summaryrefslogtreecommitdiff
path: root/vendor/bytes/src/bytes_mut.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/bytes/src/bytes_mut.rs')
-rw-r--r--vendor/bytes/src/bytes_mut.rs1921
1 files changed, 0 insertions, 1921 deletions
diff --git a/vendor/bytes/src/bytes_mut.rs b/vendor/bytes/src/bytes_mut.rs
deleted file mode 100644
index d5db5124..00000000
--- a/vendor/bytes/src/bytes_mut.rs
+++ /dev/null
@@ -1,1921 +0,0 @@
-use core::iter::FromIterator;
-use core::mem::{self, ManuallyDrop, MaybeUninit};
-use core::ops::{Deref, DerefMut};
-use core::ptr::{self, NonNull};
-use core::{cmp, fmt, hash, isize, slice, usize};
-
-use alloc::{
- borrow::{Borrow, BorrowMut},
- boxed::Box,
- string::String,
- vec,
- vec::Vec,
-};
-
-use crate::buf::{IntoIter, UninitSlice};
-use crate::bytes::Vtable;
-#[allow(unused)]
-use crate::loom::sync::atomic::AtomicMut;
-use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
-use crate::{offset_from, Buf, BufMut, Bytes, TryGetError};
-
-/// A unique reference to a contiguous slice of memory.
-///
-/// `BytesMut` represents a unique view into a potentially shared memory region.
-/// Given the uniqueness guarantee, owners of `BytesMut` handles are able to
-/// mutate the memory.
-///
-/// `BytesMut` can be thought of as containing a `buf: Arc<Vec<u8>>`, an offset
-/// into `buf`, a slice length, and a guarantee that no other `BytesMut` for the
-/// same `buf` overlaps with its slice. That guarantee means that a write lock
-/// is not required.
-///
-/// # Growth
-///
-/// `BytesMut`'s `BufMut` implementation will implicitly grow its buffer as
-/// necessary. However, explicitly reserving the required space up-front before
-/// a series of inserts will be more efficient.
-///
-/// # Examples
-///
-/// ```
-/// use bytes::{BytesMut, BufMut};
-///
-/// let mut buf = BytesMut::with_capacity(64);
-///
-/// buf.put_u8(b'h');
-/// buf.put_u8(b'e');
-/// buf.put(&b"llo"[..]);
-///
-/// assert_eq!(&buf[..], b"hello");
-///
-/// // Freeze the buffer so that it can be shared
-/// let a = buf.freeze();
-///
-/// // This does not allocate, instead `b` points to the same memory.
-/// let b = a.clone();
-///
-/// assert_eq!(&a[..], b"hello");
-/// assert_eq!(&b[..], b"hello");
-/// ```
-pub struct BytesMut {
- ptr: NonNull<u8>,
- len: usize,
- cap: usize,
- data: *mut Shared,
-}
-
-// Thread-safe reference-counted container for the shared storage. This mostly
-// the same as `core::sync::Arc` but without the weak counter. The ref counting
-// fns are based on the ones found in `std`.
-//
-// The main reason to use `Shared` instead of `core::sync::Arc` is that it ends
-// up making the overall code simpler and easier to reason about. This is due to
-// some of the logic around setting `Inner::arc` and other ways the `arc` field
-// is used. Using `Arc` ended up requiring a number of funky transmutes and
-// other shenanigans to make it work.
-struct Shared {
- vec: Vec<u8>,
- original_capacity_repr: usize,
- ref_count: AtomicUsize,
-}
-
-// Assert that the alignment of `Shared` is divisible by 2.
-// This is a necessary invariant since we depend on allocating `Shared` a
-// shared object to implicitly carry the `KIND_ARC` flag in its pointer.
-// This flag is set when the LSB is 0.
-const _: [(); 0 - mem::align_of::<Shared>() % 2] = []; // Assert that the alignment of `Shared` is divisible by 2.
-
-// Buffer storage strategy flags.
-const KIND_ARC: usize = 0b0;
-const KIND_VEC: usize = 0b1;
-const KIND_MASK: usize = 0b1;
-
-// The max original capacity value. Any `Bytes` allocated with a greater initial
-// capacity will default to this.
-const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17;
-// The original capacity algorithm will not take effect unless the originally
-// allocated capacity was at least 1kb in size.
-const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10;
-// The original capacity is stored in powers of 2 starting at 1kb to a max of
-// 64kb. Representing it as such requires only 3 bits of storage.
-const ORIGINAL_CAPACITY_MASK: usize = 0b11100;
-const ORIGINAL_CAPACITY_OFFSET: usize = 2;
-
-const VEC_POS_OFFSET: usize = 5;
-// When the storage is in the `Vec` representation, the pointer can be advanced
-// at most this value. This is due to the amount of storage available to track
-// the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY
-// bits.
-const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET;
-const NOT_VEC_POS_MASK: usize = 0b11111;
-
-#[cfg(target_pointer_width = "64")]
-const PTR_WIDTH: usize = 64;
-#[cfg(target_pointer_width = "32")]
-const PTR_WIDTH: usize = 32;
-
-/*
- *
- * ===== BytesMut =====
- *
- */
-
-impl BytesMut {
- /// Creates a new `BytesMut` with the specified capacity.
- ///
- /// The returned `BytesMut` will be able to hold at least `capacity` bytes
- /// without reallocating.
- ///
- /// It is important to note that this function does not specify the length
- /// of the returned `BytesMut`, but only the capacity.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::{BytesMut, BufMut};
- ///
- /// let mut bytes = BytesMut::with_capacity(64);
- ///
- /// // `bytes` contains no data, even though there is capacity
- /// assert_eq!(bytes.len(), 0);
- ///
- /// bytes.put(&b"hello world"[..]);
- ///
- /// assert_eq!(&bytes[..], b"hello world");
- /// ```
- #[inline]
- pub fn with_capacity(capacity: usize) -> BytesMut {
- BytesMut::from_vec(Vec::with_capacity(capacity))
- }
-
- /// Creates a new `BytesMut` with default capacity.
- ///
- /// Resulting object has length 0 and unspecified capacity.
- /// This function does not allocate.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::{BytesMut, BufMut};
- ///
- /// let mut bytes = BytesMut::new();
- ///
- /// assert_eq!(0, bytes.len());
- ///
- /// bytes.reserve(2);
- /// bytes.put_slice(b"xy");
- ///
- /// assert_eq!(&b"xy"[..], &bytes[..]);
- /// ```
- #[inline]
- pub fn new() -> BytesMut {
- BytesMut::with_capacity(0)
- }
-
- /// Returns the number of bytes contained in this `BytesMut`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let b = BytesMut::from(&b"hello"[..]);
- /// assert_eq!(b.len(), 5);
- /// ```
- #[inline]
- pub fn len(&self) -> usize {
- self.len
- }
-
- /// Returns true if the `BytesMut` has a length of 0.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let b = BytesMut::with_capacity(64);
- /// assert!(b.is_empty());
- /// ```
- #[inline]
- pub fn is_empty(&self) -> bool {
- self.len == 0
- }
-
- /// Returns the number of bytes the `BytesMut` can hold without reallocating.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let b = BytesMut::with_capacity(64);
- /// assert_eq!(b.capacity(), 64);
- /// ```
- #[inline]
- pub fn capacity(&self) -> usize {
- self.cap
- }
-
- /// Converts `self` into an immutable `Bytes`.
- ///
- /// The conversion is zero cost and is used to indicate that the slice
- /// referenced by the handle will no longer be mutated. Once the conversion
- /// is done, the handle can be cloned and shared across threads.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::{BytesMut, BufMut};
- /// use std::thread;
- ///
- /// let mut b = BytesMut::with_capacity(64);
- /// b.put(&b"hello world"[..]);
- /// let b1 = b.freeze();
- /// let b2 = b1.clone();
- ///
- /// let th = thread::spawn(move || {
- /// assert_eq!(&b1[..], b"hello world");
- /// });
- ///
- /// assert_eq!(&b2[..], b"hello world");
- /// th.join().unwrap();
- /// ```
- #[inline]
- pub fn freeze(self) -> Bytes {
- let bytes = ManuallyDrop::new(self);
- if bytes.kind() == KIND_VEC {
- // Just re-use `Bytes` internal Vec vtable
- unsafe {
- let off = bytes.get_vec_pos();
- let vec = rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off);
- let mut b: Bytes = vec.into();
- b.advance(off);
- b
- }
- } else {
- debug_assert_eq!(bytes.kind(), KIND_ARC);
-
- let ptr = bytes.ptr.as_ptr();
- let len = bytes.len;
- let data = AtomicPtr::new(bytes.data.cast());
- unsafe { Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE) }
- }
- }
-
- /// Creates a new `BytesMut` containing `len` zeros.
- ///
- /// The resulting object has a length of `len` and a capacity greater
- /// than or equal to `len`. The entire length of the object will be filled
- /// with zeros.
- ///
- /// On some platforms or allocators this function may be faster than
- /// a manual implementation.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let zeros = BytesMut::zeroed(42);
- ///
- /// assert!(zeros.capacity() >= 42);
- /// assert_eq!(zeros.len(), 42);
- /// zeros.into_iter().for_each(|x| assert_eq!(x, 0));
- /// ```
- pub fn zeroed(len: usize) -> BytesMut {
- BytesMut::from_vec(vec![0; len])
- }
-
- /// Splits the bytes into two at the given index.
- ///
- /// Afterwards `self` contains elements `[0, at)`, and the returned
- /// `BytesMut` contains elements `[at, capacity)`. It's guaranteed that the
- /// memory does not move, that is, the address of `self` does not change,
- /// and the address of the returned slice is `at` bytes after that.
- ///
- /// This is an `O(1)` operation that just increases the reference count
- /// and sets a few indices.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut a = BytesMut::from(&b"hello world"[..]);
- /// let mut b = a.split_off(5);
- ///
- /// a[0] = b'j';
- /// b[0] = b'!';
- ///
- /// assert_eq!(&a[..], b"jello");
- /// assert_eq!(&b[..], b"!world");
- /// ```
- ///
- /// # Panics
- ///
- /// Panics if `at > capacity`.
- #[must_use = "consider BytesMut::truncate if you don't need the other half"]
- pub fn split_off(&mut self, at: usize) -> BytesMut {
- assert!(
- at <= self.capacity(),
- "split_off out of bounds: {:?} <= {:?}",
- at,
- self.capacity(),
- );
- unsafe {
- let mut other = self.shallow_clone();
- // SAFETY: We've checked that `at` <= `self.capacity()` above.
- other.advance_unchecked(at);
- self.cap = at;
- self.len = cmp::min(self.len, at);
- other
- }
- }
-
- /// Removes the bytes from the current view, returning them in a new
- /// `BytesMut` handle.
- ///
- /// Afterwards, `self` will be empty, but will retain any additional
- /// capacity that it had before the operation. This is identical to
- /// `self.split_to(self.len())`.
- ///
- /// This is an `O(1)` operation that just increases the reference count and
- /// sets a few indices.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::{BytesMut, BufMut};
- ///
- /// let mut buf = BytesMut::with_capacity(1024);
- /// buf.put(&b"hello world"[..]);
- ///
- /// let other = buf.split();
- ///
- /// assert!(buf.is_empty());
- /// assert_eq!(1013, buf.capacity());
- ///
- /// assert_eq!(other, b"hello world"[..]);
- /// ```
- #[must_use = "consider BytesMut::clear if you don't need the other half"]
- pub fn split(&mut self) -> BytesMut {
- let len = self.len();
- self.split_to(len)
- }
-
- /// Splits the buffer into two at the given index.
- ///
- /// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut`
- /// contains elements `[0, at)`.
- ///
- /// This is an `O(1)` operation that just increases the reference count and
- /// sets a few indices.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut a = BytesMut::from(&b"hello world"[..]);
- /// let mut b = a.split_to(5);
- ///
- /// a[0] = b'!';
- /// b[0] = b'j';
- ///
- /// assert_eq!(&a[..], b"!world");
- /// assert_eq!(&b[..], b"jello");
- /// ```
- ///
- /// # Panics
- ///
- /// Panics if `at > len`.
- #[must_use = "consider BytesMut::advance if you don't need the other half"]
- pub fn split_to(&mut self, at: usize) -> BytesMut {
- assert!(
- at <= self.len(),
- "split_to out of bounds: {:?} <= {:?}",
- at,
- self.len(),
- );
-
- unsafe {
- let mut other = self.shallow_clone();
- // SAFETY: We've checked that `at` <= `self.len()` and we know that `self.len()` <=
- // `self.capacity()`.
- self.advance_unchecked(at);
- other.cap = at;
- other.len = at;
- other
- }
- }
-
- /// Shortens the buffer, keeping the first `len` bytes and dropping the
- /// rest.
- ///
- /// If `len` is greater than the buffer's current length, this has no
- /// effect.
- ///
- /// Existing underlying capacity is preserved.
- ///
- /// The [split_off](`Self::split_off()`) method can emulate `truncate`, but this causes the
- /// excess bytes to be returned instead of dropped.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut buf = BytesMut::from(&b"hello world"[..]);
- /// buf.truncate(5);
- /// assert_eq!(buf, b"hello"[..]);
- /// ```
- pub fn truncate(&mut self, len: usize) {
- if len <= self.len() {
- // SAFETY: Shrinking the buffer cannot expose uninitialized bytes.
- unsafe { self.set_len(len) };
- }
- }
-
- /// Clears the buffer, removing all data. Existing capacity is preserved.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut buf = BytesMut::from(&b"hello world"[..]);
- /// buf.clear();
- /// assert!(buf.is_empty());
- /// ```
- pub fn clear(&mut self) {
- // SAFETY: Setting the length to zero cannot expose uninitialized bytes.
- unsafe { self.set_len(0) };
- }
-
- /// Resizes the buffer so that `len` is equal to `new_len`.
- ///
- /// If `new_len` is greater than `len`, the buffer is extended by the
- /// difference with each additional byte set to `value`. If `new_len` is
- /// less than `len`, the buffer is simply truncated.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut buf = BytesMut::new();
- ///
- /// buf.resize(3, 0x1);
- /// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]);
- ///
- /// buf.resize(2, 0x2);
- /// assert_eq!(&buf[..], &[0x1, 0x1]);
- ///
- /// buf.resize(4, 0x3);
- /// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]);
- /// ```
- pub fn resize(&mut self, new_len: usize, value: u8) {
- let additional = if let Some(additional) = new_len.checked_sub(self.len()) {
- additional
- } else {
- self.truncate(new_len);
- return;
- };
-
- if additional == 0 {
- return;
- }
-
- self.reserve(additional);
- let dst = self.spare_capacity_mut().as_mut_ptr();
- // SAFETY: `spare_capacity_mut` returns a valid, properly aligned pointer and we've
- // reserved enough space to write `additional` bytes.
- unsafe { ptr::write_bytes(dst, value, additional) };
-
- // SAFETY: There are at least `new_len` initialized bytes in the buffer so no
- // uninitialized bytes are being exposed.
- unsafe { self.set_len(new_len) };
- }
-
- /// Sets the length of the buffer.
- ///
- /// This will explicitly set the size of the buffer without actually
- /// modifying the data, so it is up to the caller to ensure that the data
- /// has been initialized.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut b = BytesMut::from(&b"hello world"[..]);
- ///
- /// unsafe {
- /// b.set_len(5);
- /// }
- ///
- /// assert_eq!(&b[..], b"hello");
- ///
- /// unsafe {
- /// b.set_len(11);
- /// }
- ///
- /// assert_eq!(&b[..], b"hello world");
- /// ```
- #[inline]
- pub unsafe fn set_len(&mut self, len: usize) {
- debug_assert!(len <= self.cap, "set_len out of bounds");
- self.len = len;
- }
-
- /// Reserves capacity for at least `additional` more bytes to be inserted
- /// into the given `BytesMut`.
- ///
- /// More than `additional` bytes may be reserved in order to avoid frequent
- /// reallocations. A call to `reserve` may result in an allocation.
- ///
- /// Before allocating new buffer space, the function will attempt to reclaim
- /// space in the existing buffer. If the current handle references a view
- /// into a larger original buffer, and all other handles referencing part
- /// of the same original buffer have been dropped, then the current view
- /// can be copied/shifted to the front of the buffer and the handle can take
- /// ownership of the full buffer, provided that the full buffer is large
- /// enough to fit the requested additional capacity.
- ///
- /// This optimization will only happen if shifting the data from the current
- /// view to the front of the buffer is not too expensive in terms of the
- /// (amortized) time required. The precise condition is subject to change;
- /// as of now, the length of the data being shifted needs to be at least as
- /// large as the distance that it's shifted by. If the current view is empty
- /// and the original buffer is large enough to fit the requested additional
- /// capacity, then reallocations will never happen.
- ///
- /// # Examples
- ///
- /// In the following example, a new buffer is allocated.
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut buf = BytesMut::from(&b"hello"[..]);
- /// buf.reserve(64);
- /// assert!(buf.capacity() >= 69);
- /// ```
- ///
- /// In the following example, the existing buffer is reclaimed.
- ///
- /// ```
- /// use bytes::{BytesMut, BufMut};
- ///
- /// let mut buf = BytesMut::with_capacity(128);
- /// buf.put(&[0; 64][..]);
- ///
- /// let ptr = buf.as_ptr();
- /// let other = buf.split();
- ///
- /// assert!(buf.is_empty());
- /// assert_eq!(buf.capacity(), 64);
- ///
- /// drop(other);
- /// buf.reserve(128);
- ///
- /// assert_eq!(buf.capacity(), 128);
- /// assert_eq!(buf.as_ptr(), ptr);
- /// ```
- ///
- /// # Panics
- ///
- /// Panics if the new capacity overflows `usize`.
- #[inline]
- pub fn reserve(&mut self, additional: usize) {
- let len = self.len();
- let rem = self.capacity() - len;
-
- if additional <= rem {
- // The handle can already store at least `additional` more bytes, so
- // there is no further work needed to be done.
- return;
- }
-
- // will always succeed
- let _ = self.reserve_inner(additional, true);
- }
-
- // In separate function to allow the short-circuits in `reserve` and `try_reclaim` to
- // be inline-able. Significantly helps performance. Returns false if it did not succeed.
- fn reserve_inner(&mut self, additional: usize, allocate: bool) -> bool {
- let len = self.len();
- let kind = self.kind();
-
- if kind == KIND_VEC {
- // If there's enough free space before the start of the buffer, then
- // just copy the data backwards and reuse the already-allocated
- // space.
- //
- // Otherwise, since backed by a vector, use `Vec::reserve`
- //
- // We need to make sure that this optimization does not kill the
- // amortized runtimes of BytesMut's operations.
- unsafe {
- let off = self.get_vec_pos();
-
- // Only reuse space if we can satisfy the requested additional space.
- //
- // Also check if the value of `off` suggests that enough bytes
- // have been read to account for the overhead of shifting all
- // the data (in an amortized analysis).
- // Hence the condition `off >= self.len()`.
- //
- // This condition also already implies that the buffer is going
- // to be (at least) half-empty in the end; so we do not break
- // the (amortized) runtime with future resizes of the underlying
- // `Vec`.
- //
- // [For more details check issue #524, and PR #525.]
- if self.capacity() - self.len() + off >= additional && off >= self.len() {
- // There's enough space, and it's not too much overhead:
- // reuse the space!
- //
- // Just move the pointer back to the start after copying
- // data back.
- let base_ptr = self.ptr.as_ptr().sub(off);
- // Since `off >= self.len()`, the two regions don't overlap.
- ptr::copy_nonoverlapping(self.ptr.as_ptr(), base_ptr, self.len);
- self.ptr = vptr(base_ptr);
- self.set_vec_pos(0);
-
- // Length stays constant, but since we moved backwards we
- // can gain capacity back.
- self.cap += off;
- } else {
- if !allocate {
- return false;
- }
- // Not enough space, or reusing might be too much overhead:
- // allocate more space!
- let mut v =
- ManuallyDrop::new(rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off));
- v.reserve(additional);
-
- // Update the info
- self.ptr = vptr(v.as_mut_ptr().add(off));
- self.cap = v.capacity() - off;
- debug_assert_eq!(self.len, v.len() - off);
- }
-
- return true;
- }
- }
-
- debug_assert_eq!(kind, KIND_ARC);
- let shared: *mut Shared = self.data;
-
- // Reserving involves abandoning the currently shared buffer and
- // allocating a new vector with the requested capacity.
- //
- // Compute the new capacity
- let mut new_cap = match len.checked_add(additional) {
- Some(new_cap) => new_cap,
- None if !allocate => return false,
- None => panic!("overflow"),
- };
-
- unsafe {
- // First, try to reclaim the buffer. This is possible if the current
- // handle is the only outstanding handle pointing to the buffer.
- if (*shared).is_unique() {
- // This is the only handle to the buffer. It can be reclaimed.
- // However, before doing the work of copying data, check to make
- // sure that the vector has enough capacity.
- let v = &mut (*shared).vec;
-
- let v_capacity = v.capacity();
- let ptr = v.as_mut_ptr();
-
- let offset = offset_from(self.ptr.as_ptr(), ptr);
-
- // Compare the condition in the `kind == KIND_VEC` case above
- // for more details.
- if v_capacity >= new_cap + offset {
- self.cap = new_cap;
- // no copy is necessary
- } else if v_capacity >= new_cap && offset >= len {
- // The capacity is sufficient, and copying is not too much
- // overhead: reclaim the buffer!
-
- // `offset >= len` means: no overlap
- ptr::copy_nonoverlapping(self.ptr.as_ptr(), ptr, len);
-
- self.ptr = vptr(ptr);
- self.cap = v.capacity();
- } else {
- if !allocate {
- return false;
- }
- // calculate offset
- let off = (self.ptr.as_ptr() as usize) - (v.as_ptr() as usize);
-
- // new_cap is calculated in terms of `BytesMut`, not the underlying
- // `Vec`, so it does not take the offset into account.
- //
- // Thus we have to manually add it here.
- new_cap = new_cap.checked_add(off).expect("overflow");
-
- // The vector capacity is not sufficient. The reserve request is
- // asking for more than the initial buffer capacity. Allocate more
- // than requested if `new_cap` is not much bigger than the current
- // capacity.
- //
- // There are some situations, using `reserve_exact` that the
- // buffer capacity could be below `original_capacity`, so do a
- // check.
- let double = v.capacity().checked_shl(1).unwrap_or(new_cap);
-
- new_cap = cmp::max(double, new_cap);
-
- // No space - allocate more
- //
- // The length field of `Shared::vec` is not used by the `BytesMut`;
- // instead we use the `len` field in the `BytesMut` itself. However,
- // when calling `reserve`, it doesn't guarantee that data stored in
- // the unused capacity of the vector is copied over to the new
- // allocation, so we need to ensure that we don't have any data we
- // care about in the unused capacity before calling `reserve`.
- debug_assert!(off + len <= v.capacity());
- v.set_len(off + len);
- v.reserve(new_cap - v.len());
-
- // Update the info
- self.ptr = vptr(v.as_mut_ptr().add(off));
- self.cap = v.capacity() - off;
- }
-
- return true;
- }
- }
- if !allocate {
- return false;
- }
-
- let original_capacity_repr = unsafe { (*shared).original_capacity_repr };
- let original_capacity = original_capacity_from_repr(original_capacity_repr);
-
- new_cap = cmp::max(new_cap, original_capacity);
-
- // Create a new vector to store the data
- let mut v = ManuallyDrop::new(Vec::with_capacity(new_cap));
-
- // Copy the bytes
- v.extend_from_slice(self.as_ref());
-
- // Release the shared handle. This must be done *after* the bytes are
- // copied.
- unsafe { release_shared(shared) };
-
- // Update self
- let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
- self.data = invalid_ptr(data);
- self.ptr = vptr(v.as_mut_ptr());
- self.cap = v.capacity();
- debug_assert_eq!(self.len, v.len());
- return true;
- }
-
- /// Attempts to cheaply reclaim already allocated capacity for at least `additional` more
- /// bytes to be inserted into the given `BytesMut` and returns `true` if it succeeded.
- ///
- /// `try_reclaim` behaves exactly like `reserve`, except that it never allocates new storage
- /// and returns a `bool` indicating whether it was successful in doing so:
- ///
- /// `try_reclaim` returns false under these conditions:
- /// - The spare capacity left is less than `additional` bytes AND
- /// - The existing allocation cannot be reclaimed cheaply or it was less than
- /// `additional` bytes in size
- ///
- /// Reclaiming the allocation cheaply is possible if the `BytesMut` has no outstanding
- /// references through other `BytesMut`s or `Bytes` which point to the same underlying
- /// storage.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut buf = BytesMut::with_capacity(64);
- /// assert_eq!(true, buf.try_reclaim(64));
- /// assert_eq!(64, buf.capacity());
- ///
- /// buf.extend_from_slice(b"abcd");
- /// let mut split = buf.split();
- /// assert_eq!(60, buf.capacity());
- /// assert_eq!(4, split.capacity());
- /// assert_eq!(false, split.try_reclaim(64));
- /// assert_eq!(false, buf.try_reclaim(64));
- /// // The split buffer is filled with "abcd"
- /// assert_eq!(false, split.try_reclaim(4));
- /// // buf is empty and has capacity for 60 bytes
- /// assert_eq!(true, buf.try_reclaim(60));
- ///
- /// drop(buf);
- /// assert_eq!(false, split.try_reclaim(64));
- ///
- /// split.clear();
- /// assert_eq!(4, split.capacity());
- /// assert_eq!(true, split.try_reclaim(64));
- /// assert_eq!(64, split.capacity());
- /// ```
- // I tried splitting out try_reclaim_inner after the short circuits, but it was inlined
- // regardless with Rust 1.78.0 so probably not worth it
- #[inline]
- #[must_use = "consider BytesMut::reserve if you need an infallible reservation"]
- pub fn try_reclaim(&mut self, additional: usize) -> bool {
- let len = self.len();
- let rem = self.capacity() - len;
-
- if additional <= rem {
- // The handle can already store at least `additional` more bytes, so
- // there is no further work needed to be done.
- return true;
- }
-
- self.reserve_inner(additional, false)
- }
-
- /// Appends given bytes to this `BytesMut`.
- ///
- /// If this `BytesMut` object does not have enough capacity, it is resized
- /// first.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut buf = BytesMut::with_capacity(0);
- /// buf.extend_from_slice(b"aaabbb");
- /// buf.extend_from_slice(b"cccddd");
- ///
- /// assert_eq!(b"aaabbbcccddd", &buf[..]);
- /// ```
- #[inline]
- pub fn extend_from_slice(&mut self, extend: &[u8]) {
- let cnt = extend.len();
- self.reserve(cnt);
-
- unsafe {
- let dst = self.spare_capacity_mut();
- // Reserved above
- debug_assert!(dst.len() >= cnt);
-
- ptr::copy_nonoverlapping(extend.as_ptr(), dst.as_mut_ptr().cast(), cnt);
- }
-
- unsafe {
- self.advance_mut(cnt);
- }
- }
-
- /// Absorbs a `BytesMut` that was previously split off.
- ///
- /// If the two `BytesMut` objects were previously contiguous and not mutated
- /// in a way that causes re-allocation i.e., if `other` was created by
- /// calling `split_off` on this `BytesMut`, then this is an `O(1)` operation
- /// that just decreases a reference count and sets a few indices.
- /// Otherwise this method degenerates to
- /// `self.extend_from_slice(other.as_ref())`.
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// let mut buf = BytesMut::with_capacity(64);
- /// buf.extend_from_slice(b"aaabbbcccddd");
- ///
- /// let split = buf.split_off(6);
- /// assert_eq!(b"aaabbb", &buf[..]);
- /// assert_eq!(b"cccddd", &split[..]);
- ///
- /// buf.unsplit(split);
- /// assert_eq!(b"aaabbbcccddd", &buf[..]);
- /// ```
- pub fn unsplit(&mut self, other: BytesMut) {
- if self.is_empty() {
- *self = other;
- return;
- }
-
- if let Err(other) = self.try_unsplit(other) {
- self.extend_from_slice(other.as_ref());
- }
- }
-
- // private
-
- // For now, use a `Vec` to manage the memory for us, but we may want to
- // change that in the future to some alternate allocator strategy.
- //
- // Thus, we don't expose an easy way to construct from a `Vec` since an
- // internal change could make a simple pattern (`BytesMut::from(vec)`)
- // suddenly a lot more expensive.
- #[inline]
- pub(crate) fn from_vec(vec: Vec<u8>) -> BytesMut {
- let mut vec = ManuallyDrop::new(vec);
- let ptr = vptr(vec.as_mut_ptr());
- let len = vec.len();
- let cap = vec.capacity();
-
- let original_capacity_repr = original_capacity_to_repr(cap);
- let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
-
- BytesMut {
- ptr,
- len,
- cap,
- data: invalid_ptr(data),
- }
- }
-
- #[inline]
- fn as_slice(&self) -> &[u8] {
- unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) }
- }
-
- #[inline]
- fn as_slice_mut(&mut self) -> &mut [u8] {
- unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) }
- }
-
- /// Advance the buffer without bounds checking.
- ///
- /// # SAFETY
- ///
- /// The caller must ensure that `count` <= `self.cap`.
- pub(crate) unsafe fn advance_unchecked(&mut self, count: usize) {
- // Setting the start to 0 is a no-op, so return early if this is the
- // case.
- if count == 0 {
- return;
- }
-
- debug_assert!(count <= self.cap, "internal: set_start out of bounds");
-
- let kind = self.kind();
-
- if kind == KIND_VEC {
- // Setting the start when in vec representation is a little more
- // complicated. First, we have to track how far ahead the
- // "start" of the byte buffer from the beginning of the vec. We
- // also have to ensure that we don't exceed the maximum shift.
- let pos = self.get_vec_pos() + count;
-
- if pos <= MAX_VEC_POS {
- self.set_vec_pos(pos);
- } else {
- // The repr must be upgraded to ARC. This will never happen
- // on 64 bit systems and will only happen on 32 bit systems
- // when shifting past 134,217,727 bytes. As such, we don't
- // worry too much about performance here.
- self.promote_to_shared(/*ref_count = */ 1);
- }
- }
-
- // Updating the start of the view is setting `ptr` to point to the
- // new start and updating the `len` field to reflect the new length
- // of the view.
- self.ptr = vptr(self.ptr.as_ptr().add(count));
- self.len = self.len.checked_sub(count).unwrap_or(0);
- self.cap -= count;
- }
-
- fn try_unsplit(&mut self, other: BytesMut) -> Result<(), BytesMut> {
- if other.capacity() == 0 {
- return Ok(());
- }
-
- let ptr = unsafe { self.ptr.as_ptr().add(self.len) };
- if ptr == other.ptr.as_ptr()
- && self.kind() == KIND_ARC
- && other.kind() == KIND_ARC
- && self.data == other.data
- {
- // Contiguous blocks, just combine directly
- self.len += other.len;
- self.cap += other.cap;
- Ok(())
- } else {
- Err(other)
- }
- }
-
- #[inline]
- fn kind(&self) -> usize {
- self.data as usize & KIND_MASK
- }
-
- unsafe fn promote_to_shared(&mut self, ref_cnt: usize) {
- debug_assert_eq!(self.kind(), KIND_VEC);
- debug_assert!(ref_cnt == 1 || ref_cnt == 2);
-
- let original_capacity_repr =
- (self.data as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET;
-
- // The vec offset cannot be concurrently mutated, so there
- // should be no danger reading it.
- let off = (self.data as usize) >> VEC_POS_OFFSET;
-
- // First, allocate a new `Shared` instance containing the
- // `Vec` fields. It's important to note that `ptr`, `len`,
- // and `cap` cannot be mutated without having `&mut self`.
- // This means that these fields will not be concurrently
- // updated and since the buffer hasn't been promoted to an
- // `Arc`, those three fields still are the components of the
- // vector.
- let shared = Box::new(Shared {
- vec: rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off),
- original_capacity_repr,
- ref_count: AtomicUsize::new(ref_cnt),
- });
-
- let shared = Box::into_raw(shared);
-
- // The pointer should be aligned, so this assert should
- // always succeed.
- debug_assert_eq!(shared as usize & KIND_MASK, KIND_ARC);
-
- self.data = shared;
- }
-
- /// Makes an exact shallow clone of `self`.
- ///
- /// The kind of `self` doesn't matter, but this is unsafe
- /// because the clone will have the same offsets. You must
- /// be sure the returned value to the user doesn't allow
- /// two views into the same range.
- #[inline]
- unsafe fn shallow_clone(&mut self) -> BytesMut {
- if self.kind() == KIND_ARC {
- increment_shared(self.data);
- ptr::read(self)
- } else {
- self.promote_to_shared(/*ref_count = */ 2);
- ptr::read(self)
- }
- }
-
- #[inline]
- unsafe fn get_vec_pos(&self) -> usize {
- debug_assert_eq!(self.kind(), KIND_VEC);
-
- self.data as usize >> VEC_POS_OFFSET
- }
-
- #[inline]
- unsafe fn set_vec_pos(&mut self, pos: usize) {
- debug_assert_eq!(self.kind(), KIND_VEC);
- debug_assert!(pos <= MAX_VEC_POS);
-
- self.data = invalid_ptr((pos << VEC_POS_OFFSET) | (self.data as usize & NOT_VEC_POS_MASK));
- }
-
- /// Returns the remaining spare capacity of the buffer as a slice of `MaybeUninit<u8>`.
- ///
- /// The returned slice can be used to fill the buffer with data (e.g. by
- /// reading from a file) before marking the data as initialized using the
- /// [`set_len`] method.
- ///
- /// [`set_len`]: BytesMut::set_len
- ///
- /// # Examples
- ///
- /// ```
- /// use bytes::BytesMut;
- ///
- /// // Allocate buffer big enough for 10 bytes.
- /// let mut buf = BytesMut::with_capacity(10);
- ///
- /// // Fill in the first 3 elements.
- /// let uninit = buf.spare_capacity_mut();
- /// uninit[0].write(0);
- /// uninit[1].write(1);
- /// uninit[2].write(2);
- ///
- /// // Mark the first 3 bytes of the buffer as being initialized.
- /// unsafe {
- /// buf.set_len(3);
- /// }
- ///
- /// assert_eq!(&buf[..], &[0, 1, 2]);
- /// ```
- #[inline]
- pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<u8>] {
- unsafe {
- let ptr = self.ptr.as_ptr().add(self.len);
- let len = self.cap - self.len;
-
- slice::from_raw_parts_mut(ptr.cast(), len)
- }
- }
-}
-
-impl Drop for BytesMut {
- fn drop(&mut self) {
- let kind = self.kind();
-
- if kind == KIND_VEC {
- unsafe {
- let off = self.get_vec_pos();
-
- // Vector storage, free the vector
- let _ = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off);
- }
- } else if kind == KIND_ARC {
- unsafe { release_shared(self.data) };
- }
- }
-}
-
-impl Buf for BytesMut {
- #[inline]
- fn remaining(&self) -> usize {
- self.len()
- }
-
- #[inline]
- fn chunk(&self) -> &[u8] {
- self.as_slice()
- }
-
- #[inline]
- fn advance(&mut self, cnt: usize) {
- assert!(
- cnt <= self.remaining(),
- "cannot advance past `remaining`: {:?} <= {:?}",
- cnt,
- self.remaining(),
- );
- unsafe {
- // SAFETY: We've checked that `cnt` <= `self.remaining()` and we know that
- // `self.remaining()` <= `self.cap`.
- self.advance_unchecked(cnt);
- }
- }
-
- fn copy_to_bytes(&mut self, len: usize) -> Bytes {
- self.split_to(len).freeze()
- }
-}
-
-unsafe impl BufMut for BytesMut {
- #[inline]
- fn remaining_mut(&self) -> usize {
- usize::MAX - self.len()
- }
-
- #[inline]
- unsafe fn advance_mut(&mut self, cnt: usize) {
- let remaining = self.cap - self.len();
- if cnt > remaining {
- super::panic_advance(&TryGetError {
- requested: cnt,
- available: remaining,
- });
- }
- // Addition won't overflow since it is at most `self.cap`.
- self.len = self.len() + cnt;
- }
-
- #[inline]
- fn chunk_mut(&mut self) -> &mut UninitSlice {
- if self.capacity() == self.len() {
- self.reserve(64);
- }
- self.spare_capacity_mut().into()
- }
-
- // Specialize these methods so they can skip checking `remaining_mut`
- // and `advance_mut`.
-
- fn put<T: Buf>(&mut self, mut src: T)
- where
- Self: Sized,
- {
- while src.has_remaining() {
- let s = src.chunk();
- let l = s.len();
- self.extend_from_slice(s);
- src.advance(l);
- }
- }
-
- fn put_slice(&mut self, src: &[u8]) {
- self.extend_from_slice(src);
- }
-
- fn put_bytes(&mut self, val: u8, cnt: usize) {
- self.reserve(cnt);
- unsafe {
- let dst = self.spare_capacity_mut();
- // Reserved above
- debug_assert!(dst.len() >= cnt);
-
- ptr::write_bytes(dst.as_mut_ptr(), val, cnt);
-
- self.advance_mut(cnt);
- }
- }
-}
-
-impl AsRef<[u8]> for BytesMut {
- #[inline]
- fn as_ref(&self) -> &[u8] {
- self.as_slice()
- }
-}
-
-impl Deref for BytesMut {
- type Target = [u8];
-
- #[inline]
- fn deref(&self) -> &[u8] {
- self.as_ref()
- }
-}
-
-impl AsMut<[u8]> for BytesMut {
- #[inline]
- fn as_mut(&mut self) -> &mut [u8] {
- self.as_slice_mut()
- }
-}
-
-impl DerefMut for BytesMut {
- #[inline]
- fn deref_mut(&mut self) -> &mut [u8] {
- self.as_mut()
- }
-}
-
-impl<'a> From<&'a [u8]> for BytesMut {
- fn from(src: &'a [u8]) -> BytesMut {
- BytesMut::from_vec(src.to_vec())
- }
-}
-
-impl<'a> From<&'a str> for BytesMut {
- fn from(src: &'a str) -> BytesMut {
- BytesMut::from(src.as_bytes())
- }
-}
-
-impl From<BytesMut> for Bytes {
- fn from(src: BytesMut) -> Bytes {
- src.freeze()
- }
-}
-
-impl PartialEq for BytesMut {
- fn eq(&self, other: &BytesMut) -> bool {
- self.as_slice() == other.as_slice()
- }
-}
-
-impl PartialOrd for BytesMut {
- fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
- self.as_slice().partial_cmp(other.as_slice())
- }
-}
-
-impl Ord for BytesMut {
- fn cmp(&self, other: &BytesMut) -> cmp::Ordering {
- self.as_slice().cmp(other.as_slice())
- }
-}
-
-impl Eq for BytesMut {}
-
-impl Default for BytesMut {
- #[inline]
- fn default() -> BytesMut {
- BytesMut::new()
- }
-}
-
-impl hash::Hash for BytesMut {
- fn hash<H>(&self, state: &mut H)
- where
- H: hash::Hasher,
- {
- let s: &[u8] = self.as_ref();
- s.hash(state);
- }
-}
-
-impl Borrow<[u8]> for BytesMut {
- fn borrow(&self) -> &[u8] {
- self.as_ref()
- }
-}
-
-impl BorrowMut<[u8]> for BytesMut {
- fn borrow_mut(&mut self) -> &mut [u8] {
- self.as_mut()
- }
-}
-
-impl fmt::Write for BytesMut {
- #[inline]
- fn write_str(&mut self, s: &str) -> fmt::Result {
- if self.remaining_mut() >= s.len() {
- self.put_slice(s.as_bytes());
- Ok(())
- } else {
- Err(fmt::Error)
- }
- }
-
- #[inline]
- fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result {
- fmt::write(self, args)
- }
-}
-
-impl Clone for BytesMut {
- fn clone(&self) -> BytesMut {
- BytesMut::from(&self[..])
- }
-}
-
-impl IntoIterator for BytesMut {
- type Item = u8;
- type IntoIter = IntoIter<BytesMut>;
-
- fn into_iter(self) -> Self::IntoIter {
- IntoIter::new(self)
- }
-}
-
-impl<'a> IntoIterator for &'a BytesMut {
- type Item = &'a u8;
- type IntoIter = core::slice::Iter<'a, u8>;
-
- fn into_iter(self) -> Self::IntoIter {
- self.as_ref().iter()
- }
-}
-
-impl Extend<u8> for BytesMut {
- fn extend<T>(&mut self, iter: T)
- where
- T: IntoIterator<Item = u8>,
- {
- let iter = iter.into_iter();
-
- let (lower, _) = iter.size_hint();
- self.reserve(lower);
-
- // TODO: optimize
- // 1. If self.kind() == KIND_VEC, use Vec::extend
- for b in iter {
- self.put_u8(b);
- }
- }
-}
-
-impl<'a> Extend<&'a u8> for BytesMut {
- fn extend<T>(&mut self, iter: T)
- where
- T: IntoIterator<Item = &'a u8>,
- {
- self.extend(iter.into_iter().copied())
- }
-}
-
-impl Extend<Bytes> for BytesMut {
- fn extend<T>(&mut self, iter: T)
- where
- T: IntoIterator<Item = Bytes>,
- {
- for bytes in iter {
- self.extend_from_slice(&bytes)
- }
- }
-}
-
-impl FromIterator<u8> for BytesMut {
- fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
- BytesMut::from_vec(Vec::from_iter(into_iter))
- }
-}
-
-impl<'a> FromIterator<&'a u8> for BytesMut {
- fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self {
- BytesMut::from_iter(into_iter.into_iter().copied())
- }
-}
-
-/*
- *
- * ===== Inner =====
- *
- */
-
-unsafe fn increment_shared(ptr: *mut Shared) {
- let old_size = (*ptr).ref_count.fetch_add(1, Ordering::Relaxed);
-
- if old_size > isize::MAX as usize {
- crate::abort();
- }
-}
-
-unsafe fn release_shared(ptr: *mut Shared) {
- // `Shared` storage... follow the drop steps from Arc.
- if (*ptr).ref_count.fetch_sub(1, Ordering::Release) != 1 {
- return;
- }
-
- // This fence is needed to prevent reordering of use of the data and
- // deletion of the data. Because it is marked `Release`, the decreasing
- // of the reference count synchronizes with this `Acquire` fence. This
- // means that use of the data happens before decreasing the reference
- // count, which happens before this fence, which happens before the
- // deletion of the data.
- //
- // As explained in the [Boost documentation][1],
- //
- // > It is important to enforce any possible access to the object in one
- // > thread (through an existing reference) to *happen before* deleting
- // > the object in a different thread. This is achieved by a "release"
- // > operation after dropping a reference (any access to the object
- // > through this reference must obviously happened before), and an
- // > "acquire" operation before deleting the object.
- //
- // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
- //
- // Thread sanitizer does not support atomic fences. Use an atomic load
- // instead.
- (*ptr).ref_count.load(Ordering::Acquire);
-
- // Drop the data
- drop(Box::from_raw(ptr));
-}
-
-impl Shared {
- fn is_unique(&self) -> bool {
- // The goal is to check if the current handle is the only handle
- // that currently has access to the buffer. This is done by
- // checking if the `ref_count` is currently 1.
- //
- // The `Acquire` ordering synchronizes with the `Release` as
- // part of the `fetch_sub` in `release_shared`. The `fetch_sub`
- // operation guarantees that any mutations done in other threads
- // are ordered before the `ref_count` is decremented. As such,
- // this `Acquire` will guarantee that those mutations are
- // visible to the current thread.
- self.ref_count.load(Ordering::Acquire) == 1
- }
-}
-
-#[inline]
-fn original_capacity_to_repr(cap: usize) -> usize {
- let width = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize);
- cmp::min(
- width,
- MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH,
- )
-}
-
-fn original_capacity_from_repr(repr: usize) -> usize {
- if repr == 0 {
- return 0;
- }
-
- 1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1))
-}
-
-#[cfg(test)]
-mod tests {
- use super::*;
-
- #[test]
- fn test_original_capacity_to_repr() {
- assert_eq!(original_capacity_to_repr(0), 0);
-
- let max_width = 32;
-
- for width in 1..(max_width + 1) {
- let cap = 1 << width - 1;
-
- let expected = if width < MIN_ORIGINAL_CAPACITY_WIDTH {
- 0
- } else if width < MAX_ORIGINAL_CAPACITY_WIDTH {
- width - MIN_ORIGINAL_CAPACITY_WIDTH
- } else {
- MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH
- };
-
- assert_eq!(original_capacity_to_repr(cap), expected);
-
- if width > 1 {
- assert_eq!(original_capacity_to_repr(cap + 1), expected);
- }
-
- // MIN_ORIGINAL_CAPACITY_WIDTH must be bigger than 7 to pass tests below
- if width == MIN_ORIGINAL_CAPACITY_WIDTH + 1 {
- assert_eq!(original_capacity_to_repr(cap - 24), expected - 1);
- assert_eq!(original_capacity_to_repr(cap + 76), expected);
- } else if width == MIN_ORIGINAL_CAPACITY_WIDTH + 2 {
- assert_eq!(original_capacity_to_repr(cap - 1), expected - 1);
- assert_eq!(original_capacity_to_repr(cap - 48), expected - 1);
- }
- }
- }
-
- #[test]
- fn test_original_capacity_from_repr() {
- assert_eq!(0, original_capacity_from_repr(0));
-
- let min_cap = 1 << MIN_ORIGINAL_CAPACITY_WIDTH;
-
- assert_eq!(min_cap, original_capacity_from_repr(1));
- assert_eq!(min_cap * 2, original_capacity_from_repr(2));
- assert_eq!(min_cap * 4, original_capacity_from_repr(3));
- assert_eq!(min_cap * 8, original_capacity_from_repr(4));
- assert_eq!(min_cap * 16, original_capacity_from_repr(5));
- assert_eq!(min_cap * 32, original_capacity_from_repr(6));
- assert_eq!(min_cap * 64, original_capacity_from_repr(7));
- }
-}
-
-unsafe impl Send for BytesMut {}
-unsafe impl Sync for BytesMut {}
-
-/*
- *
- * ===== PartialEq / PartialOrd =====
- *
- */
-
-impl PartialEq<[u8]> for BytesMut {
- fn eq(&self, other: &[u8]) -> bool {
- &**self == other
- }
-}
-
-impl PartialOrd<[u8]> for BytesMut {
- fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
- (**self).partial_cmp(other)
- }
-}
-
-impl PartialEq<BytesMut> for [u8] {
- fn eq(&self, other: &BytesMut) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<BytesMut> for [u8] {
- fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
- <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
- }
-}
-
-impl PartialEq<str> for BytesMut {
- fn eq(&self, other: &str) -> bool {
- &**self == other.as_bytes()
- }
-}
-
-impl PartialOrd<str> for BytesMut {
- fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
- (**self).partial_cmp(other.as_bytes())
- }
-}
-
-impl PartialEq<BytesMut> for str {
- fn eq(&self, other: &BytesMut) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<BytesMut> for str {
- fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
- <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
- }
-}
-
-impl PartialEq<Vec<u8>> for BytesMut {
- fn eq(&self, other: &Vec<u8>) -> bool {
- *self == other[..]
- }
-}
-
-impl PartialOrd<Vec<u8>> for BytesMut {
- fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
- (**self).partial_cmp(&other[..])
- }
-}
-
-impl PartialEq<BytesMut> for Vec<u8> {
- fn eq(&self, other: &BytesMut) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<BytesMut> for Vec<u8> {
- fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
- other.partial_cmp(self)
- }
-}
-
-impl PartialEq<String> for BytesMut {
- fn eq(&self, other: &String) -> bool {
- *self == other[..]
- }
-}
-
-impl PartialOrd<String> for BytesMut {
- fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
- (**self).partial_cmp(other.as_bytes())
- }
-}
-
-impl PartialEq<BytesMut> for String {
- fn eq(&self, other: &BytesMut) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<BytesMut> for String {
- fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
- <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
- }
-}
-
-impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut
-where
- BytesMut: PartialEq<T>,
-{
- fn eq(&self, other: &&'a T) -> bool {
- *self == **other
- }
-}
-
-impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut
-where
- BytesMut: PartialOrd<T>,
-{
- fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
- self.partial_cmp(*other)
- }
-}
-
-impl PartialEq<BytesMut> for &[u8] {
- fn eq(&self, other: &BytesMut) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<BytesMut> for &[u8] {
- fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
- <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
- }
-}
-
-impl PartialEq<BytesMut> for &str {
- fn eq(&self, other: &BytesMut) -> bool {
- *other == *self
- }
-}
-
-impl PartialOrd<BytesMut> for &str {
- fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
- other.partial_cmp(self)
- }
-}
-
-impl PartialEq<BytesMut> for Bytes {
- fn eq(&self, other: &BytesMut) -> bool {
- other[..] == self[..]
- }
-}
-
-impl PartialEq<Bytes> for BytesMut {
- fn eq(&self, other: &Bytes) -> bool {
- other[..] == self[..]
- }
-}
-
-impl From<BytesMut> for Vec<u8> {
- fn from(bytes: BytesMut) -> Self {
- let kind = bytes.kind();
- let bytes = ManuallyDrop::new(bytes);
-
- let mut vec = if kind == KIND_VEC {
- unsafe {
- let off = bytes.get_vec_pos();
- rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off)
- }
- } else {
- let shared = bytes.data as *mut Shared;
-
- if unsafe { (*shared).is_unique() } {
- let vec = mem::replace(unsafe { &mut (*shared).vec }, Vec::new());
-
- unsafe { release_shared(shared) };
-
- vec
- } else {
- return ManuallyDrop::into_inner(bytes).deref().to_vec();
- }
- };
-
- let len = bytes.len;
-
- unsafe {
- ptr::copy(bytes.ptr.as_ptr(), vec.as_mut_ptr(), len);
- vec.set_len(len);
- }
-
- vec
- }
-}
-
-#[inline]
-fn vptr(ptr: *mut u8) -> NonNull<u8> {
- if cfg!(debug_assertions) {
- NonNull::new(ptr).expect("Vec pointer should be non-null")
- } else {
- unsafe { NonNull::new_unchecked(ptr) }
- }
-}
-
-/// Returns a dangling pointer with the given address. This is used to store
-/// integer data in pointer fields.
-///
-/// It is equivalent to `addr as *mut T`, but this fails on miri when strict
-/// provenance checking is enabled.
-#[inline]
-fn invalid_ptr<T>(addr: usize) -> *mut T {
- let ptr = core::ptr::null_mut::<u8>().wrapping_add(addr);
- debug_assert_eq!(ptr as usize, addr);
- ptr.cast::<T>()
-}
-
-unsafe fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> {
- let ptr = ptr.sub(off);
- len += off;
- cap += off;
-
- Vec::from_raw_parts(ptr, len, cap)
-}
-
-// ===== impl SharedVtable =====
-
-static SHARED_VTABLE: Vtable = Vtable {
- clone: shared_v_clone,
- to_vec: shared_v_to_vec,
- to_mut: shared_v_to_mut,
- is_unique: shared_v_is_unique,
- drop: shared_v_drop,
-};
-
-unsafe fn shared_v_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
- let shared = data.load(Ordering::Relaxed) as *mut Shared;
- increment_shared(shared);
-
- let data = AtomicPtr::new(shared as *mut ());
- Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE)
-}
-
-unsafe fn shared_v_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
- let shared: *mut Shared = data.load(Ordering::Relaxed).cast();
-
- if (*shared).is_unique() {
- let shared = &mut *shared;
-
- // Drop shared
- let mut vec = mem::replace(&mut shared.vec, Vec::new());
- release_shared(shared);
-
- // Copy back buffer
- ptr::copy(ptr, vec.as_mut_ptr(), len);
- vec.set_len(len);
-
- vec
- } else {
- let v = slice::from_raw_parts(ptr, len).to_vec();
- release_shared(shared);
- v
- }
-}
-
-unsafe fn shared_v_to_mut(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> BytesMut {
- let shared: *mut Shared = data.load(Ordering::Relaxed).cast();
-
- if (*shared).is_unique() {
- let shared = &mut *shared;
-
- // The capacity is always the original capacity of the buffer
- // minus the offset from the start of the buffer
- let v = &mut shared.vec;
- let v_capacity = v.capacity();
- let v_ptr = v.as_mut_ptr();
- let offset = offset_from(ptr as *mut u8, v_ptr);
- let cap = v_capacity - offset;
-
- let ptr = vptr(ptr as *mut u8);
-
- BytesMut {
- ptr,
- len,
- cap,
- data: shared,
- }
- } else {
- let v = slice::from_raw_parts(ptr, len).to_vec();
- release_shared(shared);
- BytesMut::from_vec(v)
- }
-}
-
-unsafe fn shared_v_is_unique(data: &AtomicPtr<()>) -> bool {
- let shared = data.load(Ordering::Acquire);
- let ref_count = (*shared.cast::<Shared>()).ref_count.load(Ordering::Relaxed);
- ref_count == 1
-}
-
-unsafe fn shared_v_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) {
- data.with_mut(|shared| {
- release_shared(*shared as *mut Shared);
- });
-}
-
-// compile-fails
-
-/// ```compile_fail
-/// use bytes::BytesMut;
-/// #[deny(unused_must_use)]
-/// {
-/// let mut b1 = BytesMut::from("hello world");
-/// b1.split_to(6);
-/// }
-/// ```
-fn _split_to_must_use() {}
-
-/// ```compile_fail
-/// use bytes::BytesMut;
-/// #[deny(unused_must_use)]
-/// {
-/// let mut b1 = BytesMut::from("hello world");
-/// b1.split_off(6);
-/// }
-/// ```
-fn _split_off_must_use() {}
-
-/// ```compile_fail
-/// use bytes::BytesMut;
-/// #[deny(unused_must_use)]
-/// {
-/// let mut b1 = BytesMut::from("hello world");
-/// b1.split();
-/// }
-/// ```
-fn _split_must_use() {}
-
-// fuzz tests
-#[cfg(all(test, loom))]
-mod fuzz {
- use loom::sync::Arc;
- use loom::thread;
-
- use super::BytesMut;
- use crate::Bytes;
-
- #[test]
- fn bytes_mut_cloning_frozen() {
- loom::model(|| {
- let a = BytesMut::from(&b"abcdefgh"[..]).split().freeze();
- let addr = a.as_ptr() as usize;
-
- // test the Bytes::clone is Sync by putting it in an Arc
- let a1 = Arc::new(a);
- let a2 = a1.clone();
-
- let t1 = thread::spawn(move || {
- let b: Bytes = (*a1).clone();
- assert_eq!(b.as_ptr() as usize, addr);
- });
-
- let t2 = thread::spawn(move || {
- let b: Bytes = (*a2).clone();
- assert_eq!(b.as_ptr() as usize, addr);
- });
-
- t1.join().unwrap();
- t2.join().unwrap();
- });
- }
-}