summaryrefslogtreecommitdiff
path: root/spec/tree_level_sum_spec.rb
blob: e4dff4f5d44f1e967e54df78115163429293cb13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
description = <<-DESC
Given a binary tree and a number k, your task is to find the sum of tree nodes at level k. 
The binary tree is represented by a string tree with the format: (<node-value>(<left subtree>)(<right subtree>)).

Example

For tree = "(0(5(6()())(14()(9()())))(7(1()())(23()())))" and k = 2, the output should be

treeLevelSum(tree, k) = 44.

Explanation: The nodes at level 2 are 6, 14, 1, and 23, so the answer is 6 + 14 + 1 + 23 = 44.

Input/Output

[time limit] 4000ms (rb)
[input] string tree

A valid string representing a tree.

Guaranteed constraints:

2 ≤ tree.length ≤ 105.

All the values in a given tree are guaranteed to be integers.

[input] integer k

Guaranteed constraints:

0 ≤ k ≤ 105.

[output] integer

The total sum of all the values at level k in a tree.

https://en.wikipedia.org/wiki/S-expression
DESC

describe "tree_level_sum" do
  # parse s-expression
  def parse(tokens, values, offset = 0)
    struct = []
    while offset < tokens.length
      if "(" == tokens[offset]
        offset, items = parse(tokens, values, offset + 1)
        struct << items
      elsif ")" == tokens[offset]
        break
      else
        struct << values.shift
      end
      offset += 1
    end

    return [offset, struct]
  end

  def build_tree(string)
    tokens = string.gsub("(", " ( ").gsub(")", " ) ").split(" ")
    values = string.scan(/\d+/).map(&:to_i)
    _, tree = parse(tokens, values, 0)
    tree[0]
  end

  def tree_level_sum(tree, target)
    tree = build_tree(tree)
    queue = [node: tree, level: 0]
    sum = 0
    until queue.empty?
      top = queue.shift

      if top[:level] == target
        sum += top[:node][0]
      end

      left = top[:node][1]
      right = top[:node][2]
      if left.size > 0
        queue.push(node: left, level: top[:level] + 1)
      end
      if right.size > 0
        queue.push(node: right, level: top[:level] + 1)
      end
    end
    sum
  end

  def tree_level_sum(tree, target)
    # ( + level
    # ) - level
    # if level == target
    #   add number to sum
    level = -1
    sum = 0
    tokens = tree.gsub("(", " ( ").gsub(")", " ) ").split(" ")
    tokens.each do |token|
      if token == "("
        level += 1
      elsif token == ")"
        level -= 1
      elsif level == target
        sum += token.to_i
      end
    end
    sum
  end

  <<-EXAMPLE
       0
      / \
     /   \
    5     7
   / \   / \
  6  14 1  23
       \
        9

  (0(5(6()())(14()(9()()))) (7(1()())(23()())))
[0,
  [ 5,
    [6, [], [] ],
    [14, [], [9, [], []]]
  ],
  [ 7,
    [1, [], []],
    [23, [], []]
  ]
]
level 2: tree[1][1][0] + tree[1][2][0] + tree[2][1][0] + tree[2][2][0] = 44
  EXAMPLE
  [
    {tree: "(0(5(6()())(14()(9()())))(7(1()())(23()())))", k: 2, expected: 44},
    {tree: "(3(3()())(1()()))", k: 1, expected: 4},
    {tree: "(0(5(6()())(4()(9()())))(7(1()())(3()())))", k: 2, expected: 14},
    {tree: "(3()())", k: 0, expected: 3},
    {tree: "(0(5()())())", k: 1, expected: 5},
  ].each do |x|
    it do
      expect(tree_level_sum(x[:tree], x[:k])).to eql(x[:expected])
    end
  end
end