diff options
Diffstat (limited to 'vendor/bytes/src/bytes_mut.rs')
| -rw-r--r-- | vendor/bytes/src/bytes_mut.rs | 1921 |
1 files changed, 0 insertions, 1921 deletions
diff --git a/vendor/bytes/src/bytes_mut.rs b/vendor/bytes/src/bytes_mut.rs deleted file mode 100644 index d5db5124..00000000 --- a/vendor/bytes/src/bytes_mut.rs +++ /dev/null @@ -1,1921 +0,0 @@ -use core::iter::FromIterator; -use core::mem::{self, ManuallyDrop, MaybeUninit}; -use core::ops::{Deref, DerefMut}; -use core::ptr::{self, NonNull}; -use core::{cmp, fmt, hash, isize, slice, usize}; - -use alloc::{ - borrow::{Borrow, BorrowMut}, - boxed::Box, - string::String, - vec, - vec::Vec, -}; - -use crate::buf::{IntoIter, UninitSlice}; -use crate::bytes::Vtable; -#[allow(unused)] -use crate::loom::sync::atomic::AtomicMut; -use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering}; -use crate::{offset_from, Buf, BufMut, Bytes, TryGetError}; - -/// A unique reference to a contiguous slice of memory. -/// -/// `BytesMut` represents a unique view into a potentially shared memory region. -/// Given the uniqueness guarantee, owners of `BytesMut` handles are able to -/// mutate the memory. -/// -/// `BytesMut` can be thought of as containing a `buf: Arc<Vec<u8>>`, an offset -/// into `buf`, a slice length, and a guarantee that no other `BytesMut` for the -/// same `buf` overlaps with its slice. That guarantee means that a write lock -/// is not required. -/// -/// # Growth -/// -/// `BytesMut`'s `BufMut` implementation will implicitly grow its buffer as -/// necessary. However, explicitly reserving the required space up-front before -/// a series of inserts will be more efficient. -/// -/// # Examples -/// -/// ``` -/// use bytes::{BytesMut, BufMut}; -/// -/// let mut buf = BytesMut::with_capacity(64); -/// -/// buf.put_u8(b'h'); -/// buf.put_u8(b'e'); -/// buf.put(&b"llo"[..]); -/// -/// assert_eq!(&buf[..], b"hello"); -/// -/// // Freeze the buffer so that it can be shared -/// let a = buf.freeze(); -/// -/// // This does not allocate, instead `b` points to the same memory. -/// let b = a.clone(); -/// -/// assert_eq!(&a[..], b"hello"); -/// assert_eq!(&b[..], b"hello"); -/// ``` -pub struct BytesMut { - ptr: NonNull<u8>, - len: usize, - cap: usize, - data: *mut Shared, -} - -// Thread-safe reference-counted container for the shared storage. This mostly -// the same as `core::sync::Arc` but without the weak counter. The ref counting -// fns are based on the ones found in `std`. -// -// The main reason to use `Shared` instead of `core::sync::Arc` is that it ends -// up making the overall code simpler and easier to reason about. This is due to -// some of the logic around setting `Inner::arc` and other ways the `arc` field -// is used. Using `Arc` ended up requiring a number of funky transmutes and -// other shenanigans to make it work. -struct Shared { - vec: Vec<u8>, - original_capacity_repr: usize, - ref_count: AtomicUsize, -} - -// Assert that the alignment of `Shared` is divisible by 2. -// This is a necessary invariant since we depend on allocating `Shared` a -// shared object to implicitly carry the `KIND_ARC` flag in its pointer. -// This flag is set when the LSB is 0. -const _: [(); 0 - mem::align_of::<Shared>() % 2] = []; // Assert that the alignment of `Shared` is divisible by 2. - -// Buffer storage strategy flags. -const KIND_ARC: usize = 0b0; -const KIND_VEC: usize = 0b1; -const KIND_MASK: usize = 0b1; - -// The max original capacity value. Any `Bytes` allocated with a greater initial -// capacity will default to this. -const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17; -// The original capacity algorithm will not take effect unless the originally -// allocated capacity was at least 1kb in size. -const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10; -// The original capacity is stored in powers of 2 starting at 1kb to a max of -// 64kb. Representing it as such requires only 3 bits of storage. -const ORIGINAL_CAPACITY_MASK: usize = 0b11100; -const ORIGINAL_CAPACITY_OFFSET: usize = 2; - -const VEC_POS_OFFSET: usize = 5; -// When the storage is in the `Vec` representation, the pointer can be advanced -// at most this value. This is due to the amount of storage available to track -// the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY -// bits. -const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET; -const NOT_VEC_POS_MASK: usize = 0b11111; - -#[cfg(target_pointer_width = "64")] -const PTR_WIDTH: usize = 64; -#[cfg(target_pointer_width = "32")] -const PTR_WIDTH: usize = 32; - -/* - * - * ===== BytesMut ===== - * - */ - -impl BytesMut { - /// Creates a new `BytesMut` with the specified capacity. - /// - /// The returned `BytesMut` will be able to hold at least `capacity` bytes - /// without reallocating. - /// - /// It is important to note that this function does not specify the length - /// of the returned `BytesMut`, but only the capacity. - /// - /// # Examples - /// - /// ``` - /// use bytes::{BytesMut, BufMut}; - /// - /// let mut bytes = BytesMut::with_capacity(64); - /// - /// // `bytes` contains no data, even though there is capacity - /// assert_eq!(bytes.len(), 0); - /// - /// bytes.put(&b"hello world"[..]); - /// - /// assert_eq!(&bytes[..], b"hello world"); - /// ``` - #[inline] - pub fn with_capacity(capacity: usize) -> BytesMut { - BytesMut::from_vec(Vec::with_capacity(capacity)) - } - - /// Creates a new `BytesMut` with default capacity. - /// - /// Resulting object has length 0 and unspecified capacity. - /// This function does not allocate. - /// - /// # Examples - /// - /// ``` - /// use bytes::{BytesMut, BufMut}; - /// - /// let mut bytes = BytesMut::new(); - /// - /// assert_eq!(0, bytes.len()); - /// - /// bytes.reserve(2); - /// bytes.put_slice(b"xy"); - /// - /// assert_eq!(&b"xy"[..], &bytes[..]); - /// ``` - #[inline] - pub fn new() -> BytesMut { - BytesMut::with_capacity(0) - } - - /// Returns the number of bytes contained in this `BytesMut`. - /// - /// # Examples - /// - /// ``` - /// use bytes::BytesMut; - /// - /// let b = BytesMut::from(&b"hello"[..]); - /// assert_eq!(b.len(), 5); - /// ``` - #[inline] - pub fn len(&self) -> usize { - self.len - } - - /// Returns true if the `BytesMut` has a length of 0. - /// - /// # Examples - /// - /// ``` - /// use bytes::BytesMut; - /// - /// let b = BytesMut::with_capacity(64); - /// assert!(b.is_empty()); - /// ``` - #[inline] - pub fn is_empty(&self) -> bool { - self.len == 0 - } - - /// Returns the number of bytes the `BytesMut` can hold without reallocating. - /// - /// # Examples - /// - /// ``` - /// use bytes::BytesMut; - /// - /// let b = BytesMut::with_capacity(64); - /// assert_eq!(b.capacity(), 64); - /// ``` - #[inline] - pub fn capacity(&self) -> usize { - self.cap - } - - /// Converts `self` into an immutable `Bytes`. - /// - /// The conversion is zero cost and is used to indicate that the slice - /// referenced by the handle will no longer be mutated. Once the conversion - /// is done, the handle can be cloned and shared across threads. - /// - /// # Examples - /// - /// ``` - /// use bytes::{BytesMut, BufMut}; - /// use std::thread; - /// - /// let mut b = BytesMut::with_capacity(64); - /// b.put(&b"hello world"[..]); - /// let b1 = b.freeze(); - /// let b2 = b1.clone(); - /// - /// let th = thread::spawn(move || { - /// assert_eq!(&b1[..], b"hello world"); - /// }); - /// - /// assert_eq!(&b2[..], b"hello world"); - /// th.join().unwrap(); - /// ``` - #[inline] - pub fn freeze(self) -> Bytes { - let bytes = ManuallyDrop::new(self); - if bytes.kind() == KIND_VEC { - // Just re-use `Bytes` internal Vec vtable - unsafe { - let off = bytes.get_vec_pos(); - let vec = rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off); - let mut b: Bytes = vec.into(); - b.advance(off); - b - } - } else { - debug_assert_eq!(bytes.kind(), KIND_ARC); - - let ptr = bytes.ptr.as_ptr(); - let len = bytes.len; - let data = AtomicPtr::new(bytes.data.cast()); - unsafe { Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE) } - } - } - - /// Creates a new `BytesMut` containing `len` zeros. - /// - /// The resulting object has a length of `len` and a capacity greater - /// than or equal to `len`. The entire length of the object will be filled - /// with zeros. - /// - /// On some platforms or allocators this function may be faster than - /// a manual implementation. - /// - /// # Examples - /// - /// ``` - /// use bytes::BytesMut; - /// - /// let zeros = BytesMut::zeroed(42); - /// - /// assert!(zeros.capacity() >= 42); - /// assert_eq!(zeros.len(), 42); - /// zeros.into_iter().for_each(|x| assert_eq!(x, 0)); - /// ``` - pub fn zeroed(len: usize) -> BytesMut { - BytesMut::from_vec(vec![0; len]) - } - - /// Splits the bytes into two at the given index. - /// - /// Afterwards `self` contains elements `[0, at)`, and the returned - /// `BytesMut` contains elements `[at, capacity)`. It's guaranteed that the - /// memory does not move, that is, the address of `self` does not change, - /// and the address of the returned slice is `at` bytes after that. - /// - /// This is an `O(1)` operation that just increases the reference count - /// and sets a few indices. - /// - /// # Examples - /// - /// ``` - /// use bytes::BytesMut; - /// - /// let mut a = BytesMut::from(&b"hello world"[..]); - /// let mut b = a.split_off(5); - /// - /// a[0] = b'j'; - /// b[0] = b'!'; - /// - /// assert_eq!(&a[..], b"jello"); - /// assert_eq!(&b[..], b"!world"); - /// ``` - /// - /// # Panics - /// - /// Panics if `at > capacity`. - #[must_use = "consider BytesMut::truncate if you don't need the other half"] - pub fn split_off(&mut self, at: usize) -> BytesMut { - assert!( - at <= self.capacity(), - "split_off out of bounds: {:?} <= {:?}", - at, - self.capacity(), - ); - unsafe { - let mut other = self.shallow_clone(); - // SAFETY: We've checked that `at` <= `self.capacity()` above. - other.advance_unchecked(at); - self.cap = at; - self.len = cmp::min(self.len, at); - other - } - } - - /// Removes the bytes from the current view, returning them in a new - /// `BytesMut` handle. - /// - /// Afterwards, `self` will be empty, but will retain any additional - /// capacity that it had before the operation. This is identical to - /// `self.split_to(self.len())`. - /// - /// This is an `O(1)` operation that just increases the reference count and - /// sets a few indices. - /// - /// # Examples - /// - /// ``` - /// use bytes::{BytesMut, BufMut}; - /// - /// let mut buf = BytesMut::with_capacity(1024); - /// buf.put(&b"hello world"[..]); - /// - /// let other = buf.split(); - /// - /// assert!(buf.is_empty()); - /// assert_eq!(1013, buf.capacity()); - /// - /// assert_eq!(other, b"hello world"[..]); - /// ``` - #[must_use = "consider BytesMut::clear if you don't need the other half"] - pub fn split(&mut self) -> BytesMut { - let len = self.len(); - self.split_to(len) - } - - /// Splits the buffer into two at the given index. - /// - /// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut` - /// contains elements `[0, at)`. - /// - /// This is an `O(1)` operation that just increases the reference count and - /// sets a few indices. - /// - /// # Examples - /// - /// ``` - /// use bytes::BytesMut; - /// - /// let mut a = BytesMut::from(&b"hello world"[..]); - /// let mut b = a.split_to(5); - /// - /// a[0] = b'!'; - /// b[0] = b'j'; - /// - /// assert_eq!(&a[..], b"!world"); - /// assert_eq!(&b[..], b"jello"); - /// ``` - /// - /// # Panics - /// - /// Panics if `at > len`. - #[must_use = "consider BytesMut::advance if you don't need the other half"] - pub fn split_to(&mut self, at: usize) -> BytesMut { - assert!( - at <= self.len(), - "split_to out of bounds: {:?} <= {:?}", - at, - self.len(), - ); - - unsafe { - let mut other = self.shallow_clone(); - // SAFETY: We've checked that `at` <= `self.len()` and we know that `self.len()` <= - // `self.capacity()`. - self.advance_unchecked(at); - other.cap = at; - other.len = at; - other - } - } - - /// Shortens the buffer, keeping the first `len` bytes and dropping the - /// rest. - /// - /// If `len` is greater than the buffer's current length, this has no - /// effect. - /// - /// Existing underlying capacity is preserved. - /// - /// The [split_off](`Self::split_off()`) method can emulate `truncate`, but this causes the - /// excess bytes to be returned instead of dropped. - /// - /// # Examples - /// - /// ``` - /// use bytes::BytesMut; - /// - /// let mut buf = BytesMut::from(&b"hello world"[..]); - /// buf.truncate(5); - /// assert_eq!(buf, b"hello"[..]); - /// ``` - pub fn truncate(&mut self, len: usize) { - if len <= self.len() { - // SAFETY: Shrinking the buffer cannot expose uninitialized bytes. - unsafe { self.set_len(len) }; - } - } - - /// Clears the buffer, removing all data. Existing capacity is preserved. - /// - /// # Examples - /// - /// ``` - /// use bytes::BytesMut; - /// - /// let mut buf = BytesMut::from(&b"hello world"[..]); - /// buf.clear(); - /// assert!(buf.is_empty()); - /// ``` - pub fn clear(&mut self) { - // SAFETY: Setting the length to zero cannot expose uninitialized bytes. - unsafe { self.set_len(0) }; - } - - /// Resizes the buffer so that `len` is equal to `new_len`. - /// - /// If `new_len` is greater than `len`, the buffer is extended by the - /// difference with each additional byte set to `value`. If `new_len` is - /// less than `len`, the buffer is simply truncated. - /// - /// # Examples - /// - /// ``` - /// use bytes::BytesMut; - /// - /// let mut buf = BytesMut::new(); - /// - /// buf.resize(3, 0x1); - /// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]); - /// - /// buf.resize(2, 0x2); - /// assert_eq!(&buf[..], &[0x1, 0x1]); - /// - /// buf.resize(4, 0x3); - /// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]); - /// ``` - pub fn resize(&mut self, new_len: usize, value: u8) { - let additional = if let Some(additional) = new_len.checked_sub(self.len()) { - additional - } else { - self.truncate(new_len); - return; - }; - - if additional == 0 { - return; - } - - self.reserve(additional); - let dst = self.spare_capacity_mut().as_mut_ptr(); - // SAFETY: `spare_capacity_mut` returns a valid, properly aligned pointer and we've - // reserved enough space to write `additional` bytes. - unsafe { ptr::write_bytes(dst, value, additional) }; - - // SAFETY: There are at least `new_len` initialized bytes in the buffer so no - // uninitialized bytes are being exposed. - unsafe { self.set_len(new_len) }; - } - - /// Sets the length of the buffer. - /// - /// This will explicitly set the size of the buffer without actually - /// modifying the data, so it is up to the caller to ensure that the data - /// has been initialized. - /// - /// # Examples - /// - /// ``` - /// use bytes::BytesMut; - /// - /// let mut b = BytesMut::from(&b"hello world"[..]); - /// - /// unsafe { - /// b.set_len(5); - /// } - /// - /// assert_eq!(&b[..], b"hello"); - /// - /// unsafe { - /// b.set_len(11); - /// } - /// - /// assert_eq!(&b[..], b"hello world"); - /// ``` - #[inline] - pub unsafe fn set_len(&mut self, len: usize) { - debug_assert!(len <= self.cap, "set_len out of bounds"); - self.len = len; - } - - /// Reserves capacity for at least `additional` more bytes to be inserted - /// into the given `BytesMut`. - /// - /// More than `additional` bytes may be reserved in order to avoid frequent - /// reallocations. A call to `reserve` may result in an allocation. - /// - /// Before allocating new buffer space, the function will attempt to reclaim - /// space in the existing buffer. If the current handle references a view - /// into a larger original buffer, and all other handles referencing part - /// of the same original buffer have been dropped, then the current view - /// can be copied/shifted to the front of the buffer and the handle can take - /// ownership of the full buffer, provided that the full buffer is large - /// enough to fit the requested additional capacity. - /// - /// This optimization will only happen if shifting the data from the current - /// view to the front of the buffer is not too expensive in terms of the - /// (amortized) time required. The precise condition is subject to change; - /// as of now, the length of the data being shifted needs to be at least as - /// large as the distance that it's shifted by. If the current view is empty - /// and the original buffer is large enough to fit the requested additional - /// capacity, then reallocations will never happen. - /// - /// # Examples - /// - /// In the following example, a new buffer is allocated. - /// - /// ``` - /// use bytes::BytesMut; - /// - /// let mut buf = BytesMut::from(&b"hello"[..]); - /// buf.reserve(64); - /// assert!(buf.capacity() >= 69); - /// ``` - /// - /// In the following example, the existing buffer is reclaimed. - /// - /// ``` - /// use bytes::{BytesMut, BufMut}; - /// - /// let mut buf = BytesMut::with_capacity(128); - /// buf.put(&[0; 64][..]); - /// - /// let ptr = buf.as_ptr(); - /// let other = buf.split(); - /// - /// assert!(buf.is_empty()); - /// assert_eq!(buf.capacity(), 64); - /// - /// drop(other); - /// buf.reserve(128); - /// - /// assert_eq!(buf.capacity(), 128); - /// assert_eq!(buf.as_ptr(), ptr); - /// ``` - /// - /// # Panics - /// - /// Panics if the new capacity overflows `usize`. - #[inline] - pub fn reserve(&mut self, additional: usize) { - let len = self.len(); - let rem = self.capacity() - len; - - if additional <= rem { - // The handle can already store at least `additional` more bytes, so - // there is no further work needed to be done. - return; - } - - // will always succeed - let _ = self.reserve_inner(additional, true); - } - - // In separate function to allow the short-circuits in `reserve` and `try_reclaim` to - // be inline-able. Significantly helps performance. Returns false if it did not succeed. - fn reserve_inner(&mut self, additional: usize, allocate: bool) -> bool { - let len = self.len(); - let kind = self.kind(); - - if kind == KIND_VEC { - // If there's enough free space before the start of the buffer, then - // just copy the data backwards and reuse the already-allocated - // space. - // - // Otherwise, since backed by a vector, use `Vec::reserve` - // - // We need to make sure that this optimization does not kill the - // amortized runtimes of BytesMut's operations. - unsafe { - let off = self.get_vec_pos(); - - // Only reuse space if we can satisfy the requested additional space. - // - // Also check if the value of `off` suggests that enough bytes - // have been read to account for the overhead of shifting all - // the data (in an amortized analysis). - // Hence the condition `off >= self.len()`. - // - // This condition also already implies that the buffer is going - // to be (at least) half-empty in the end; so we do not break - // the (amortized) runtime with future resizes of the underlying - // `Vec`. - // - // [For more details check issue #524, and PR #525.] - if self.capacity() - self.len() + off >= additional && off >= self.len() { - // There's enough space, and it's not too much overhead: - // reuse the space! - // - // Just move the pointer back to the start after copying - // data back. - let base_ptr = self.ptr.as_ptr().sub(off); - // Since `off >= self.len()`, the two regions don't overlap. - ptr::copy_nonoverlapping(self.ptr.as_ptr(), base_ptr, self.len); - self.ptr = vptr(base_ptr); - self.set_vec_pos(0); - - // Length stays constant, but since we moved backwards we - // can gain capacity back. - self.cap += off; - } else { - if !allocate { - return false; - } - // Not enough space, or reusing might be too much overhead: - // allocate more space! - let mut v = - ManuallyDrop::new(rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off)); - v.reserve(additional); - - // Update the info - self.ptr = vptr(v.as_mut_ptr().add(off)); - self.cap = v.capacity() - off; - debug_assert_eq!(self.len, v.len() - off); - } - - return true; - } - } - - debug_assert_eq!(kind, KIND_ARC); - let shared: *mut Shared = self.data; - - // Reserving involves abandoning the currently shared buffer and - // allocating a new vector with the requested capacity. - // - // Compute the new capacity - let mut new_cap = match len.checked_add(additional) { - Some(new_cap) => new_cap, - None if !allocate => return false, - None => panic!("overflow"), - }; - - unsafe { - // First, try to reclaim the buffer. This is possible if the current - // handle is the only outstanding handle pointing to the buffer. - if (*shared).is_unique() { - // This is the only handle to the buffer. It can be reclaimed. - // However, before doing the work of copying data, check to make - // sure that the vector has enough capacity. - let v = &mut (*shared).vec; - - let v_capacity = v.capacity(); - let ptr = v.as_mut_ptr(); - - let offset = offset_from(self.ptr.as_ptr(), ptr); - - // Compare the condition in the `kind == KIND_VEC` case above - // for more details. - if v_capacity >= new_cap + offset { - self.cap = new_cap; - // no copy is necessary - } else if v_capacity >= new_cap && offset >= len { - // The capacity is sufficient, and copying is not too much - // overhead: reclaim the buffer! - - // `offset >= len` means: no overlap - ptr::copy_nonoverlapping(self.ptr.as_ptr(), ptr, len); - - self.ptr = vptr(ptr); - self.cap = v.capacity(); - } else { - if !allocate { - return false; - } - // calculate offset - let off = (self.ptr.as_ptr() as usize) - (v.as_ptr() as usize); - - // new_cap is calculated in terms of `BytesMut`, not the underlying - // `Vec`, so it does not take the offset into account. - // - // Thus we have to manually add it here. - new_cap = new_cap.checked_add(off).expect("overflow"); - - // The vector capacity is not sufficient. The reserve request is - // asking for more than the initial buffer capacity. Allocate more - // than requested if `new_cap` is not much bigger than the current - // capacity. - // - // There are some situations, using `reserve_exact` that the - // buffer capacity could be below `original_capacity`, so do a - // check. - let double = v.capacity().checked_shl(1).unwrap_or(new_cap); - - new_cap = cmp::max(double, new_cap); - - // No space - allocate more - // - // The length field of `Shared::vec` is not used by the `BytesMut`; - // instead we use the `len` field in the `BytesMut` itself. However, - // when calling `reserve`, it doesn't guarantee that data stored in - // the unused capacity of the vector is copied over to the new - // allocation, so we need to ensure that we don't have any data we - // care about in the unused capacity before calling `reserve`. - debug_assert!(off + len <= v.capacity()); - v.set_len(off + len); - v.reserve(new_cap - v.len()); - - // Update the info - self.ptr = vptr(v.as_mut_ptr().add(off)); - self.cap = v.capacity() - off; - } - - return true; - } - } - if !allocate { - return false; - } - - let original_capacity_repr = unsafe { (*shared).original_capacity_repr }; - let original_capacity = original_capacity_from_repr(original_capacity_repr); - - new_cap = cmp::max(new_cap, original_capacity); - - // Create a new vector to store the data - let mut v = ManuallyDrop::new(Vec::with_capacity(new_cap)); - - // Copy the bytes - v.extend_from_slice(self.as_ref()); - - // Release the shared handle. This must be done *after* the bytes are - // copied. - unsafe { release_shared(shared) }; - - // Update self - let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC; - self.data = invalid_ptr(data); - self.ptr = vptr(v.as_mut_ptr()); - self.cap = v.capacity(); - debug_assert_eq!(self.len, v.len()); - return true; - } - - /// Attempts to cheaply reclaim already allocated capacity for at least `additional` more - /// bytes to be inserted into the given `BytesMut` and returns `true` if it succeeded. - /// - /// `try_reclaim` behaves exactly like `reserve`, except that it never allocates new storage - /// and returns a `bool` indicating whether it was successful in doing so: - /// - /// `try_reclaim` returns false under these conditions: - /// - The spare capacity left is less than `additional` bytes AND - /// - The existing allocation cannot be reclaimed cheaply or it was less than - /// `additional` bytes in size - /// - /// Reclaiming the allocation cheaply is possible if the `BytesMut` has no outstanding - /// references through other `BytesMut`s or `Bytes` which point to the same underlying - /// storage. - /// - /// # Examples - /// - /// ``` - /// use bytes::BytesMut; - /// - /// let mut buf = BytesMut::with_capacity(64); - /// assert_eq!(true, buf.try_reclaim(64)); - /// assert_eq!(64, buf.capacity()); - /// - /// buf.extend_from_slice(b"abcd"); - /// let mut split = buf.split(); - /// assert_eq!(60, buf.capacity()); - /// assert_eq!(4, split.capacity()); - /// assert_eq!(false, split.try_reclaim(64)); - /// assert_eq!(false, buf.try_reclaim(64)); - /// // The split buffer is filled with "abcd" - /// assert_eq!(false, split.try_reclaim(4)); - /// // buf is empty and has capacity for 60 bytes - /// assert_eq!(true, buf.try_reclaim(60)); - /// - /// drop(buf); - /// assert_eq!(false, split.try_reclaim(64)); - /// - /// split.clear(); - /// assert_eq!(4, split.capacity()); - /// assert_eq!(true, split.try_reclaim(64)); - /// assert_eq!(64, split.capacity()); - /// ``` - // I tried splitting out try_reclaim_inner after the short circuits, but it was inlined - // regardless with Rust 1.78.0 so probably not worth it - #[inline] - #[must_use = "consider BytesMut::reserve if you need an infallible reservation"] - pub fn try_reclaim(&mut self, additional: usize) -> bool { - let len = self.len(); - let rem = self.capacity() - len; - - if additional <= rem { - // The handle can already store at least `additional` more bytes, so - // there is no further work needed to be done. - return true; - } - - self.reserve_inner(additional, false) - } - - /// Appends given bytes to this `BytesMut`. - /// - /// If this `BytesMut` object does not have enough capacity, it is resized - /// first. - /// - /// # Examples - /// - /// ``` - /// use bytes::BytesMut; - /// - /// let mut buf = BytesMut::with_capacity(0); - /// buf.extend_from_slice(b"aaabbb"); - /// buf.extend_from_slice(b"cccddd"); - /// - /// assert_eq!(b"aaabbbcccddd", &buf[..]); - /// ``` - #[inline] - pub fn extend_from_slice(&mut self, extend: &[u8]) { - let cnt = extend.len(); - self.reserve(cnt); - - unsafe { - let dst = self.spare_capacity_mut(); - // Reserved above - debug_assert!(dst.len() >= cnt); - - ptr::copy_nonoverlapping(extend.as_ptr(), dst.as_mut_ptr().cast(), cnt); - } - - unsafe { - self.advance_mut(cnt); - } - } - - /// Absorbs a `BytesMut` that was previously split off. - /// - /// If the two `BytesMut` objects were previously contiguous and not mutated - /// in a way that causes re-allocation i.e., if `other` was created by - /// calling `split_off` on this `BytesMut`, then this is an `O(1)` operation - /// that just decreases a reference count and sets a few indices. - /// Otherwise this method degenerates to - /// `self.extend_from_slice(other.as_ref())`. - /// - /// # Examples - /// - /// ``` - /// use bytes::BytesMut; - /// - /// let mut buf = BytesMut::with_capacity(64); - /// buf.extend_from_slice(b"aaabbbcccddd"); - /// - /// let split = buf.split_off(6); - /// assert_eq!(b"aaabbb", &buf[..]); - /// assert_eq!(b"cccddd", &split[..]); - /// - /// buf.unsplit(split); - /// assert_eq!(b"aaabbbcccddd", &buf[..]); - /// ``` - pub fn unsplit(&mut self, other: BytesMut) { - if self.is_empty() { - *self = other; - return; - } - - if let Err(other) = self.try_unsplit(other) { - self.extend_from_slice(other.as_ref()); - } - } - - // private - - // For now, use a `Vec` to manage the memory for us, but we may want to - // change that in the future to some alternate allocator strategy. - // - // Thus, we don't expose an easy way to construct from a `Vec` since an - // internal change could make a simple pattern (`BytesMut::from(vec)`) - // suddenly a lot more expensive. - #[inline] - pub(crate) fn from_vec(vec: Vec<u8>) -> BytesMut { - let mut vec = ManuallyDrop::new(vec); - let ptr = vptr(vec.as_mut_ptr()); - let len = vec.len(); - let cap = vec.capacity(); - - let original_capacity_repr = original_capacity_to_repr(cap); - let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC; - - BytesMut { - ptr, - len, - cap, - data: invalid_ptr(data), - } - } - - #[inline] - fn as_slice(&self) -> &[u8] { - unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) } - } - - #[inline] - fn as_slice_mut(&mut self) -> &mut [u8] { - unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) } - } - - /// Advance the buffer without bounds checking. - /// - /// # SAFETY - /// - /// The caller must ensure that `count` <= `self.cap`. - pub(crate) unsafe fn advance_unchecked(&mut self, count: usize) { - // Setting the start to 0 is a no-op, so return early if this is the - // case. - if count == 0 { - return; - } - - debug_assert!(count <= self.cap, "internal: set_start out of bounds"); - - let kind = self.kind(); - - if kind == KIND_VEC { - // Setting the start when in vec representation is a little more - // complicated. First, we have to track how far ahead the - // "start" of the byte buffer from the beginning of the vec. We - // also have to ensure that we don't exceed the maximum shift. - let pos = self.get_vec_pos() + count; - - if pos <= MAX_VEC_POS { - self.set_vec_pos(pos); - } else { - // The repr must be upgraded to ARC. This will never happen - // on 64 bit systems and will only happen on 32 bit systems - // when shifting past 134,217,727 bytes. As such, we don't - // worry too much about performance here. - self.promote_to_shared(/*ref_count = */ 1); - } - } - - // Updating the start of the view is setting `ptr` to point to the - // new start and updating the `len` field to reflect the new length - // of the view. - self.ptr = vptr(self.ptr.as_ptr().add(count)); - self.len = self.len.checked_sub(count).unwrap_or(0); - self.cap -= count; - } - - fn try_unsplit(&mut self, other: BytesMut) -> Result<(), BytesMut> { - if other.capacity() == 0 { - return Ok(()); - } - - let ptr = unsafe { self.ptr.as_ptr().add(self.len) }; - if ptr == other.ptr.as_ptr() - && self.kind() == KIND_ARC - && other.kind() == KIND_ARC - && self.data == other.data - { - // Contiguous blocks, just combine directly - self.len += other.len; - self.cap += other.cap; - Ok(()) - } else { - Err(other) - } - } - - #[inline] - fn kind(&self) -> usize { - self.data as usize & KIND_MASK - } - - unsafe fn promote_to_shared(&mut self, ref_cnt: usize) { - debug_assert_eq!(self.kind(), KIND_VEC); - debug_assert!(ref_cnt == 1 || ref_cnt == 2); - - let original_capacity_repr = - (self.data as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET; - - // The vec offset cannot be concurrently mutated, so there - // should be no danger reading it. - let off = (self.data as usize) >> VEC_POS_OFFSET; - - // First, allocate a new `Shared` instance containing the - // `Vec` fields. It's important to note that `ptr`, `len`, - // and `cap` cannot be mutated without having `&mut self`. - // This means that these fields will not be concurrently - // updated and since the buffer hasn't been promoted to an - // `Arc`, those three fields still are the components of the - // vector. - let shared = Box::new(Shared { - vec: rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off), - original_capacity_repr, - ref_count: AtomicUsize::new(ref_cnt), - }); - - let shared = Box::into_raw(shared); - - // The pointer should be aligned, so this assert should - // always succeed. - debug_assert_eq!(shared as usize & KIND_MASK, KIND_ARC); - - self.data = shared; - } - - /// Makes an exact shallow clone of `self`. - /// - /// The kind of `self` doesn't matter, but this is unsafe - /// because the clone will have the same offsets. You must - /// be sure the returned value to the user doesn't allow - /// two views into the same range. - #[inline] - unsafe fn shallow_clone(&mut self) -> BytesMut { - if self.kind() == KIND_ARC { - increment_shared(self.data); - ptr::read(self) - } else { - self.promote_to_shared(/*ref_count = */ 2); - ptr::read(self) - } - } - - #[inline] - unsafe fn get_vec_pos(&self) -> usize { - debug_assert_eq!(self.kind(), KIND_VEC); - - self.data as usize >> VEC_POS_OFFSET - } - - #[inline] - unsafe fn set_vec_pos(&mut self, pos: usize) { - debug_assert_eq!(self.kind(), KIND_VEC); - debug_assert!(pos <= MAX_VEC_POS); - - self.data = invalid_ptr((pos << VEC_POS_OFFSET) | (self.data as usize & NOT_VEC_POS_MASK)); - } - - /// Returns the remaining spare capacity of the buffer as a slice of `MaybeUninit<u8>`. - /// - /// The returned slice can be used to fill the buffer with data (e.g. by - /// reading from a file) before marking the data as initialized using the - /// [`set_len`] method. - /// - /// [`set_len`]: BytesMut::set_len - /// - /// # Examples - /// - /// ``` - /// use bytes::BytesMut; - /// - /// // Allocate buffer big enough for 10 bytes. - /// let mut buf = BytesMut::with_capacity(10); - /// - /// // Fill in the first 3 elements. - /// let uninit = buf.spare_capacity_mut(); - /// uninit[0].write(0); - /// uninit[1].write(1); - /// uninit[2].write(2); - /// - /// // Mark the first 3 bytes of the buffer as being initialized. - /// unsafe { - /// buf.set_len(3); - /// } - /// - /// assert_eq!(&buf[..], &[0, 1, 2]); - /// ``` - #[inline] - pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<u8>] { - unsafe { - let ptr = self.ptr.as_ptr().add(self.len); - let len = self.cap - self.len; - - slice::from_raw_parts_mut(ptr.cast(), len) - } - } -} - -impl Drop for BytesMut { - fn drop(&mut self) { - let kind = self.kind(); - - if kind == KIND_VEC { - unsafe { - let off = self.get_vec_pos(); - - // Vector storage, free the vector - let _ = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off); - } - } else if kind == KIND_ARC { - unsafe { release_shared(self.data) }; - } - } -} - -impl Buf for BytesMut { - #[inline] - fn remaining(&self) -> usize { - self.len() - } - - #[inline] - fn chunk(&self) -> &[u8] { - self.as_slice() - } - - #[inline] - fn advance(&mut self, cnt: usize) { - assert!( - cnt <= self.remaining(), - "cannot advance past `remaining`: {:?} <= {:?}", - cnt, - self.remaining(), - ); - unsafe { - // SAFETY: We've checked that `cnt` <= `self.remaining()` and we know that - // `self.remaining()` <= `self.cap`. - self.advance_unchecked(cnt); - } - } - - fn copy_to_bytes(&mut self, len: usize) -> Bytes { - self.split_to(len).freeze() - } -} - -unsafe impl BufMut for BytesMut { - #[inline] - fn remaining_mut(&self) -> usize { - usize::MAX - self.len() - } - - #[inline] - unsafe fn advance_mut(&mut self, cnt: usize) { - let remaining = self.cap - self.len(); - if cnt > remaining { - super::panic_advance(&TryGetError { - requested: cnt, - available: remaining, - }); - } - // Addition won't overflow since it is at most `self.cap`. - self.len = self.len() + cnt; - } - - #[inline] - fn chunk_mut(&mut self) -> &mut UninitSlice { - if self.capacity() == self.len() { - self.reserve(64); - } - self.spare_capacity_mut().into() - } - - // Specialize these methods so they can skip checking `remaining_mut` - // and `advance_mut`. - - fn put<T: Buf>(&mut self, mut src: T) - where - Self: Sized, - { - while src.has_remaining() { - let s = src.chunk(); - let l = s.len(); - self.extend_from_slice(s); - src.advance(l); - } - } - - fn put_slice(&mut self, src: &[u8]) { - self.extend_from_slice(src); - } - - fn put_bytes(&mut self, val: u8, cnt: usize) { - self.reserve(cnt); - unsafe { - let dst = self.spare_capacity_mut(); - // Reserved above - debug_assert!(dst.len() >= cnt); - - ptr::write_bytes(dst.as_mut_ptr(), val, cnt); - - self.advance_mut(cnt); - } - } -} - -impl AsRef<[u8]> for BytesMut { - #[inline] - fn as_ref(&self) -> &[u8] { - self.as_slice() - } -} - -impl Deref for BytesMut { - type Target = [u8]; - - #[inline] - fn deref(&self) -> &[u8] { - self.as_ref() - } -} - -impl AsMut<[u8]> for BytesMut { - #[inline] - fn as_mut(&mut self) -> &mut [u8] { - self.as_slice_mut() - } -} - -impl DerefMut for BytesMut { - #[inline] - fn deref_mut(&mut self) -> &mut [u8] { - self.as_mut() - } -} - -impl<'a> From<&'a [u8]> for BytesMut { - fn from(src: &'a [u8]) -> BytesMut { - BytesMut::from_vec(src.to_vec()) - } -} - -impl<'a> From<&'a str> for BytesMut { - fn from(src: &'a str) -> BytesMut { - BytesMut::from(src.as_bytes()) - } -} - -impl From<BytesMut> for Bytes { - fn from(src: BytesMut) -> Bytes { - src.freeze() - } -} - -impl PartialEq for BytesMut { - fn eq(&self, other: &BytesMut) -> bool { - self.as_slice() == other.as_slice() - } -} - -impl PartialOrd for BytesMut { - fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { - self.as_slice().partial_cmp(other.as_slice()) - } -} - -impl Ord for BytesMut { - fn cmp(&self, other: &BytesMut) -> cmp::Ordering { - self.as_slice().cmp(other.as_slice()) - } -} - -impl Eq for BytesMut {} - -impl Default for BytesMut { - #[inline] - fn default() -> BytesMut { - BytesMut::new() - } -} - -impl hash::Hash for BytesMut { - fn hash<H>(&self, state: &mut H) - where - H: hash::Hasher, - { - let s: &[u8] = self.as_ref(); - s.hash(state); - } -} - -impl Borrow<[u8]> for BytesMut { - fn borrow(&self) -> &[u8] { - self.as_ref() - } -} - -impl BorrowMut<[u8]> for BytesMut { - fn borrow_mut(&mut self) -> &mut [u8] { - self.as_mut() - } -} - -impl fmt::Write for BytesMut { - #[inline] - fn write_str(&mut self, s: &str) -> fmt::Result { - if self.remaining_mut() >= s.len() { - self.put_slice(s.as_bytes()); - Ok(()) - } else { - Err(fmt::Error) - } - } - - #[inline] - fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result { - fmt::write(self, args) - } -} - -impl Clone for BytesMut { - fn clone(&self) -> BytesMut { - BytesMut::from(&self[..]) - } -} - -impl IntoIterator for BytesMut { - type Item = u8; - type IntoIter = IntoIter<BytesMut>; - - fn into_iter(self) -> Self::IntoIter { - IntoIter::new(self) - } -} - -impl<'a> IntoIterator for &'a BytesMut { - type Item = &'a u8; - type IntoIter = core::slice::Iter<'a, u8>; - - fn into_iter(self) -> Self::IntoIter { - self.as_ref().iter() - } -} - -impl Extend<u8> for BytesMut { - fn extend<T>(&mut self, iter: T) - where - T: IntoIterator<Item = u8>, - { - let iter = iter.into_iter(); - - let (lower, _) = iter.size_hint(); - self.reserve(lower); - - // TODO: optimize - // 1. If self.kind() == KIND_VEC, use Vec::extend - for b in iter { - self.put_u8(b); - } - } -} - -impl<'a> Extend<&'a u8> for BytesMut { - fn extend<T>(&mut self, iter: T) - where - T: IntoIterator<Item = &'a u8>, - { - self.extend(iter.into_iter().copied()) - } -} - -impl Extend<Bytes> for BytesMut { - fn extend<T>(&mut self, iter: T) - where - T: IntoIterator<Item = Bytes>, - { - for bytes in iter { - self.extend_from_slice(&bytes) - } - } -} - -impl FromIterator<u8> for BytesMut { - fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self { - BytesMut::from_vec(Vec::from_iter(into_iter)) - } -} - -impl<'a> FromIterator<&'a u8> for BytesMut { - fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self { - BytesMut::from_iter(into_iter.into_iter().copied()) - } -} - -/* - * - * ===== Inner ===== - * - */ - -unsafe fn increment_shared(ptr: *mut Shared) { - let old_size = (*ptr).ref_count.fetch_add(1, Ordering::Relaxed); - - if old_size > isize::MAX as usize { - crate::abort(); - } -} - -unsafe fn release_shared(ptr: *mut Shared) { - // `Shared` storage... follow the drop steps from Arc. - if (*ptr).ref_count.fetch_sub(1, Ordering::Release) != 1 { - return; - } - - // This fence is needed to prevent reordering of use of the data and - // deletion of the data. Because it is marked `Release`, the decreasing - // of the reference count synchronizes with this `Acquire` fence. This - // means that use of the data happens before decreasing the reference - // count, which happens before this fence, which happens before the - // deletion of the data. - // - // As explained in the [Boost documentation][1], - // - // > It is important to enforce any possible access to the object in one - // > thread (through an existing reference) to *happen before* deleting - // > the object in a different thread. This is achieved by a "release" - // > operation after dropping a reference (any access to the object - // > through this reference must obviously happened before), and an - // > "acquire" operation before deleting the object. - // - // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html) - // - // Thread sanitizer does not support atomic fences. Use an atomic load - // instead. - (*ptr).ref_count.load(Ordering::Acquire); - - // Drop the data - drop(Box::from_raw(ptr)); -} - -impl Shared { - fn is_unique(&self) -> bool { - // The goal is to check if the current handle is the only handle - // that currently has access to the buffer. This is done by - // checking if the `ref_count` is currently 1. - // - // The `Acquire` ordering synchronizes with the `Release` as - // part of the `fetch_sub` in `release_shared`. The `fetch_sub` - // operation guarantees that any mutations done in other threads - // are ordered before the `ref_count` is decremented. As such, - // this `Acquire` will guarantee that those mutations are - // visible to the current thread. - self.ref_count.load(Ordering::Acquire) == 1 - } -} - -#[inline] -fn original_capacity_to_repr(cap: usize) -> usize { - let width = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize); - cmp::min( - width, - MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH, - ) -} - -fn original_capacity_from_repr(repr: usize) -> usize { - if repr == 0 { - return 0; - } - - 1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1)) -} - -#[cfg(test)] -mod tests { - use super::*; - - #[test] - fn test_original_capacity_to_repr() { - assert_eq!(original_capacity_to_repr(0), 0); - - let max_width = 32; - - for width in 1..(max_width + 1) { - let cap = 1 << width - 1; - - let expected = if width < MIN_ORIGINAL_CAPACITY_WIDTH { - 0 - } else if width < MAX_ORIGINAL_CAPACITY_WIDTH { - width - MIN_ORIGINAL_CAPACITY_WIDTH - } else { - MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH - }; - - assert_eq!(original_capacity_to_repr(cap), expected); - - if width > 1 { - assert_eq!(original_capacity_to_repr(cap + 1), expected); - } - - // MIN_ORIGINAL_CAPACITY_WIDTH must be bigger than 7 to pass tests below - if width == MIN_ORIGINAL_CAPACITY_WIDTH + 1 { - assert_eq!(original_capacity_to_repr(cap - 24), expected - 1); - assert_eq!(original_capacity_to_repr(cap + 76), expected); - } else if width == MIN_ORIGINAL_CAPACITY_WIDTH + 2 { - assert_eq!(original_capacity_to_repr(cap - 1), expected - 1); - assert_eq!(original_capacity_to_repr(cap - 48), expected - 1); - } - } - } - - #[test] - fn test_original_capacity_from_repr() { - assert_eq!(0, original_capacity_from_repr(0)); - - let min_cap = 1 << MIN_ORIGINAL_CAPACITY_WIDTH; - - assert_eq!(min_cap, original_capacity_from_repr(1)); - assert_eq!(min_cap * 2, original_capacity_from_repr(2)); - assert_eq!(min_cap * 4, original_capacity_from_repr(3)); - assert_eq!(min_cap * 8, original_capacity_from_repr(4)); - assert_eq!(min_cap * 16, original_capacity_from_repr(5)); - assert_eq!(min_cap * 32, original_capacity_from_repr(6)); - assert_eq!(min_cap * 64, original_capacity_from_repr(7)); - } -} - -unsafe impl Send for BytesMut {} -unsafe impl Sync for BytesMut {} - -/* - * - * ===== PartialEq / PartialOrd ===== - * - */ - -impl PartialEq<[u8]> for BytesMut { - fn eq(&self, other: &[u8]) -> bool { - &**self == other - } -} - -impl PartialOrd<[u8]> for BytesMut { - fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> { - (**self).partial_cmp(other) - } -} - -impl PartialEq<BytesMut> for [u8] { - fn eq(&self, other: &BytesMut) -> bool { - *other == *self - } -} - -impl PartialOrd<BytesMut> for [u8] { - fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { - <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other) - } -} - -impl PartialEq<str> for BytesMut { - fn eq(&self, other: &str) -> bool { - &**self == other.as_bytes() - } -} - -impl PartialOrd<str> for BytesMut { - fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> { - (**self).partial_cmp(other.as_bytes()) - } -} - -impl PartialEq<BytesMut> for str { - fn eq(&self, other: &BytesMut) -> bool { - *other == *self - } -} - -impl PartialOrd<BytesMut> for str { - fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { - <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other) - } -} - -impl PartialEq<Vec<u8>> for BytesMut { - fn eq(&self, other: &Vec<u8>) -> bool { - *self == other[..] - } -} - -impl PartialOrd<Vec<u8>> for BytesMut { - fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> { - (**self).partial_cmp(&other[..]) - } -} - -impl PartialEq<BytesMut> for Vec<u8> { - fn eq(&self, other: &BytesMut) -> bool { - *other == *self - } -} - -impl PartialOrd<BytesMut> for Vec<u8> { - fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { - other.partial_cmp(self) - } -} - -impl PartialEq<String> for BytesMut { - fn eq(&self, other: &String) -> bool { - *self == other[..] - } -} - -impl PartialOrd<String> for BytesMut { - fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> { - (**self).partial_cmp(other.as_bytes()) - } -} - -impl PartialEq<BytesMut> for String { - fn eq(&self, other: &BytesMut) -> bool { - *other == *self - } -} - -impl PartialOrd<BytesMut> for String { - fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { - <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other) - } -} - -impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut -where - BytesMut: PartialEq<T>, -{ - fn eq(&self, other: &&'a T) -> bool { - *self == **other - } -} - -impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut -where - BytesMut: PartialOrd<T>, -{ - fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> { - self.partial_cmp(*other) - } -} - -impl PartialEq<BytesMut> for &[u8] { - fn eq(&self, other: &BytesMut) -> bool { - *other == *self - } -} - -impl PartialOrd<BytesMut> for &[u8] { - fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { - <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other) - } -} - -impl PartialEq<BytesMut> for &str { - fn eq(&self, other: &BytesMut) -> bool { - *other == *self - } -} - -impl PartialOrd<BytesMut> for &str { - fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> { - other.partial_cmp(self) - } -} - -impl PartialEq<BytesMut> for Bytes { - fn eq(&self, other: &BytesMut) -> bool { - other[..] == self[..] - } -} - -impl PartialEq<Bytes> for BytesMut { - fn eq(&self, other: &Bytes) -> bool { - other[..] == self[..] - } -} - -impl From<BytesMut> for Vec<u8> { - fn from(bytes: BytesMut) -> Self { - let kind = bytes.kind(); - let bytes = ManuallyDrop::new(bytes); - - let mut vec = if kind == KIND_VEC { - unsafe { - let off = bytes.get_vec_pos(); - rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off) - } - } else { - let shared = bytes.data as *mut Shared; - - if unsafe { (*shared).is_unique() } { - let vec = mem::replace(unsafe { &mut (*shared).vec }, Vec::new()); - - unsafe { release_shared(shared) }; - - vec - } else { - return ManuallyDrop::into_inner(bytes).deref().to_vec(); - } - }; - - let len = bytes.len; - - unsafe { - ptr::copy(bytes.ptr.as_ptr(), vec.as_mut_ptr(), len); - vec.set_len(len); - } - - vec - } -} - -#[inline] -fn vptr(ptr: *mut u8) -> NonNull<u8> { - if cfg!(debug_assertions) { - NonNull::new(ptr).expect("Vec pointer should be non-null") - } else { - unsafe { NonNull::new_unchecked(ptr) } - } -} - -/// Returns a dangling pointer with the given address. This is used to store -/// integer data in pointer fields. -/// -/// It is equivalent to `addr as *mut T`, but this fails on miri when strict -/// provenance checking is enabled. -#[inline] -fn invalid_ptr<T>(addr: usize) -> *mut T { - let ptr = core::ptr::null_mut::<u8>().wrapping_add(addr); - debug_assert_eq!(ptr as usize, addr); - ptr.cast::<T>() -} - -unsafe fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> { - let ptr = ptr.sub(off); - len += off; - cap += off; - - Vec::from_raw_parts(ptr, len, cap) -} - -// ===== impl SharedVtable ===== - -static SHARED_VTABLE: Vtable = Vtable { - clone: shared_v_clone, - to_vec: shared_v_to_vec, - to_mut: shared_v_to_mut, - is_unique: shared_v_is_unique, - drop: shared_v_drop, -}; - -unsafe fn shared_v_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes { - let shared = data.load(Ordering::Relaxed) as *mut Shared; - increment_shared(shared); - - let data = AtomicPtr::new(shared as *mut ()); - Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE) -} - -unsafe fn shared_v_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> { - let shared: *mut Shared = data.load(Ordering::Relaxed).cast(); - - if (*shared).is_unique() { - let shared = &mut *shared; - - // Drop shared - let mut vec = mem::replace(&mut shared.vec, Vec::new()); - release_shared(shared); - - // Copy back buffer - ptr::copy(ptr, vec.as_mut_ptr(), len); - vec.set_len(len); - - vec - } else { - let v = slice::from_raw_parts(ptr, len).to_vec(); - release_shared(shared); - v - } -} - -unsafe fn shared_v_to_mut(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> BytesMut { - let shared: *mut Shared = data.load(Ordering::Relaxed).cast(); - - if (*shared).is_unique() { - let shared = &mut *shared; - - // The capacity is always the original capacity of the buffer - // minus the offset from the start of the buffer - let v = &mut shared.vec; - let v_capacity = v.capacity(); - let v_ptr = v.as_mut_ptr(); - let offset = offset_from(ptr as *mut u8, v_ptr); - let cap = v_capacity - offset; - - let ptr = vptr(ptr as *mut u8); - - BytesMut { - ptr, - len, - cap, - data: shared, - } - } else { - let v = slice::from_raw_parts(ptr, len).to_vec(); - release_shared(shared); - BytesMut::from_vec(v) - } -} - -unsafe fn shared_v_is_unique(data: &AtomicPtr<()>) -> bool { - let shared = data.load(Ordering::Acquire); - let ref_count = (*shared.cast::<Shared>()).ref_count.load(Ordering::Relaxed); - ref_count == 1 -} - -unsafe fn shared_v_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) { - data.with_mut(|shared| { - release_shared(*shared as *mut Shared); - }); -} - -// compile-fails - -/// ```compile_fail -/// use bytes::BytesMut; -/// #[deny(unused_must_use)] -/// { -/// let mut b1 = BytesMut::from("hello world"); -/// b1.split_to(6); -/// } -/// ``` -fn _split_to_must_use() {} - -/// ```compile_fail -/// use bytes::BytesMut; -/// #[deny(unused_must_use)] -/// { -/// let mut b1 = BytesMut::from("hello world"); -/// b1.split_off(6); -/// } -/// ``` -fn _split_off_must_use() {} - -/// ```compile_fail -/// use bytes::BytesMut; -/// #[deny(unused_must_use)] -/// { -/// let mut b1 = BytesMut::from("hello world"); -/// b1.split(); -/// } -/// ``` -fn _split_must_use() {} - -// fuzz tests -#[cfg(all(test, loom))] -mod fuzz { - use loom::sync::Arc; - use loom::thread; - - use super::BytesMut; - use crate::Bytes; - - #[test] - fn bytes_mut_cloning_frozen() { - loom::model(|| { - let a = BytesMut::from(&b"abcdefgh"[..]).split().freeze(); - let addr = a.as_ptr() as usize; - - // test the Bytes::clone is Sync by putting it in an Arc - let a1 = Arc::new(a); - let a2 = a1.clone(); - - let t1 = thread::spawn(move || { - let b: Bytes = (*a1).clone(); - assert_eq!(b.as_ptr() as usize, addr); - }); - - let t2 = thread::spawn(move || { - let b: Bytes = (*a2).clone(); - assert_eq!(b.as_ptr() as usize, addr); - }); - - t1.join().unwrap(); - t2.join().unwrap(); - }); - } -} |
