-/*
- *
- * ===== Inner =====
- *
- */
-
-unsafe fn increment_shared(ptr: *mut Shared) {
- let old_size = (*ptr).ref_count.fetch_add(1, Ordering::Relaxed);
-
- if old_size > isize::MAX as usize {
- crate::abort();
- }
-}
-
-unsafe fn release_shared(ptr: *mut Shared) {
- // `Shared` storage... follow the drop steps from Arc.
- if (*ptr).ref_count.fetch_sub(1, Ordering::Release) != 1 {
- return;
- }
-
- // This fence is needed to prevent reordering of use of the data and
- // deletion of the data. Because it is marked `Release`, the decreasing
- // of the reference count synchronizes with this `Acquire` fence. This
- // means that use of the data happens before decreasing the reference
- // count, which happens before this fence, which happens before the
- // deletion of the data.
- //
- // As explained in the [Boost documentation][1],
- //
- // > It is important to enforce any possible access to the object in one
- // > thread (through an existing reference) to *happen before* deleting
- // > the object in a different thread. This is achieved by a "release"
- // > operation after dropping a reference (any access to the object
- // > through this reference must obviously happened before), and an
- // > "acquire" operation before deleting the object.
- //
- // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
- //
- // Thread sanitizer does not support atomic fences. Use an atomic load
- // instead.
- (*ptr).ref_count.load(Ordering::Acquire);
-
- // Drop the data
- drop(Box::from_raw(ptr));
-}
-
-impl Shared {
- fn is_unique(&self) -> bool {
- // The goal is to check if the current handle is the only handle
- // that currently has access to the buffer. This is done by
- // checking if the `ref_count` is currently 1.
- //
- // The `Acquire` ordering synchronizes with the `Release` as
- // part of the `fetch_sub` in `release_shared`. The `fetch_sub`
- // operation guarantees that any mutations done in other threads
- // are ordered before the `ref_count` is decremented. As such,
- // this `Acquire` will guarantee that those mutations are
- // visible to the current thread.
- self.ref_count.load(Ordering::Acquire) == 1
- }
-}
-
-#[inline]
-fn original_capacity_to_repr(cap: usize) -> usize {
- let width = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize);
- cmp::min(
- width,
- MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH,
- )
-}
-
-fn original_capacity_from_repr(repr: usize) -> usize {
- if repr == 0 {
- return 0;
- }
-
- 1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1))
-}
-
-#[cfg(test)]
-mod tests {
- use super::*;
-
- #[test]
- fn test_original_capacity_to_repr() {
- assert_eq!(original_capacity_to_repr(0), 0);
-
- let max_width = 32;
-
- for width in 1..(max_width + 1) {
- let cap = 1 << width - 1;
-
- let expected = if width < MIN_ORIGINAL_CAPACITY_WIDTH {
- 0
- } else if width < MAX_ORIGINAL_CAPACITY_WIDTH {
- width - MIN_ORIGINAL_CAPACITY_WIDTH
- } else {
- MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH
- };
-
- assert_eq!(original_capacity_to_repr(cap), expected);
-
- if width > 1 {
- assert_eq!(original_capacity_to_repr(cap + 1), expected);
- }
-
- // MIN_ORIGINAL_CAPACITY_WIDTH must be bigger than 7 to pass tests below
- if width == MIN_ORIGINAL_CAPACITY_WIDTH + 1 {
- assert_eq!(original_capacity_to_repr(cap - 24), expected - 1);
- assert_eq!(original_capacity_to_repr(cap + 76), expected);
- } else if width == MIN_ORIGINAL_CAPACITY_WIDTH + 2 {
- assert_eq!(original_capacity_to_repr(cap - 1), expected - 1);
- assert_eq!(original_capacity_to_repr(cap - 48), expected - 1);
- }
- }
- }
-
- #[test]
- fn test_original_capacity_from_repr() {
- assert_eq!(0, original_capacity_from_repr(0));
-
- let min_cap = 1 << MIN_ORIGINAL_CAPACITY_WIDTH;
-
- assert_eq!(min_cap, original_capacity_from_repr(1));
- assert_eq!(min_cap * 2, original_capacity_from_repr(2));
- assert_eq!(min_cap * 4, original_capacity_from_repr(3));
- assert_eq!(min_cap * 8, original_capacity_from_repr(4));
- assert_eq!(min_cap * 16, original_capacity_from_repr(5));
- assert_eq!(min_cap * 32, original_capacity_from_repr(6));
- assert_eq!(min_cap * 64, original_capacity_from_repr(7));
- }
-}
-
-unsafe impl Send for BytesMut {}
-unsafe impl Sync for BytesMut {}
-
-/*
- *
- * ===== PartialEq / PartialOrd =====
- *
- */
-
-impl PartialEq<[u8]> for BytesMut {
- fn eq(&self, other: &[u8]) -> bool {
- &**self == other
- }
-}
-
-impl PartialOrd<[u8]> for BytesMut {
- fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
- (**self).partial_cmp(other)
- }
-}
-
-impl PartialEq<BytesMut> for [u8] {
- fn eq(&self, other: &BytesMut) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<BytesMut> for [u8] {
- fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
- <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
- }
-}
-
-impl PartialEq<str> for BytesMut {
- fn eq(&self, other: &str) -> bool {
- &**self == other.as_bytes()
- }
-}
-
-impl PartialOrd<str> for BytesMut {
- fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
- (**self).partial_cmp(other.as_bytes())
- }
-}
-
-impl PartialEq<BytesMut> for str {
- fn eq(&self, other: &BytesMut) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<BytesMut> for str {
- fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
- <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
- }
-}
-
-impl PartialEq<Vec<u8>> for BytesMut {
- fn eq(&self, other: &Vec<u8>) -> bool {
- *self == other[..]
- }
-}
-
-impl PartialOrd<Vec<u8>> for BytesMut {
- fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
- (**self).partial_cmp(&other[..])
- }
-}
-
-impl PartialEq<BytesMut> for Vec<u8> {
- fn eq(&self, other: &BytesMut) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<BytesMut> for Vec<u8> {
- fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
- other.partial_cmp(self)
- }
-}
-
-impl PartialEq<String> for BytesMut {
- fn eq(&self, other: &String) -> bool {
- *self == other[..]
- }
-}
-
-impl PartialOrd<String> for BytesMut {
- fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
- (**self).partial_cmp(other.as_bytes())
- }
-}
-
-impl PartialEq<BytesMut> for String {
- fn eq(&self, other: &BytesMut) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<BytesMut> for String {
- fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
- <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
- }
-}
-
-impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut
-where
- BytesMut: PartialEq<T>,
-{
- fn eq(&self, other: &&'a T) -> bool {
- *self == **other
- }
-}
-
-impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut
-where
- BytesMut: PartialOrd<T>,
-{
- fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
- self.partial_cmp(*other)
- }
-}
-
-impl PartialEq<BytesMut> for &[u8] {
- fn eq(&self, other: &BytesMut) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<BytesMut> for &[u8] {
- fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
- <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
- }
-}
-
-impl PartialEq<BytesMut> for &str {
- fn eq(&self, other: &BytesMut) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<BytesMut> for &str {
- fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
- other.partial_cmp(self)
- }
-}
-
-impl PartialEq<BytesMut> for Bytes {
- fn eq(&self, other: &BytesMut) -> bool {
- other[..] == self[..]
- }
-}
-
-impl PartialEq<Bytes> for BytesMut {
- fn eq(&self, other: &Bytes) -> bool {
- other[..] == self[..]
- }
-}
-
-impl From<BytesMut> for Vec<u8> {
- fn from(bytes: BytesMut) -> Self {
- let kind = bytes.kind();
- let bytes = ManuallyDrop::new(bytes);
-
- let mut vec = if kind == KIND_VEC {
- unsafe {
- let off = bytes.get_vec_pos();
- rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off)
- }
- } else {
- let shared = bytes.data as *mut Shared;
-
- if unsafe { (*shared).is_unique() } {
- let vec = mem::replace(unsafe { &mut (*shared).vec }, Vec::new());
-
- unsafe { release_shared(shared) };
-
- vec
- } else {
- return ManuallyDrop::into_inner(bytes).deref().to_vec();
- }
- };
-
- let len = bytes.len;
-
- unsafe {
- ptr::copy(bytes.ptr.as_ptr(), vec.as_mut_ptr(), len);
- vec.set_len(len);
- }
-
- vec
- }
-}
-
-#[inline]
-fn vptr(ptr: *mut u8) -> NonNull<u8> {
- if cfg!(debug_assertions) {
- NonNull::new(ptr).expect("Vec pointer should be non-null")
- } else {
- unsafe { NonNull::new_unchecked(ptr) }
- }
-}
-
-/// Returns a dangling pointer with the given address. This is used to store
-/// integer data in pointer fields.
-///
-/// It is equivalent to `addr as *mut T`, but this fails on miri when strict
-/// provenance checking is enabled.
-#[inline]
-fn invalid_ptr<T>(addr: usize) -> *mut T {
- let ptr = core::ptr::null_mut::<u8>().wrapping_add(addr);
- debug_assert_eq!(ptr as usize, addr);
- ptr.cast::<T>()
-}
-
-unsafe fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> {
- let ptr = ptr.sub(off);
- len += off;
- cap += off;
-
- Vec::from_raw_parts(ptr, len, cap)
-}
-
-// ===== impl SharedVtable =====
-
-static SHARED_VTABLE: Vtable = Vtable {
- clone: shared_v_clone,
- to_vec: shared_v_to_vec,
- to_mut: shared_v_to_mut,
- is_unique: shared_v_is_unique,
- drop: shared_v_drop,
-};
-
-unsafe fn shared_v_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
- let shared = data.load(Ordering::Relaxed) as *mut Shared;
- increment_shared(shared);
-
- let data = AtomicPtr::new(shared as *mut ());
- Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE)
-}
-
-unsafe fn shared_v_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
- let shared: *mut Shared = data.load(Ordering::Relaxed).cast();
-
- if (*shared).is_unique() {
- let shared = &mut *shared;
-
- // Drop shared
- let mut vec = mem::replace(&mut shared.vec, Vec::new());
- release_shared(shared);
-
- // Copy back buffer
- ptr::copy(ptr, vec.as_mut_ptr(), len);
- vec.set_len(len);
-
- vec
- } else {
- let v = slice::from_raw_parts(ptr, len).to_vec();
- release_shared(shared);
- v
- }
-}
-
-unsafe fn shared_v_to_mut(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> BytesMut {
- let shared: *mut Shared = data.load(Ordering::Relaxed).cast();
-
- if (*shared).is_unique() {
- let shared = &mut *shared;
-
- // The capacity is always the original capacity of the buffer
- // minus the offset from the start of the buffer
- let v = &mut shared.vec;
- let v_capacity = v.capacity();
- let v_ptr = v.as_mut_ptr();
- let offset = offset_from(ptr as *mut u8, v_ptr);
- let cap = v_capacity - offset;
-
- let ptr = vptr(ptr as *mut u8);
-
- BytesMut {
- ptr,
- len,
- cap,
- data: shared,
- }
- } else {
- let v = slice::from_raw_parts(ptr, len).to_vec();
- release_shared(shared);
- BytesMut::from_vec(v)
- }
-}
-
-unsafe fn shared_v_is_unique(data: &AtomicPtr<()>) -> bool {
- let shared = data.load(Ordering::Acquire);
- let ref_count = (*shared.cast::<Shared>()).ref_count.load(Ordering::Relaxed);
- ref_count == 1
-}
-
-unsafe fn shared_v_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) {
- data.with_mut(|shared| {
- release_shared(*shared as *mut Shared);
- });
-}
-
-// compile-fails
-
-/// ```compile_fail
-/// use bytes::BytesMut;
-/// #[deny(unused_must_use)]
-/// {
-/// let mut b1 = BytesMut::from("hello world");
-/// b1.split_to(6);
-/// }
-/// ```
-fn _split_to_must_use() {}
-
-/// ```compile_fail
-/// use bytes::BytesMut;
-/// #[deny(unused_must_use)]
-/// {
-/// let mut b1 = BytesMut::from("hello world");
-/// b1.split_off(6);
-/// }
-/// ```
-fn _split_off_must_use() {}
-
-/// ```compile_fail
-/// use bytes::BytesMut;
-/// #[deny(unused_must_use)]
-/// {
-/// let mut b1 = BytesMut::from("hello world");
-/// b1.split();
-/// }
-/// ```
-fn _split_must_use() {}
-
-// fuzz tests
-#[cfg(all(test, loom))]
-mod fuzz {
- use loom::sync::Arc;
- use loom::thread;
-
- use super::BytesMut;
- use crate::Bytes;
-
- #[test]
- fn bytes_mut_cloning_frozen() {
- loom::model(|| {
- let a = BytesMut::from(&b"abcdefgh"[..]).split().freeze();
- let addr = a.as_ptr() as usize;
-
- // test the Bytes::clone is Sync by putting it in an Arc
- let a1 = Arc::new(a);
- let a2 = a1.clone();
-
- let t1 = thread::spawn(move || {
- let b: Bytes = (*a1).clone();
- assert_eq!(b.as_ptr() as usize, addr);
- });
-
- let t2 = thread::spawn(move || {
- let b: Bytes = (*a2).clone();
- assert_eq!(b.as_ptr() as usize, addr);
- });
-
- t1.join().unwrap();
- t2.join().unwrap();
- });
- }
-}
diff --git a/vendor/bytes/src/fmt/debug.rs b/vendor/bytes/src/fmt/debug.rs
deleted file mode 100644
index 82d0aa5e..00000000
--- a/vendor/bytes/src/fmt/debug.rs
+++ /dev/null
@@ -1,40 +0,0 @@
-use core::fmt::{Debug, Formatter, Result};
-
-use super::BytesRef;
-use crate::{Bytes, BytesMut};
-
-/// Alternative implementation of `std::fmt::Debug` for byte slice.
-///
-/// Standard `Debug` implementation for `[u8]` is comma separated
-/// list of numbers. Since large amount of byte strings are in fact
-/// ASCII strings or contain a lot of ASCII strings (e. g. HTTP),
-/// it is convenient to print strings as ASCII when possible.
-impl Debug for BytesRef<'_> {
- fn fmt(&self, f: &mut Formatter<'_>) -> Result {
- write!(f, "b\"")?;
- for &b in self.0 {
- // https://doc.rust-lang.org/reference/tokens.html#byte-escapes
- if b == b'\n' {
- write!(f, "\\n")?;
- } else if b == b'\r' {
- write!(f, "\\r")?;
- } else if b == b'\t' {
- write!(f, "\\t")?;
- } else if b == b'\\' || b == b'"' {
- write!(f, "\\{}", b as char)?;
- } else if b == b'\0' {
- write!(f, "\\0")?;
- // ASCII printable
- } else if (0x20..0x7f).contains(&b) {
- write!(f, "{}", b as char)?;
- } else {
- write!(f, "\\x{:02x}", b)?;
- }
- }
- write!(f, "\"")?;
- Ok(())
- }
-}
-
-fmt_impl!(Debug, Bytes);
-fmt_impl!(Debug, BytesMut);
diff --git a/vendor/bytes/src/fmt/hex.rs b/vendor/bytes/src/fmt/hex.rs
deleted file mode 100644
index 1203b419..00000000
--- a/vendor/bytes/src/fmt/hex.rs
+++ /dev/null
@@ -1,27 +0,0 @@
-use core::fmt::{Formatter, LowerHex, Result, UpperHex};
-
-use super::BytesRef;
-use crate::{Bytes, BytesMut};
-
-impl LowerHex for BytesRef<'_> {
- fn fmt(&self, f: &mut Formatter<'_>) -> Result {
- for &b in self.0 {
- write!(f, "{:02x}", b)?;
- }
- Ok(())
- }
-}
-
-impl UpperHex for BytesRef<'_> {
- fn fmt(&self, f: &mut Formatter<'_>) -> Result {
- for &b in self.0 {
- write!(f, "{:02X}", b)?;
- }
- Ok(())
- }
-}
-
-fmt_impl!(LowerHex, Bytes);
-fmt_impl!(LowerHex, BytesMut);
-fmt_impl!(UpperHex, Bytes);
-fmt_impl!(UpperHex, BytesMut);
diff --git a/vendor/bytes/src/fmt/mod.rs b/vendor/bytes/src/fmt/mod.rs
deleted file mode 100644
index b8a0eafa..00000000
--- a/vendor/bytes/src/fmt/mod.rs
+++ /dev/null
@@ -1,15 +0,0 @@
-macro_rules! fmt_impl {
- ($tr:ident, $ty:ty) => {
- impl $tr for $ty {
- fn fmt(&self, f: &mut Formatter<'_>) -> Result {
- $tr::fmt(&BytesRef(self.as_ref()), f)
- }
- }
- };
-}
-
-mod debug;
-mod hex;
-
-/// `BytesRef` is not a part of public API of bytes crate.
-struct BytesRef<'a>(&'a [u8]);
diff --git a/vendor/bytes/src/lib.rs b/vendor/bytes/src/lib.rs
deleted file mode 100644
index 08c42494..00000000
--- a/vendor/bytes/src/lib.rs
+++ /dev/null
@@ -1,199 +0,0 @@
-#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
-#![doc(test(
- no_crate_inject,
- attr(deny(warnings, rust_2018_idioms), allow(dead_code, unused_variables))
-))]
-#![no_std]
-#![cfg_attr(docsrs, feature(doc_cfg))]
-
-//! Provides abstractions for working with bytes.
-//!
-//! The `bytes` crate provides an efficient byte buffer structure
-//! ([`Bytes`]) and traits for working with buffer
-//! implementations ([`Buf`], [`BufMut`]).
-//!
-//! # `Bytes`
-//!
-//! `Bytes` is an efficient container for storing and operating on contiguous
-//! slices of memory. It is intended for use primarily in networking code, but
-//! could have applications elsewhere as well.
-//!
-//! `Bytes` values facilitate zero-copy network programming by allowing multiple
-//! `Bytes` objects to point to the same underlying memory. This is managed by
-//! using a reference count to track when the memory is no longer needed and can
-//! be freed.
-//!
-//! A `Bytes` handle can be created directly from an existing byte store (such as `&[u8]`
-//! or `Vec<u8>`), but usually a `BytesMut` is used first and written to. For
-//! example:
-//!
-//! ```rust
-//! use bytes::{BytesMut, BufMut};
-//!
-//! let mut buf = BytesMut::with_capacity(1024);
-//! buf.put(&b"hello world"[..]);
-//! buf.put_u16(1234);
-//!
-//! let a = buf.split();
-//! assert_eq!(a, b"hello world\x04\xD2"[..]);
-//!
-//! buf.put(&b"goodbye world"[..]);
-//!
-//! let b = buf.split();
-//! assert_eq!(b, b"goodbye world"[..]);
-//!
-//! assert_eq!(buf.capacity(), 998);
-//! ```
-//!
-//! In the above example, only a single buffer of 1024 is allocated. The handles
-//! `a` and `b` will share the underlying buffer and maintain indices tracking
-//! the view into the buffer represented by the handle.
-//!
-//! See the [struct docs](`Bytes`) for more details.
-//!
-//! # `Buf`, `BufMut`
-//!
-//! These two traits provide read and write access to buffers. The underlying
-//! storage may or may not be in contiguous memory. For example, `Bytes` is a
-//! buffer that guarantees contiguous memory, but a [rope] stores the bytes in
-//! disjoint chunks. `Buf` and `BufMut` maintain cursors tracking the current
-//! position in the underlying byte storage. When bytes are read or written, the
-//! cursor is advanced.
-//!
-//! [rope]: https://en.wikipedia.org/wiki/Rope_(data_structure)
-//!
-//! ## Relation with `Read` and `Write`
-//!
-//! At first glance, it may seem that `Buf` and `BufMut` overlap in
-//! functionality with [`std::io::Read`] and [`std::io::Write`]. However, they
-//! serve different purposes. A buffer is the value that is provided as an
-//! argument to `Read::read` and `Write::write`. `Read` and `Write` may then
-//! perform a syscall, which has the potential of failing. Operations on `Buf`
-//! and `BufMut` are infallible.
-
-extern crate alloc;
-
-#[cfg(feature = "std")]
-extern crate std;
-
-pub mod buf;
-pub use crate::buf::{Buf, BufMut};
-
-mod bytes;
-mod bytes_mut;
-mod fmt;
-mod loom;
-pub use crate::bytes::Bytes;
-pub use crate::bytes_mut::BytesMut;
-
-// Optional Serde support
-#[cfg(feature = "serde")]
-mod serde;
-
-#[inline(never)]
-#[cold]
-fn abort() -> ! {
- #[cfg(feature = "std")]
- {
- std::process::abort();
- }
-
- #[cfg(not(feature = "std"))]
- {
- struct Abort;
- impl Drop for Abort {
- fn drop(&mut self) {
- panic!();
- }
- }
- let _a = Abort;
- panic!("abort");
- }
-}
-
-#[inline(always)]
-#[cfg(feature = "std")]
-fn saturating_sub_usize_u64(a: usize, b: u64) -> usize {
- use core::convert::TryFrom;
- match usize::try_from(b) {
- Ok(b) => a.saturating_sub(b),
- Err(_) => 0,
- }
-}
-
-#[inline(always)]
-#[cfg(feature = "std")]
-fn min_u64_usize(a: u64, b: usize) -> usize {
- use core::convert::TryFrom;
- match usize::try_from(a) {
- Ok(a) => usize::min(a, b),
- Err(_) => b,
- }
-}
-
-/// Error type for the `try_get_` methods of [`Buf`].
-/// Indicates that there were not enough remaining
-/// bytes in the buffer while attempting
-/// to get a value from a [`Buf`] with one
-/// of the `try_get_` methods.
-#[derive(Debug, PartialEq, Eq)]
-pub struct TryGetError {
- /// The number of bytes necessary to get the value
- pub requested: usize,
-
- /// The number of bytes available in the buffer
- pub available: usize,
-}
-
-impl core::fmt::Display for TryGetError {
- fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
- write!(
- f,
- "Not enough bytes remaining in buffer to read value (requested {} but only {} available)",
- self.requested,
- self.available
- )
- }
-}
-
-#[cfg(feature = "std")]
-impl std::error::Error for TryGetError {}
-
-#[cfg(feature = "std")]
-impl From<TryGetError> for std::io::Error {
- fn from(error: TryGetError) -> Self {
- std::io::Error::new(std::io::ErrorKind::Other, error)
- }
-}
-
-/// Panic with a nice error message.
-#[cold]
-fn panic_advance(error_info: &TryGetError) -> ! {
- panic!(
- "advance out of bounds: the len is {} but advancing by {}",
- error_info.available, error_info.requested
- );
-}
-
-#[cold]
-fn panic_does_not_fit(size: usize, nbytes: usize) -> ! {
- panic!(
- "size too large: the integer type can fit {} bytes, but nbytes is {}",
- size, nbytes
- );
-}
-
-/// Precondition: dst >= original
-///
-/// The following line is equivalent to:
-///
-/// ```rust,ignore
-/// self.ptr.as_ptr().offset_from(ptr) as usize;
-/// ```
-///
-/// But due to min rust is 1.39 and it is only stabilized
-/// in 1.47, we cannot use it.
-#[inline]
-fn offset_from(dst: *const u8, original: *const u8) -> usize {
- dst as usize - original as usize
-}
diff --git a/vendor/bytes/src/loom.rs b/vendor/bytes/src/loom.rs
deleted file mode 100644
index c8092909..00000000
--- a/vendor/bytes/src/loom.rs
+++ /dev/null
@@ -1,33 +0,0 @@
-#[cfg(not(all(test, loom)))]
-pub(crate) mod sync {
- pub(crate) mod atomic {
- #[cfg(not(feature = "extra-platforms"))]
- pub(crate) use core::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
- #[cfg(feature = "extra-platforms")]
- pub(crate) use extra_platforms::{AtomicPtr, AtomicUsize, Ordering};
-
- pub(crate) trait AtomicMut<T> {
- fn with_mut<F, R>(&mut self, f: F) -> R
- where
- F: FnOnce(&mut *mut T) -> R;
- }
-
- impl<T> AtomicMut<T> for AtomicPtr<T> {
- fn with_mut<F, R>(&mut self, f: F) -> R
- where
- F: FnOnce(&mut *mut T) -> R,
- {
- f(self.get_mut())
- }
- }
- }
-}
-
-#[cfg(all(test, loom))]
-pub(crate) mod sync {
- pub(crate) mod atomic {
- pub(crate) use loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
-
- pub(crate) trait AtomicMut<T> {}
- }
-}
diff --git a/vendor/bytes/src/serde.rs b/vendor/bytes/src/serde.rs
deleted file mode 100644
index 0a5bd144..00000000
--- a/vendor/bytes/src/serde.rs
+++ /dev/null
@@ -1,89 +0,0 @@
-use super::{Bytes, BytesMut};
-use alloc::string::String;
-use alloc::vec::Vec;
-use core::{cmp, fmt};
-use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
-
-macro_rules! serde_impl {
- ($ty:ident, $visitor_ty:ident, $from_slice:ident, $from_vec:ident) => {
- impl Serialize for $ty {
- #[inline]
- fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
- where
- S: Serializer,
- {
- serializer.serialize_bytes(&self)
- }
- }
-
- struct $visitor_ty;
-
- impl<'de> de::Visitor<'de> for $visitor_ty {
- type Value = $ty;
-
- fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
- formatter.write_str("byte array")
- }
-
- #[inline]
- fn visit_seq<V>(self, mut seq: V) -> Result<Self::Value, V::Error>
- where
- V: de::SeqAccess<'de>,
- {
- let len = cmp::min(seq.size_hint().unwrap_or(0), 4096);
- let mut values: Vec<u8> = Vec::with_capacity(len);
-
- while let Some(value) = seq.next_element()? {
- values.push(value);
- }
-
- Ok($ty::$from_vec(values))
- }
-
- #[inline]
- fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
- where
- E: de::Error,
- {
- Ok($ty::$from_slice(v))
- }
-
- #[inline]
- fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E>
- where
- E: de::Error,
- {
- Ok($ty::$from_vec(v))
- }
-
- #[inline]
- fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
- where
- E: de::Error,
- {
- Ok($ty::$from_slice(v.as_bytes()))
- }
-
- #[inline]
- fn visit_string<E>(self, v: String) -> Result<Self::Value, E>
- where
- E: de::Error,
- {
- Ok($ty::$from_vec(v.into_bytes()))
- }
- }
-
- impl<'de> Deserialize<'de> for $ty {
- #[inline]
- fn deserialize<D>(deserializer: D) -> Result<$ty, D::Error>
- where
- D: Deserializer<'de>,
- {
- deserializer.deserialize_byte_buf($visitor_ty)
- }
- }
- };
-}
-
-serde_impl!(Bytes, BytesVisitor, copy_from_slice, from);
-serde_impl!(BytesMut, BytesMutVisitor, from, from_vec);