diff options
| author | mo khan <mo@mokhan.ca> | 2021-11-07 15:20:04 -0700 |
|---|---|---|
| committer | mo khan <mo@mokhan.ca> | 2021-11-07 15:20:04 -0700 |
| commit | 9c2288f84e1a0811e26ee6f954a4d16d8c03ba3c (patch) | |
| tree | b1575dcc13cf9904682e954ba9be5f13a8d4ca63 /notes.md | |
| parent | f82103800d1250f9699d8c97d07adbd488a7936f (diff) | |
work on assignment 1
Diffstat (limited to 'notes.md')
| -rw-r--r-- | notes.md | 36 |
1 files changed, 31 insertions, 5 deletions
@@ -942,12 +942,19 @@ Example: instead of guessing the value you can make it as 2n+3 +Little-oh +--------- + +The function `f(n) = o(g(n))` for any positive constant `c > 0`, +if there exists a constant `n0 > 0` such that `0 < f(n) < c * g(n)` +for all `n >= n0`. + Omega ---- -The function `f(n) = omega(g(n)) if positive contstants c and n0` -such that `f(n) >= c * g(n) V n>=n0` +The function `f(n) = omega(g(n))` if there exists positive contstants c and n0 +such that `0 <= c * g(n) <= f(n)` for all `n >= n0`. e.g. @@ -963,13 +970,32 @@ f(n) c * g(n) true f(n) = omega(logn) ``` +little-omega w-notation +---------- +Denotes a lower bound that is not asymptotically tight. + +The function `f(n) = w(g(n))` for any positive constant `c > 0`, +if there exists a constant `n0 > 0` +such that `0 <= c * g(n) < f(n)` for all `n >= n0` + +the relation `f(n) = w(g(n))` implies that: + +```plaintext +lim f(n) + ---- = infinity +n->infinity g(n) +``` +if the limit exists. That is `f(n)` becomes arbitrarily large relative to `g(n)` +as `n` approaches infinity. + + Theta ----- -The funciton `f(n)=theta(g(n)) if 3 +ve constants c1,c2 and n0` -such that `c1*g(n) <= f(n) <= c2*g(n)` +The function `f(n)=theta(g(n))` if there exists positive constants c1, c2, and n0 +such that `0 <= c1 * g(n) <= f(n) <= c2 * g(n)` for all `n >= n0`. (n0 is pronounced enn-not) -f(n) = theta(n) +f(n) = theta(g(n)) ``` eg. |
