summaryrefslogtreecommitdiff
path: root/notes.md
blob: b4d565ce8870e1166c276ad5535f8685e498320d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627

* Efficient procedures for solving large scale problems. Scalability.
* Scalability
* Classic data structures
* Algorithmic Thinking
* Sorting & trees


A data structure is a way to store and organize data in order to facilitate
access and modifications. No single data structure works well for all purposes,
and so it is important to know the strengths and limitations of several of them.

Hard problems: There are some problems, however, for which no efficient solution
is known. These are known as NP-complete problems.

NP-complete problems are interesting because an efficient algorithm hasn't been
found and nobody has proven that an efficient algorithm cannot exist.

Np-complete is like god. Nobody knows if an efficient solutions exists or not.

Also, if an efficient algorithm can be found for one NP-complete problem then an
efficient algorithm must exist for all of them.

If you can show that a problem is NP-complete, you can instead spend your time
developing an efficient algorithm that gives a good, but not the best possible,
solution.

The "traveling-salesman problem" is an NP-complete problem. So any solution is
good enough because an efficient solution has not been found yet.

In order to elicit the best performance from multicore computers, we need to
design algorithms with parallelism in mind. Multithreaded algorithms exist to
take advantage of multiple cores. Championship chess programs use this.


1.1-1: Give a real-world example that requires sorting or a real-world example that
requires computing a convex hull.

    Names in an address book.

1.1-2: Other than speed, what other measures of efficiency might one use in a
real-world setting?

    The amount of space required.

1.1-3: Select a data structure that you have seen previously, and discuss its strengths and limitations.

    Balanced binary search trees are excellent for finding data quickly but a
    bit complicated when it comes to trying to keep it balanced efficiently.

1.1-4: How are the shortest-path and traveling-salesman problems given above similar? How are they different?

    The shortest path problem is looking for an efficient solution that routes
    from point A to point B. The traveling-salesman problem is similar except
    that the sales person needs to visit multiple locations then return to the
    starting point in the most efficient way. These problems are similar because
    the shortest path from point A to B can be used to help determine a good
    enough solution for the traveling-salesman problem.

    Both of these problems are considered an NP-complete problems because it
    hasn't been proven if an efficient algorithm can or cannot exist.

1.1-5: Come up with a real-world problem in which only the best solution will do.
  Then come up with one in which a solution that is "approximately" the best is good enough.

    * Traveling to Mars. Humans have a finite amount of time to live so choosing
      a point in time to travel that doesn't align with orbital conditions might
      make it impossible for humans to survie the trip.
    * Driving directions from point A to B.

# Efficiency

Different algorithms devised to solve the same problem often differ dramatically
in their efficiency.

* insertion sort takes n time to sort n items.
* merge sort takes time roughly equal to nlg(n) time to sort n items.

By using an algorithm whose running time grows more slowly, even with a poor
compiler, computer B runes more than 17 times faster than computer A!

As the problem size increases, so does the relative advantage of merge sort.


1.2-1: Give an example of an application that requires algorithmic content at
the application level, and discuss the function of the algorithms involved.

    A fuzzy finder like `fzf`. This type of program needs to perform string
    similarity analysis over any input provided and provide results as the
    person types letters to reduce the total size of eligible results.

1.2-2: Suppose we are comparing implementations of insertion sort and merge sort
on the same machine. For inputs of size `n`, insertion sort runs in `8n^2`
steps, while merge sort runs in `64nlg(n)` steps. For which values of `n` does
insertion sort beat merge sort?


    The following program produces a result of '44'.

    ```golang
    func main() {
      fmt.Println("n,isort,msort")

      for n := 2.0; n < 1000.0; n++ {
        isort := 8 * math.Pow(n, 2)
        msort := 64 * (n * math.Log2(n))

        fmt.Printf("%v,%v,%v\n", n, isort, msort)
        if isort > msort {
          break
        }
      }
    }
    ```

    ``csv
    n,isort,msort
    2,32,128
    3,72,304.312800138462
    4,128,512
    5,200,743.0169903639559
    6,288,992.6256002769239
    7,392,1257.6950050818066
    8,512,1536
    9,648,1825.876800830772
    10,800,2126.033980727912
    11,968,2435.439859520657
    12,1152,2753.251200553848
    13,1352,3078.7658454933885
    14,1568,3411.390010163613
    15,1800,3750.614971784178
    16,2048,4096
    17,2312,4447.159571280369
    18,2592,4803.753601661543
    19,2888,5165.4798563474
    20,3200,5532.067961455824
    21,3528,5903.274616214654
    22,3872,6278.879719041314
    23,4232,6658.683199315923
    24,4608,7042.502401107696
    25,5000,7430.169903639559
    26,5408,7821.531690986777
    27,5832,8216.445603738473
    28,6272,8614.780020327225
    29,6728,9016.412726956773
    30,7200,9421.229943568356
    31,7688,9829.12547980756
    32,8192,10240
    33,8712,10653.760380085054
    34,9248,11070.319142560738
    35,9800,11489.593957956724
    36,10368,11911.507203323086
    37,10952,12335.985569809354
    38,11552,12762.9597126948
    39,12168,13192.363938280172
    40,12800,13624.135922911648
    41,13448,14058.216460117852
    42,14112,14494.549232429308
    43,14792,14933.080604940173
    44,15488,15373.759438082629
    ```

1.2-3: What is the smallest value of `n` such that an algorithm whose running
time is 100n^2 runs faster than an algorithm whose running time is 2^n on the
same machine?

    15. Calculated using:

    ```golang
    func main() {
      fmt.Println("n,100n^2,2^n")

      for n := 1.0; n < 100; n++ {
        x := 100 * math.Pow(n, 2)
        y := math.Pow(2, n)

        fmt.Printf("%v,%v,%v\n", n, x, y)

        if x < y {
          break
        }
      }
    }
    ```

    ```csv
    n,100n^2,2^n
    1,100,2
    2,400,4
    3,900,8
    4,1600,16
    5,2500,32
    6,3600,64
    7,4900,128
    8,6400,256
    9,8100,512
    10,10000,1024
    11,12100,2048
    12,14400,4096
    13,16900,8192
    14,19600,16384
    15,22500,32768
    ```

Problem 1-1: Comparison of running times
  For each function `f(n)` and time `t` in the following table, determine the
  largest size `n` of a problem that can be solved in time `t`, assuming that
  the algorithm to solve the problem takes `f(n)` microseconds.

    1 second = 1,000,000 microseconds
    1 minute = 60 seconds = 60,000,000 microseconds
    1 hour = 60 minutes = 3600 seconds = 3,600,000,000 microseconds
    1 day = 24 hours = 1440 mins = 86400 seconds =  86,400,000,000 microseconds

    ```plaintext
    |         | 1 second | 1 minute    | 1 hour        | 1 day          |
    | lg n    | 2^(10^6) | 2^(60*10^6) | 2^(3600*10^6) | 2^(86400*10^6) |
    | sqrt(n) |          |             |               |                |
    | n       | 10^6     | 60*10^6     | 3600*10^6     | 86400*10^6     |
    | nlg(n)  |          |             |               |                |
    | n^2     |          |             |               |                |
    | n^3     |          |             |               |                |
    | 2^n     |          |             |               |                |
    | n!      |          |             |               |                |
    ```

# Chapter 2 Getting Started


2.1 Insertion Sort

Solves the sorting problem.

Input: A sequence of `n` numbers `{a1,a2,...,aN}`
Output: A permutation (reordering) of the input sequence such that: 

  `{a1 <= a2 <= ... <= aN}`

The numbers that we want to sort are known as keys.

e.g.

```plaintext

a. [5, 2, 4, 6, 1, 3]
    x  i
b. [2, 5, 4, 6, 1, 3]
    x  x  i
c. [2, 4, 5, 6, 1, 3]
    x  x  x  i
d. [2, 4, 5, 6, 1, 3]
    x  x  x  x  i
e. [1, 2, 4, 5, 6, 3]
    x  x  x  x  x  i
f. [1, 2, 3, 4, 5, 6]
```

```plaintext
A = {5,2,4,6,1,3}

for j = 2 to A.length
  key = A[j]
  i = j - 1
  while i > 0 and A[i] > key
    A[i+1] = A[i]
    i = i - 1
  A[i+1] = key
```

Loop invariants:

* initializtion: it is true prior to the first iteration of the loop.
* maintenance: if it is true before an iteration of the loop, it remains true
  before the next iteration.
* termination: when the loop terminates, the invariant gives us a useful
  property that helps show that the algorithm is correct.

Similar to mathematical induction, where to prove that a property holds, you
prove a base case and an inductive step.


Pseudocode conventions:

* Indentation indicates block structure
* Looping constructs `while`, `for`, and `repeat-until` and `if-else`
  conditional construct have interpretations similar to those in C.
* compound data is organized into objects which are composed of attributes.

2.1-1: Illustrate the operation of INSERTION-SORT on the array `A = {31,41,59,26,41,58}`

```plaintext
a. [31, 41, 59, 26, 41, 58]
     x   i
b. [31, 41, 59, 26, 41, 58]
     x   x   i
c. [31, 41, 59, 26, 41, 58]
     x   x   x   i
d. [26, 31, 41, 59, 41, 58]
     x   x   x   x   i
e. [26, 31, 41, 41, 59, 58]
     x   x   x   x   x   i
e. [26, 31, 41, 41, 58, 59]
     x   x   x   x   x   x
```

2.1-2: Rewrite the INSERTION-SORT procedure to sort into non-increasing instead
of non-decreasing order.

* non-increasing: descending
* non-decreasing: ascending

```plaintext
for j = 2 to A.length
  key = A[j]
  i = j - 1
  while i > 0 and A[i] < key
    A[i+1] = A[i]
    i = i - 1
  A[i+1] = key
```

2.1-3: Consider the **searching problem:**

Input: A sequence of `n` numbers `A = {a1,a2,...,aN}` and a value `v`.
Output: An index `i` such that `v = A[i]` or the special value `NIL` if `v` does
not appear in `A`.

Write pseudocode for `linear search`, which scans through the sequence, looking
for `v`. Using a loop invariant, prove that your algorithm is correct. Make sure
that your loop invariant fulfills the three necessary properties.

```plaintext
i = 0
for i < A.length and v != A[i]
  i = i + 1
  if i >= A.length
    return NIL

return i
```

* initialization: initialize `i` to first index of first element
* maintenance: continue looping if `i` is less than size of `A` and `A[i]` is
  not equal to the target value `v`.
* termination: terminate loop when the key matches the target value.

2.1-4:

Consider the problem of adding two `n-bit` binary integers, stored in two
`n-element` arrays `A` and `B`. The sum of the two integers should be stored in
binary form in an `(n + 1)-element` array `C`. State the problem formally and
write pseudocode for adding two integers.

Input: Two sequences of `n` numbers `A = {a1,a2,...aN}` and `B = {b1,b2,...,bN}`
Output: A sequence `C` with `n+1` numbers such that `C = {a1+b1,a2+b2,...,aN+bN}`

```plaintext
i = 0
max = 2 ** A.length
for i < A.length
  C[i] = A[i] + B[i]
```

## 2.2 Analyzing Algorithms

Analyzing an algorithm has come to mean predicting the resources that the
algorithm requires.

* memory
* communication bandwith
* computer hardware


Assume a generic one-processor, **random-access machine (RAM)** model of
computation as our implementation.

In the RAM model, instructions are executed one after another, with no
concurrent operations.


Analysis of insertion sort

The time taken by INSERTION-SORT procedure depends on the input; sortin 1k
numbers takes longer than 3 numbers.

In general the time taken by an algorithm grows with the size of the input, so
it is traditional to describe the running time of a program as a function of the
size of its input.

To do so we need to define "running time" and "size of input" more carefully.

* input size: `n`
* running time: number of steps executed.

One line may take a different amount of time than another line, but we shall
assume that each execution of `i`th line takes time c`i`, where c`i` is a constant.

```plaintext
INSERTION-SORT(A)                  | cost | times    |
===================================|======|==========|
for j = 2 to A.length              | c1   | n        |
  key = A[j]                       | c2   | n-1      |
  i = j - 1                        | c3   | n-1      |
                                   |      |----------|
                                   |      | n        |
  while i > 0 and A[i] > key       | c4   | Σ tj     |
                                   |      | j=2      |
                                   |      |----------|
                                   |      | n        |
    A[i + 1] = A[i]                | c5   | Σ (tj-1) |
                                   |      | j=2      |
                                   |      |----------|
                                   |      | n
    i = i - 1                      | c6   | Σ (tj-1) |
                                   |      | j=2      |
                                   |      |----------|
  A[i+1] = key                     | c7   | n -1     |
===================================|======|==========|
```

The running time is the s um of the running times for each statement executed;
a statement that takes `cᵢ` steps to execute and executes `n` times will
contribute `cᵢn` to the total running time.

To compute `T(n)`, the running time of INSERTION-SORT on an input of `n` values,
we sum the sum products of the **cost** and **times** columns.

```plaintext
                                    n         n               n
T(n) = c1n + c2(n-1) + c4(n-1) + c4 Σ tj + c5 Σ (tj - 1) + c6 Σ (tj - 1) + c7(n-1)
                                    j=2       j=2             j=2
```

Reasons for finding worst case running time.

* upper bound on the running time for any input.
* worst case occurs fairly often.
* average case is roughly as bad as the worst case.

Order of growth

We consider only the leading term of a formula since the lower-order terms are
relatively insignificant for large values of `n`. We also ignore the leading
term's constant coefficient, since constant factors are less significant than
the rate of growth in determining computational efficiency for large inputs.

"theta of n-squared"

2.2-1: Express the function n^3 / 1000n^2 - 100n + 3 in terms of 𝚯-notation (theta of n notation)

    * n^3 / 1000n^2 - 100n + 3
    * n^3 - n^2 - n ; drop lower order terms
    = 𝚯(n^3).

2.2-2

> Consider sorting `n` numbers stored in array `A` by first finding the smallest
> element of `A` and exchanging it with the element in `A[1]`. Then find the
> second smallest element of `A`, and exchange it with `A[2]`. Continue in this
> manner for the first `n - 1` elements of `A`.

    Write pseudocode for *selection sort*.

      n = A.length
      for i = 1 to n - 1 {
        min = i
        for j = i + 1 to n {
          if A[j] < A[min]
            min = j
        A[i], A[min] = A[min], A[i]


    What loop invariant does this algorithm maintain?

      * intialization: inner loop initializes to the right index of the outer loop
      * maintenance: with the inner right array of the outer array.
      * termination: when end of loop is reached

    Why does it need to run for only the first n-1 elements, rather than for all `n` elements?

      * The last element of the array should has nothing to be compared against.

    Give the best-case and worst-case running times of selection sort in 𝚯-notation.

      = 𝚯(n^2). two loops, one nested within the other.

2.2-3:

> Consider linear search again (see Exercise 2.1-3). How many elements of the
> input sequence need to be checked on the average, assuming that the element
> being searched for is equally likely to be any element in the array? How about
> in the worst case? What are the average-case and worst-case running times of
> linear search in 𝚯-notation? Justify your answers.

    How many elements of the input sequence need to be checked on the average, assuming that the element being searched for is equally likely to be any element in the array?

      Since there are `n` elements the average would be in the middle (.i.e. n/2).
      When we drop the lower order terms this becomes `𝚯(n)`.

    How about in the worst case?

      = 𝚯(n). In the worst case you need to search check every element in the input.

    What are the average-case and worst-case running times of linear search in 𝚯-notation?

      They are both 𝚯(n).

2.2-4: How can we modify almost any algorithm to have a good best-case running time?

    Reduce the input size by rejecting elements or hard code an early return if some condition is satisfied.

    Check for some particular input and if it receives that then returns some
    answer. i.e. cheating. Slow algorithm that works fast on some input.

[Watch](http://freevideolectures.com/Course/1941/Introduction-to-Algorithms/1)

* Performance
* User friendliness

Algorithms give you a language to talk about language behaviour.

# 2.3 - Designing algorithms


algorithm design techniques:

* incremental approach (insertion sort)
* divide and conquer

2.3.1 - The divide-and-conquer approach

they break the problem down into several subproblems that are similar to the original
problem but smaller in size, solve the subproblems recursively, and then combine
these solutions to creat a solution the original problem.

Involves three steps at each level of the recursion:

1. Divide: the problem into a number of subproblems that are all smaller
   instances of the same problem.
1. Conquer: the subproblems by solving them recursively. If the subproblem sizes
   are small enough, however, just solve the subproblems in a straightforward
   manner.
1. Combine: the solutions to the subproblems into the solution for the original
   problem.

The `merge sort` algorithm closely follows the divide-and-conquer paradigm.

* Divide: dive the `n`-element sequence to be sorted into two subsequences of
  `n/2` elements each.
* Conquer: Sort the two subsequences to produce the sorted answer.
* Combine: Merge the two sorted subsequences to produce the sorted answer.

The recursion "bottoms out" when the sequence to be sorted has length 1.
Every sequence with length 1 is already sorted.

The key operation of merge sort is mergin two sorted sequences in the
"combine" step.

`MERGE(A, p, q, r)` where `A` is an array and `p`, `q`, and `r` are indices into
the array such that `p <= q < r`.

Merging takes `𝚯(n)` time.

```plaintext
MERGE(A, p, q, r)

n1 = q - p + 1
n2 = r - q
let L[1..n1+1] and R[1..n2+1] be new arrays
for i = 1 to n1
  L[i] = A[p+i-1]
for j = 1 to n2
  R[j] = A[q+j]
L[n1+1] = ∞
R[n2+1] = ∞
i = 1
j = 1
for k = p to r
  if L[i] <= R[j]
    A[k] = L[i]
    i = i + 1
  else A[k] = R[j]
    j = j + 1
```

```plaintext
A: [2, 4, 5, 7, 1, 2, 3, 6]
    k
L: [2, 4, 5, 7, ∞]
    i
R: [1, 2, 3, 6, ∞]
    j

A: [1, 4, 5, 7, 1, 2, 3, 6]
       k
L: [2, 4, 5, 7, ∞]
    i
R: [1, 2, 3, 6, ∞]
       j

A: [1, 2, 5, 7, 1, 2, 3, 6]
          k
L: [2, 4, 5, 7, ∞]
       i
R: [1, 2, 3, 6, ∞]
       j

A: [1, 2, 2, 7, 1, 2, 3, 6]
             k
L: [2, 4, 5, 7, ∞]
       i
R: [1, 2, 3, 6, ∞]
          j

A: [1, 2, 2, 3, 1, 2, 3, 6]
                k
L: [2, 4, 5, 7, ∞]
       i
R: [1, 2, 3, 6, ∞]
             j

A: [1, 2, 2, 3, 4, 2, 3, 6]
                   k
L: [2, 4, 5, 7, ∞]
          i
R: [1, 2, 3, 6, ∞]
             j

A: [1, 2, 2, 3, 4, 5, 3, 6]
                      k
L: [2, 4, 5, 7, ∞]
             i
R: [1, 2, 3, 6, ∞]
             j

A: [1, 2, 2, 3, 4, 5, 6, 6]
                         k
L: [2, 4, 5, 7, ∞]
             i
R: [1, 2, 3, 6, ∞]
                j

A: [1, 2, 2, 3, 4, 5, 6, 7]
                            k
L: [2, 4, 5, 7, ∞]
                i
R: [1, 2, 3, 6, ∞]
                j
```

We must show that this loop invariant holds prior to the first iteration of the
`for` loop of lines 12-17, that each iteration of the loop maintains the
invariant, and the invariant provides a useful property to show correctness when
the loop terminates.

Initialization:

Prior to the first iteration we have `k = p`, so that the subarray `A[p..k-1]`
is empty.

```plaintext
for k = p to r
```

Maintenance:

To see that each iteration maintains the loop invariant,
we loop until we have reached the end of both `L` and `R`.

```plaintext
for k = p to r
  if L[i] <= R[j]
    A[k] = L[i]
    i = i + 1
  else
    A[k] = R[j]
    j = j + 1
```

Termination:

When we reach the sentinal value for both L and R we stop.

```
MERGE-SORT(A,p,r)
if p < r
  q = [(p+r)/2]
  MERGE-SORT(A,p,q)
  MERGE-SORT(A,q+1,r)
  MERGE(A,p,q,r)
```

Analyzing divide-and-conquer algorithms

When an algorithm contains a recursive call to itself, we can often describe its
running time by a `recurrence equation` or `recurrence`, which describes the
overall running time on a problem of size `n` in terms of the running time on
smaller inputs.

We can then use mathematical tools to solve the recurrence and provide bounds on
the performance of the algorithm.

```plaintext
Recursion Tree

              -----------------
              |1|2|2|3|4|5|6|7|
              -----------------
              /               \
        ---------           ---------
        |2|4|5|7|           |1|2|3|6|
        ---------           ---------
        /       \           /       \
    -----       -----      -----    -----
    |2|5|       |4|7|      |1|3|    |2|6|
    -----       -----      -----    -----
    /   \       /   \     /   |     /    \
   -     -     -    -    -    -     -    -
  |5|   |2|   |4|  |7|  |1|  |3|   |2|  |6|
   -     -     -    -    -    -     -    -
```

Running time:

`T(n)`

Analysis of merge sort

2.3-1: Using Figure 2.4 as a model, illustrate the operation of merge sort on the array `A = [3,41,52,26,38,57,9,49]`.

```plaintext
              -----------------------
              |3|9|26|38|41|49|52|57|
              -----------------------
               /                  \
      ------------             ------------
      |3|41|52|26|             |38|57|9|49|
      ------------             ------------
      /          \              /         \
    ------     -------       -------     ------
    |3|41|     |52|26|       |38|57|     |9|49|
    ------     -------       -------     ------
   /     \     /      \     /       \    /     \
  -      --   --      --   --       --   -     --
 |3|    |41| |52|    |26| |38|     |57| |9|   |49|
  -      --   --      --   --       --   -     --
```

2.3-2: Rewrite the MERGE procedure so that it does not use sentinels, instead
stopping once either array `L` or `R` has had all its elements copied back to
`A` and then copying the remainder of the other array back into `A`.

```plaintext
MERGE(A, p, q, r)

n1 = q - p + 1
n2 = r - q

for i = 1 to n1
  L[i] = A[p+i-1]

for j = 1 to n2
  R[j] = A[q+j]

i = 1
j = 1
k = p

while i < q and j < r
  if L[i] <= R[j]
    A[k] = L[i]
    i = i + 1
  else
    A[k] = R[j]
    j = j + 1
  k = k + 1

for k = k to r
  if j >= r
    A[k] = L[i]
    i = i + 1
  else
    A[k] = R[j]
    j = j + 1
```

2.3-3: Use mathematical induction to show that when `n` is an exact power of 2,
the solution of the recurrence ... is `T(n) = nlg(n)`

```plaintext
         2            if n = 2
T(n) = { 2T(n/2) + n  if n = 2**k, for k > 1
```

 ???

2.3-4: We can express insertion sort as a recursive procedure as follows In
order to sort `A[i..n]`, we recursively sort `A[i..n-1]` and then insert `A[n]`
into the sorted array `A[1..n-1]`. Write a recurrence for the worst-case running
time of this recursive version of insertion sort.


2.3-5: Referring back to the searching problem (see Exercise 2.1-3), observe that
    if the sequence A is sorted, we can check the midpoint of the sequence
    against v and eliminate half of the sequence from further consideration. The
    binary search algorithm repeats this procedure, halving the size of the
    remaining portion of the sequence each time. Write pseudocode, either
    iterative or recursive, for binary search. Argue that the worst case running
    time of binary search is O(lg(n)).

`BINARY-SEARCH(A, t, s, e)` where `A` is an array and `s`, and `r` are indices into the array such that `s < e` and `t` is the target value to find.

```plaintext
BINARY-SEARCH(A, t, s, e)
  length = e - s
  if length == 1
    item = A[s]
  else
    mid = (length / 2) + s
    item = A[mid]

  if item == t
    return mid
  if item < t
    return BINARY-SEARCH(A, t, s, mid-1)
  else
    return BINARY-SEARCH(A, t, mid+1, e)
```

# Growth of Functions

When we look at input sizes large enough to make only the order of growth of the
running time relevant, we are studying the _asymptotic_ efficiency of
algorithms.


## Asymptotic Notation

Natural numbers. `N = {0,1,2,...}`. This notation is useful for describing the
worst case running time of function `T(n)`.

### 𝚯-notation (theta)

The worst case running time of insertion sort is `T(n) = 𝚯(n^2)`.


`f(n) = O(g(n))` means that there are some suitable constants `c > 0` and `n0 >0`
such that f is bounded by c of g of n for all of n.

Ex.

`2*n^2 = O(n^3)`

big o is like less than or equal to.
set definitiion


`2n^2` is in the set of `O(n^3)`

Macro Convention:
  A set in a formula represents an anonymous function in that set.

Ex. `f(n) = n^3 + O(n^2)`.
  This means that there is a function h(n) that is in big o of n squared such that
  `f(n) = n^3 th(n)`. WHAT... THE WHAT?

Ex. `n^2 + O(n) = O(n^2)`. equals means `is`. is means everything over here means something over here.
Everything on the left exists on the right side, but the right is not the same as
the left side.

Big omega notation. _()_
  _()_(g(n)) = {f(n) there exists consts c > 0


* running time: `𝚯(n)`. Theta of n.
  * When we say that a particular running time is theta of n, we're saying that
    once `n` gets large enough, the running time is at least `k1*n` and at most
    `k2*n` for some constants `k1` and `k2`.
  * we don't have to worry about which time units we're using.
  * when we use big-𝚯 notation, we're saying that we have an *asymptotically tight bound* on the running time.
  * `𝚯(1)`: Constant time.
  * `𝚯(log n)`:
  * `𝚯(n)`:
  * `𝚯(nlog n)`:
  * `𝚯(n^2)`:
  * `𝚯(n^2 * log n)`:
  * `𝚯(n^3)`:
  * `𝚯(2^n)`:
  * `𝚯(n!)`:
* rate of growth


Abdul Bari https://www.youtube.com/watch?v=A03oI0znAoc
Asymptotic Notations Big Oh - Omega - Theta

Representing a simple form of a function

We need a simple method for representing time complexity.

| symbol | english | use |
| -------- | --- | --- |
| O | big-oh | upper bound of a function |
| 𝚯 | theta notation | average bound of a function |
| _()_ | big-omega | lower bound of a function |

Theta is useful.

class of functions

| name          | symbol    | speed |
| ------------- | --------- | ----- |
| constant      | 𝚯(1)      | fast  |
| logarithmic   | 𝚯(log n)  |   |   |
|               | 𝚯(sqrt n) |   |   |
| linear        | 𝚯(n)      |   |   |
|               | 𝚯(n logn) |   |   |
| polynomial    | 𝚯(n^2)    |   |   |
|               | 𝚯(n^3)    |   |   |
| exponential   | 𝚯(2^n)    |   |   |
|               | 𝚯(3^n)    |   |   |
| factorial     | 𝚯(n!)     |   V   |
|               | 𝚯(n^n)    | slow  |

1 < logn < sqrt(n) < n < nlogn < n^2 < n^3 ... < 2^n < 3^n ... < n^n

Big-oh
------

The function `f(n) = O(g(n))` if there exists positive constants `c` and `n0`
such that `0 <= f(n) <= c*g(n)` for all `n >= n0`.

Example:

```
  f(n) = 2n+3
  2n+3 <= __ 10n __ n>=1
  f(n)        c*g(n)
  f(n) = O(n)

  2n+3 <= 2n+3n will always work.
```

instead of guessing the value you can make it as 2n+3

Little-oh
---------

The function `f(n) = o(g(n))` for any positive constant `c > 0`,
if there exists a constant `n0 > 0` such that `0 < f(n) < c * g(n)`
for all `n >= n0`.


Omega
----

The function `f(n) = omega(g(n))` if there exists positive contstants c and n0
such that `0 <= c * g(n) <= f(n)` for all `n >= n0`.

e.g.

```
f(n) = 2n+3
f(n)    c * g(n)

2n+3 >= log n V n>=1
f(n)     c * g(n)


 true f(n) = omega(n)   (most useful answer)
 true f(n) = omega(logn)
```

little-omega w-notation
----------
Denotes a lower bound that is not asymptotically tight.

The function `f(n) = w(g(n))` for any positive constant `c > 0`,
if there exists a constant `n0 > 0`
such that `0 <= c * g(n) < f(n)` for all `n >= n0`

the relation `f(n) = w(g(n))` implies that:

```plaintext
lim         f(n)
            ---- = infinity
n->infinity g(n)
```
if the limit exists. That is `f(n)` becomes arbitrarily large relative to `g(n)`
as `n` approaches infinity.


Theta
-----

The function `f(n)=theta(g(n))` if there exists positive constants c1, c2, and n0
such that `0 <= c1 * g(n) <= f(n) <= c2 * g(n)` for all `n >= n0`. (n0 is pronounced enn-not)

f(n) = theta(g(n))

```
eg.
f(n) = 2n + 3
1*n   <= 2n + 3 <= 5xn
c*g(n)   f(n)
```

omega <= theta <= big-oh

| omega | theta | big-oh |
| ----- | ----- | ------ |
| omega(1) | | O(n^n) |
| omega(1) | theta(log n!) | O(nlog n) |

1 < logn < sqrt(n) < n < nlogn < n^2 < n^3 ... < 2^n < 3^n ... < n^n


constant (1)
========

```bash
モ ruby -e '1.upto(100) { |n| puts 10 }' | asciigraph -h 32 -w 72
 10.00 ┼───────────────────────────────────────────────────────────────────────
```

logarithmic (logn)
===========

```bash
モ ruby -e '1.upto(100) { |n| puts Math.log2(n) }' | asciigraph -h 32 -w 72
 6.64 ┼                                                                  ╭────
 6.44 ┤                                                         ╭────────╯
 6.23 ┤                                                 ╭───────╯
 6.02 ┤                                          ╭──────╯
 5.81 ┤                                    ╭─────╯
 5.61 ┤                               ╭────╯
 5.40 ┤                           ╭───╯
 5.19 ┤                       ╭───╯
 4.98 ┤                    ╭──╯
 4.78 ┤                 ╭──╯
 4.57 ┤               ╭─╯
 4.36 ┤            ╭──╯
 4.15 ┤           ╭╯
 3.94 ┤         ╭─╯
 3.74 ┤        ╭╯
 3.53 ┤      ╭─╯
 3.32 ┤     ╭╯
 3.11 ┤     │
 2.91 ┤    ╭╯
 2.70 ┤   ╭╯
 2.49 ┤   │
 2.28 ┤  ╭╯
 2.08 ┤  │
 1.87 ┤ ╭╯
 1.66 ┤ │
 1.45 ┤ │
 1.25 ┤╭╯
 1.04 ┤│
 0.83 ┤│
 0.62 ┤│
 0.42 ┤│
 0.21 ┤│
 0.00 ┼╯
```

square root (n)
===============

```bash
モ ruby -e '1.upto(100) { |n| puts Math.sqrt(n) }' | asciigraph -h 32 -w 72
 10.00 ┤                                                                      ╭
  9.72 ┤                                                                  ╭───╯
  9.44 ┤                                                              ╭───╯
  9.16 ┤                                                           ╭──╯
  8.88 ┤                                                       ╭───╯
  8.59 ┤                                                    ╭──╯
  8.31 ┤                                                ╭───╯
  8.03 ┤                                             ╭──╯
  7.75 ┤                                          ╭──╯
  7.47 ┤                                       ╭──╯
  7.19 ┤                                    ╭──╯
  6.91 ┤                                 ╭──╯
  6.62 ┤                              ╭──╯
  6.34 ┤                            ╭─╯
  6.06 ┤                         ╭──╯
  5.78 ┤                       ╭─╯
  5.50 ┤                    ╭──╯
  5.22 ┤                  ╭─╯
  4.94 ┤                ╭─╯
  4.66 ┤              ╭─╯
  4.38 ┤            ╭─╯
  4.09 ┤           ╭╯
  3.81 ┤         ╭─╯
  3.53 ┤        ╭╯
  3.25 ┤      ╭─╯
  2.97 ┤     ╭╯
  2.69 ┤    ╭╯
  2.41 ┤   ╭╯
  2.12 ┤  ╭╯
  1.84 ┤ ╭╯
  1.56 ┤ │
  1.28 ┤╭╯
  1.00 ┼╯
```

Linear (n)
=========

```bash
 100.00 ┼                                                                     ╭─
  96.91 ┤                                                                  ╭──╯
  93.81 ┤                                                                ╭─╯
  90.72 ┤                                                              ╭─╯
  87.62 ┤                                                            ╭─╯
  84.53 ┤                                                          ╭─╯
  81.44 ┤                                                       ╭──╯
  78.34 ┤                                                     ╭─╯
  75.25 ┤                                                   ╭─╯
  72.16 ┤                                                 ╭─╯
  69.06 ┤                                              ╭──╯
  65.97 ┤                                            ╭─╯
  62.88 ┤                                          ╭─╯
  59.78 ┤                                        ╭─╯
  56.69 ┤                                      ╭─╯
  53.59 ┤                                   ╭──╯
  50.50 ┤                                 ╭─╯
  47.41 ┤                               ╭─╯
  44.31 ┤                             ╭─╯
  41.22 ┤                           ╭─╯
  38.12 ┤                        ╭──╯
  35.03 ┤                      ╭─╯
  31.94 ┤                    ╭─╯
  28.84 ┤                  ╭─╯
  25.75 ┤               ╭──╯
  22.66 ┤             ╭─╯
  19.56 ┤           ╭─╯
  16.47 ┤         ╭─╯
  13.38 ┤       ╭─╯
  10.28 ┤    ╭──╯
   7.19 ┤  ╭─╯
   4.09 ┤╭─╯
   1.00 ┼╯
```



n log(n)
========

```bash
モ ruby -e '1.upto(100) { |n| puts n * Math.log2(n) }' | asciigraph -h 32 -w 72
 664 ┼                                                                      ╭
 644 ┤                                                                    ╭─╯
 623 ┤                                                                  ╭─╯
 602 ┤                                                                ╭─╯
 581 ┤                                                              ╭─╯
 561 ┤                                                            ╭─╯
 540 ┤                                                          ╭─╯
 519 ┤                                                        ╭─╯
 498 ┤                                                       ╭╯
 478 ┤                                                     ╭─╯
 457 ┤                                                   ╭─╯
 436 ┤                                                 ╭─╯
 415 ┤                                               ╭─╯
 394 ┤                                             ╭─╯
 374 ┤                                           ╭─╯
 353 ┤                                         ╭─╯
 332 ┤                                       ╭─╯
 311 ┤                                     ╭─╯
 291 ┤                                  ╭──╯
 270 ┤                                ╭─╯
 249 ┤                              ╭─╯
 228 ┤                            ╭─╯
 208 ┤                          ╭─╯
 187 ┤                        ╭─╯
 166 ┤                     ╭──╯
 145 ┤                   ╭─╯
 125 ┤                ╭──╯
 104 ┤              ╭─╯
  83 ┤           ╭──╯
  62 ┤         ╭─╯
  42 ┤      ╭──╯
  21 ┤  ╭───╯
   0 ┼──╯
```

n^2
===

```bash
 10000 ┼                                                                      ╭
  9688 ┤                                                                     ╭╯
  9375 ┤                                                                    ╭╯
  9063 ┤                                                                  ╭─╯
  8750 ┤                                                                 ╭╯
  8438 ┤                                                                ╭╯
  8125 ┤                                                               ╭╯
  7813 ┤                                                              ╭╯
  7500 ┤                                                            ╭─╯
  7188 ┤                                                           ╭╯
  6875 ┤                                                          ╭╯
  6563 ┤                                                        ╭─╯
  6250 ┤                                                       ╭╯
  5938 ┤                                                     ╭─╯
  5625 ┤                                                    ╭╯
  5313 ┤                                                  ╭─╯
  5000 ┤                                                 ╭╯
  4688 ┤                                               ╭─╯
  4376 ┤                                             ╭─╯
  4063 ┤                                            ╭╯
  3751 ┤                                          ╭─╯
  3438 ┤                                        ╭─╯
  3126 ┤                                      ╭─╯
  2813 ┤                                    ╭─╯
  2501 ┤                                 ╭──╯
  2188 ┤                               ╭─╯
  1876 ┤                             ╭─╯
  1563 ┤                          ╭──╯
  1251 ┤                      ╭───╯
   938 ┤                   ╭──╯
   626 ┤              ╭────╯
   313 ┤        ╭─────╯
     1 ┼────────╯
```

n^3
===

```bash
モ ruby -e '1.upto(100) { |n| puts n ** 3 }' | asciigraph -h 32 -w 72
 1000000 ┼                                                                      ╭
  968750 ┤                                                                     ╭╯
  937500 ┤                                                                     │
  906250 ┤                                                                    ╭╯
  875000 ┤                                                                   ╭╯
  843750 ┤                                                                  ╭╯
  812500 ┤                                                                 ╭╯
  781250 ┤                                                                ╭╯
  750000 ┤                                                               ╭╯
  718750 ┤                                                               │
  687500 ┤                                                              ╭╯
  656250 ┤                                                             ╭╯
  625000 ┤                                                            ╭╯
  593750 ┤                                                           ╭╯
  562500 ┤                                                         ╭─╯
  531250 ┤                                                        ╭╯
  500000 ┤                                                       ╭╯
  468751 ┤                                                      ╭╯
  437501 ┤                                                     ╭╯
  406251 ┤                                                   ╭─╯
  375001 ┤                                                  ╭╯
  343751 ┤                                                ╭─╯
  312501 ┤                                               ╭╯
  281251 ┤                                             ╭─╯
  250001 ┤                                           ╭─╯
  218751 ┤                                         ╭─╯
  187501 ┤                                       ╭─╯
  156251 ┤                                    ╭──╯
  125001 ┤                                 ╭──╯
   93751 ┤                             ╭───╯
   62501 ┤                         ╭───╯
   31251 ┤                 ╭───────╯
       1 ┼─────────────────╯
```

2^n
===

```bash
モ ruby -e '1.upto(100) { |n| puts 2 ** n }' | asciigraph -h 32 -w 72
 1267650600228229401496703205376 ┼                                                                      ╭
 1228036518971097232699931230208 ┤                                                                      │
 1188422437713965063903159255040 ┤                                                                      │
 1148808356456832895106387279872 ┤                                                                      │
 1109194275199700726309615304704 ┤                                                                      │
 1069580193942568557512843329536 ┤                                                                      │
 1029966112685436388716071354368 ┤                                                                      │
  990352031428304219919299379200 ┤                                                                      │
  950737950171172051122527404032 ┤                                                                      │
  911123868914039882325755428864 ┤                                                                      │
  871509787656907713528983453696 ┤                                                                      │
  831895706399775544732211478528 ┤                                                                      │
  792281625142643375935439503360 ┤                                                                      │
  752667543885511207138667528192 ┤                                                                      │
  713053462628379038341895553024 ┤                                                                      │
  673439381371246869545123577856 ┤                                                                      │
  633825300114114700748351602688 ┤                                                                      │
  594211218856982531951579627520 ┤                                                                      │
  554597137599850363154807652352 ┤                                                                      │
  514983056342718194358035677184 ┤                                                                     ╭╯
  475368975085586025561263702016 ┤                                                                     │
  435754893828453856764491726848 ┤                                                                     │
  396140812571321687967719751680 ┤                                                                     │
  356526731314189519170947776512 ┤                                                                     │
  316912650057057350374175801344 ┤                                                                     │
  277298568799925181577403826176 ┤                                                                     │
  237684487542793012780631851008 ┤                                                                     │
  198070406285660843983859875840 ┤                                                                    ╭╯
  158456325028528675187087900672 ┤                                                                    │
  118842243771396506390315925504 ┤                                                                    │
   79228162514264337593543950336 ┤                                                                   ╭╯
   39614081257132168796771975168 ┤                                                                  ╭╯
                               0 ┼──────────────────────────────────────────────────────────────────╯
```

3^n
===

```bash
モ ruby -e '1.upto(100) { |n| puts 3 ** n }' | asciigraph -h 32 -w 72
 515377520732011324194596268868618440852459487232 ┼                                                                      ╭
 499271973209135955101707932727721296615381663744 ┤                                                                      │
 483166425686260586008819596586824152378303840256 ┤                                                                      │
 467060878163385298045569675052608703930231160832 ┤                                                                      │
 450955330640509928952681338911711559693153337344 ┤                                                                      │
 434849783117634559859793002770814415456075513856 ┤                                                                      │
 418744235594759190766904666629917271218997690368 ┤                                                                      │
 402638688071883821674016330489020126981919866880 ┤                                                                      │
 386533140549008533710766408954804678533847187456 ┤                                                                      │
 370427593026133164617878072813907534296769363968 ┤                                                                      │
 354322045503257795524989736673010390059691540480 ┤                                                                      │
 338216497980382426432101400532113245822613716992 ┤                                                                      │
 322110950457507057339213064391216101585535893504 ┤                                                                      │
 306005402934631728811143935553659805242960642048 ┤                                                                      │
 289899855411756359718255599412762661005882818560 ┤                                                                      │
 273794307888881031190186470575206364663307567104 ┤                                                                      │
 257688760366005662097298134434309220426229743616 ┤                                                                      │
 241583212843130293004409798293412076189151920128 ┤                                                                      │
 225477665320254964476340669455855779846576668672 ┤                                                                      │
 209372117797379595383452333314958635609498845184 ┤                                                                      │
 193266570274504266855383204477402339266923593728 ┤                                                                      │
 177161022751628897762494868336505195029845770240 ┤                                                                      │
 161055475228753528669606532195608050792767946752 ┤                                                                      │
 144949927705878159576718196054710906555690123264 ┤                                                                      │
 128844380183002790483829859913813762318612299776 ┤                                                                     ╭╯
 112738832660127502520579938379598313870539620352 ┤                                                                     │
  96633285137252133427691602238701169633461796864 ┤                                                                     │
  80527737614376764334803266097804025396383973376 ┤                                                                     │
  64422190091501395241914929956906881159306149888 ┤                                                                     │
  48316642568626026149026593816009736922228326400 ┤                                                                     │
  32211095045750738185776672281794288474155646976 ┤                                                                    ╭╯
  16105547522875369092888336140897144237077823488 ┤                                                                    │
                                                0 ┼────────────────────────────────────────────────────────────────────╯
```

factorial
=========

```bash
モ ruby -e '1.upto(100) { |n| puts (1..n).reduce(:*) || 1 }' | asciigraph -h 32 -w 72
 93326215443944150965646704795953882578400970373184098831012889540582227238570431295066113089288327277825849664006524270554535976289719382852181865895959724032 ┼                                                                      ╭
 90409771211320894723678960937099742018530417689077610513736049894308587881917371125019252709659385351025577475535631344215463015406338066470094307934227922944 ┤                                                                      │
 87493326978697638481711217078245601458659865004971122196459210248034948525264310954972392330030443424225305287064738417876390054522956750088006749972496121856 ┤                                                                      │
 84576882746074382239743473219391460898789312320864633879182370601761309168611250784925531950401501497425033098593845491537317093639575433705919192010764320768 ┤                                                                      │
 81660438513451125997775729360537320338918759636758145561905530955487669811958190614878671570772559570624760910122952565198244132756194117323831634049032519680 ┤                                                                      │
 78743994280827881950138260173527833613412385832207539075090186094257588498887003981440165955853071238770203813417571981933120864867433486285399073307165196288 ┤                                                                      │
 75827550048204625708170516314673693053541833148101050757813346447983949142233943811393305576224129311969931624946679055594047903984052169903311515345433395200 ┤                                                                      │
 72911105815581369466202772455819552493671280463994562440536506801710309785580883641346445196595187385169659436475786129254974943100670853521223957383701594112 ┤                                                                      │
 69994661582958113224235028596965411933800727779888074123259667155436670428927823471299584816966245458369387248004893202915901982217289537139136399421969793024 ┤                                                                      │
 67078217350334856982267284738111271373930175095781585805982827509163031072274763301252724437337303531569115059534000276576829021333908220757048841460237991936 ┤                                                                      │
 64161773117711600740299540879257130814059622411675097488705987862889391715621703131205864057708361604768842871063107350237756060450526904374961283498506190848 ┤                                                                      │
 61245328885088344498331797020402990254189069727568609171429148216615752358968642961159003678079419677968570682592214423898683099567145587992873725536774389760 ┤                                                                      │
 58328884652465100450694327833393503528682695923018002684613803355385671045897456327720498063159931346114013585886833840633559831678384956954441164794907066368 ┤                                                                      │
 55412440419841832014396309302694709134447964359355632536875468924068473645662522621065282918821535824368026305650428571220537177800382955228698609613310787584 ┤                                                                      │
 52495996187218587966758840115685222408941590554805026050060124062838392332591335987626777303902047492513469208945047987955413909911622324190266048871443464192 ┤                                                                      │
 49579551954595331724791096256831081849071037870698537732783284416564752975938275817579916924273105565713197020474155061616340949028241007808178490909711663104 ┤                                                                      │
 46663107721972075482823352397976941289200485186592049415506444770291113619285215647533056544644163638912924832003262135277267988144859691426090932947979862016 ┤                                                                      │
 43746663489348819240855608539122800729329932502485561098229605124017474262632155477486196165015221712112652643532369208938195027261478375044003374986248060928 ┤                                                                      │
 40830219256725562998887864680268660169459379818379072780952765477743834905979095307439335785386279785312380455061476282599122066378097058661915817024516259840 ┤                                                                      │
 37913775024102306756920120821414519609588827134272584463675925831470195549326035137392475405757337858512108266590583356260049105494715742279828259062784458752 ┤                                                                      │
 34997330791479050514952376962560379049718274450166096146399086185196556192672974967345615026128395931711836078119690429920976144611334425897740701101052657664 ┤                                                                      │
 32080886558855806467314907775550892324211900645615489659583741323966474879601788333907109411208907599857278981414309846655852876722573794859308140359185334272 ┤                                                                      │
 29164442326232550225347163916696751764341347961509001342306901677692835522948728163860249031579965673057006792943416920316779915839192478477220582397453533184 ┤                                                                      │
 26247998093609293983379420057842611204470795277402513025030062031419196166295667993813388651951023746256734604472523993977706954955811162095133024435721732096 ┤                                                                      │
 23331553860986037741411676198988470644600242593296024707753222385145556809642607823766528272322081819456462416001631067638633994072429845713045466473989931008 ┤                                                                      │
 20415109628362781499443932340134330084729689909189536390476382738871917452989547653719667892693139892656190227530738141299561033189048529330957908512258129920 ┤                                                                      │
 17498665395739525257476188481280189524859137225083048073199543092598278096336487483672807513064197965855918039059845214960488072305667212948870350550526328832 ┤                                                                      │
 14582221163116269015508444622426048964988584540976559755922703446324638739683427313625947133435256039055645850588952288621415111422285896566782792588794527744 ┤                                                                      │
 11665776930493024967870975435416562239482210736425953269107358585094557426612240680187441518515767707201088753883571705356291843533525265528350231846927204352 ┤                                                                      │
  8749332697869768725903231576562421679611658052319464951830518938820918069959180510140581138886825780400816565412678779017218882650143949146262673885195403264 ┤                                                                      │
  5832888465246512483935487717708281119741105368212976634553679292547278713306120340093720759257883853600544376941785852678145921766762632764175115923463602176 ┤                                                                      │
  2916444232623256241967743858854140559870552684106488317276839646273639356653060170046860379628941926800272188470892926339072960883381316382087557961731801088 ┤                                                                      │
                                                                                                                                                              0 ┼──────────────────────────────────────────────────────────────────────╯
```

n^n
===

```bash
モ ruby -e '1.upto(100) { |n| puts n ** n }' | asciigraph -h 32 -w 72
 99999999999999996973312221251036165947450327545502362648241750950346848435554075534196338404706251868027512415973882408182135734368278484639385041047239877871023591066789981811181813306167128854888448 ┼                                                                      ╭
 96874999999999993881068257436338693624063265494893649837925489870956970225278181471331343664445725062176639061598984569590467075190263689914928232598270195230434231246428683216594756627990091887804416 ┤                                                                      │
 93749999999999990788824293621641221300676203444284937027609228791567092015002287408466348924185198256325765707224086730998798416012248895190471424149300512589844871426067384622007699949813054920720384 ┤                                                                      │
 90625000000000004692996099943490907044111751072672298764272734977198756186938815758515269731196439103674964840186330296865673316722266591556553420586962491053894832136501348230021310004219026968936448 ┤                                                                      │
 87500000000000001600752136128793434720724689022063585953956473897808877976662921695650274990935912297824091485811432458274004657544251796832096612137992808413305472316140049635434253326041990001852416 ┤                                                                      │
 84374999999999998508508172314095962397337626971454873143640212818418999766387027632785280250675385491973218131436534619682335998366237002107639803689023125772716112495778751040847196647864953034768384 ┤                                                                      │
 81249999999999995416264208499398490073950564920846160333323951739029121556111133569920285510414858686122344777061636781090667339188222207383182995240053443132126752675417452446260139969687916067684352 ┤                                                                      │
 78124999999999992324020244684701017750563502870237447523007690659639243345835239507055290770154331880271471422686738942498998680010207412658726186791083760491537392855056153851673083291510879100600320 ┤                                                                      │
 74999999999999997729984165938277124460587745659126771986181313212760136326665556650647253803529688901020634311980411806136601800776208863479538780785429908403267693300092486358386359979625346641166336 ┤                                                                      │
 71875000000000003135948087191853231170611988448016096449354935765881029307495873794239216836905045921769797201274084669774204921542210314300351374779776056314997993745128818865099636667739814181732352 ┤                                                                      │
 68750000000000000043704123377155758847224926397407383639038674686491151097219979731374222096644519115918923846899186831182536262364195519575894566330806373674408633924767520270512579989562777214648320 ┤                                                                      │
 65624999999999996951460159562458286523837864346798670828722413607101272886944085668509227356383992310068050492524288992590867603186180724851437757881836691033819274104406221675925523311385740247564288 ┤                                                                      │
 62499999999999993859216195747760814200450802296189958018406152527711394676668191605644232616123465504217177138149391153999198944008165930126980949432867008393229914284044923081338466633208703280480256 ┤                                                                      │
 59374999999999999265180117001336920910475045085079282481579775080832287657498508749236195649498822524966340027443064017636802064774167380947793543427213156304960214729081255588051743321323170821046272 ┤                                                                      │
 56249999999999996172936153186639448587087983034470569671263514001442409447222614686371200909238295719115466673068166179045133405596152586223336734978243473664370854908719956993464686643146133853962240 ┤                                                                      │
 53125000000000001578900074440215555297112225823359894134437136554563302428052931829963163942613652739864629562361839042682736526362154037044149328972589621576101155353756289500177963331260601394528256 ┤                                                                      │
 49999999999999998486656110625518082973725163772751181324120875475173424217777037767098169202353125934013756207986941204091067867184139242319692520523619938935511795533394990905590906653083564427444224 ┤                                                                      │
 46874999999999995394412146810820610650338101722142468513804614395783546007501143704233174462092599128162882853612043365499399208006124447595235712074650256294922435713033692311003849974906527460360192 ┤                                                                      │
 43750000000000000800376068064396717360362344511031792976978236948904438988331460847825137495467956148912045742905716229137002328772125898416048306068996404206652736158070024817717126663020995000926208 ┤                                                                      │
 40624999999999997708132104249699245036975282460423080166661975869514560778055566784960142755207429343061172388530818390545333669594111103691591497620026721566063376337708726223130069984843958033842176 ┤                                                                      │
 37500000000000003114096025503275351746999525249312404629835598422635453758885883928552105788582786363810335277824491254182936790360112554512404091614372869477793676782745058729843346672958425574408192 ┤                                                                      │
 34375000000000000021852061688577879423612463198703691819519337343245575548609989865687111048322259557959461923449593415591268131182097759787947283165403186837204316962383760135256289994781388607324160 ┤                                                                      │
 31249999999999996929608097873880407100225401148094979009203076263855697338334095802822116308061732752108588569074695576999599472004082965063490474716433504196614957142022461540669233316604351640240128 ┤                                                                      │
 28125000000000002335572019127456513810249643936984303472376698816976590319164412946414079341437089772857751458368368440637202592770084415884303068710779652108345257587058794047382510004718819180806144 ┤                                                                      │
 24999999999999999243328055312759041486862581886375590662060437737586712108888518883549084601176562967006878103993470602045533933592069621159846260261809969467755897766697495452795453326541782213722112 ┤                                                                      │
 21875000000000004649291976566335148196886824675264915125234060290707605089718836027141047634551919987756040993287143465683137054358071071980658854256156117379486198211733827959508730014656249754288128 ┤                                                                      │
 18750000000000001557048012751637675873499762624656202314917799211317726879442941964276052894291393181905167638912245627091468395180056277256202045807186434738896838391372529364921673336479212787204096 ┤                                                                      │
 15624999999999998464804048936940203550112700574047489504601538131927848669167047901411058154030866376054294284537347788499799736002041482531745237358216752098307478571011230770334616658302175820120064 ┤                                                                      │
 12499999999999995372560085122242731226725638523438776694285277052537970458891153838546063413770339570203420930162449949908131076824026687807288428909247069457718118750649932175747559980125138853036032 ┤                                                                      │
  9374999999999992280316121307545258903338576472830063883969015973148092248615259775681068673509812764352547575787552111316462417646011893082831620460277386817128758930288633581160503301948101885952000 ┤                                                                      │
  6250000000000006184487927629394944646774124101217425620632522158779756420551788125729989480521053611701746708749795677183337318356029589448913616897939365281178719640722597189174113356354073934168064 ┤                                                                      │
  3125000000000003092243963814697472323387062050608712810316261079389878210275894062864994740260526805850873354374897838591668659178014794724456808448969682640589359820361298594587056678177036967084032 ┤                                                                      │
                                                                                                                                                                                                        0 ┼──────────────────────────────────────────────────────────────────────╯
```



https://www.udemy.com/course/datastructurescncpp/learn/lecture/13319452#overview

Asymptotic Notation Video


| 1 < lg n < n < n lg n < n^2 < n^3 < .... < 2^n < 3^n ... < n^n |

                        | polynomial |     |      exponential    |


1 : push into stack
lg n : AVL tree
n : max item in array
n log n : quick sort
n^2 : matrix, graph
2^n : exponential time complexities

Don't start n from n = 0 or n = 1.
Starting value of n can be any starting value

n 0 --|---- infinity
      |------------



| n^3 |       2^n |
| ---     | ---- |
| 2^3=8     | 2^2=4 |
| 10^3=1000 | 2^10=1024 |
| 11^3=1221 | 2^11=2048 |



f(n) = n   ---> O(n)
f(n) = n^2 ---> O(n^2)

f(n) =  n
       sigma i   ----- 1 + 2 + 3 + .... + n  = ((n(n+1))/2) = O(n^2)
        i=1

| lower bound | omega |
| upper bound | big-oh |
| tight bound | theta |

Useful when you cannot get the exact polynomial for a function.

## Dynamic Programming

Dynamic Programming means tabular programming or Dynamic Planning. This term was
created before coding style programming was a thing.

This is a design technique used to solve a class of problems.

Example: Longest Common Subsequence (LCS)

Important in computation biology like finding commonalities in two DNA strings.

Given two sequences `x[1...m]` and `y[1..n]`, find *a* longest sequence common to
both. "a", not "the" LCS.


```plaintext
x: A B C B D A B  | BDB
y: B D C A B A    | BAB
                  | BDAB
                  | BCAB
                  | BCBA
                  = LCS(x, y)
                   * functional notation but not a function it's a relation.
                   * classic misuse of notation
```

Brute force algorithm for solving this algorithm.
  * check every subsequence of x from 1..m (`x[1..m]`) to see if it's also a subsequence of `y[i..n]`
  * analysis check:
    * Q: How long does it take me to see if it's a subsequence of y?
    * A: The length of y which is `O(n)`.
    * Check = `O(n)`
    * Q: How many subsequences of `x` are there?
    * A: 2^m subsequences of `x`
    * running time: `O(n*2^m)` (exponential time = slow!)

Simplification:

1. Look at length of `LCS(y, y)`.
2. Extend the algorithm to find LCS itself.

Notation: `|s|` denotes length of seq s.


15.1 Dynamic Programming

Dynamic Programming, like the divide and conquer method, solves problems by
combining solutions to subproblems.

Divide and conquer algorithms partition the problem into disjoint subproblems,
solve the subproblems recursively, and then combine their solutions to solve the
original problem.

Is like recursivion but also when the subproblems overlap so we don't have to
recompute the same answer over and over.
We save answers to a table to avoid recompute.
It applies to optimization problems.

* it can have many solutions
* wish to find optimal solution
* "an" optimal solution not "the" solution.

Steps:

1. characterize the structure of an optimal solution
1. recursively define the value of an optimal solution
1. compute the value of "an" optimal solution. (bottom-up)
1. construct optimal solution from computed information.

15.1

Rod-cutting Problem

Where to cut steel rods to make the most revenue?
* cuts are free
* i = 1,2,... to price pi in $ for length i

given a rod of length n inches and a table of prices pi for i = 1,2...n
determine the max revenue rn obtainable by cutting up the rods and selling
pieces if pn for a rod is length n is large enough, no cutting might be
necessary.

Recursive top down approach: exponential time 2^n

```plaintext
CUT-ROD(p, n)
  if n == 0
    return 0
  q = -1
  for i = 1 to n
    q = max(q, p[i] + CUT-ROD(p, n-i))
  return q
```

DP - time-memory trade-off.
* exponential solution might be turned into polynomial solution.

TOP down solution:
```plaintext
MEMOIZED-CUT-ROD(p, n)
  let r[0..n] be a new array
  for i = 0 to n
    r[i] = -1
  return MEMOIZED-CUT-ROD-AUX(p, n, r)

MEMOIZED-CUT-ROD-AUX(p, n, r)
  return r[n] if r[n] >= 0
  return 0 if n == 0

  q = -1
  for i = 1 to n
    q = max(q, p[i] + MEMOIZED-CUT-ROD-AUX(p, n-i, r)
  r[n] = q

  return q
```

BOTTOM up solution:

```plaintext
BOTTOM-UP-CUT-ROD(p, n)
  let r[0..n] be a new array
  r[0] = 0

  for j = 1 to n
    q = -1
    for i = 1 to j
      q = max(q, p[i] + r[j - i])

  r[j] = q
  return r[n]
```

Extended solution that prints max revenue and the # of cuts needed for each
length to produce that revenue.

```plaintext
EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
  let r = [0..n]
  let s = [1..n]
  r[0] = 0
  for j = 1 to n
    q = -1
    for i = 1 to j
      if q < p[i] + r[j-1]
        q = p[i] + r[j-1]
        s[j] = i
    r[j] = q
  return r, s
PRINT-CUT-ROD-SOLUTION(p,n)
  (r, s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
  while n > 0
    print s[n]
    n = n - s[n]
```