diff options
| author | mo khan <mo@mokhan.ca> | 2025-07-22 17:35:49 -0600 |
|---|---|---|
| committer | mo khan <mo@mokhan.ca> | 2025-07-22 17:35:49 -0600 |
| commit | 20ef0d92694465ac86b550df139e8366a0a2b4fa (patch) | |
| tree | 3f14589e1ce6eb9306a3af31c3a1f9e1af5ed637 /vendor/github.com/shopspring/decimal/rounding.go | |
| parent | 44e0d272c040cdc53a98b9f1dc58ae7da67752e6 (diff) | |
feat: connect to spicedb
Diffstat (limited to 'vendor/github.com/shopspring/decimal/rounding.go')
| -rw-r--r-- | vendor/github.com/shopspring/decimal/rounding.go | 160 |
1 files changed, 160 insertions, 0 deletions
diff --git a/vendor/github.com/shopspring/decimal/rounding.go b/vendor/github.com/shopspring/decimal/rounding.go new file mode 100644 index 0000000..d4b0cd0 --- /dev/null +++ b/vendor/github.com/shopspring/decimal/rounding.go @@ -0,0 +1,160 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Multiprecision decimal numbers. +// For floating-point formatting only; not general purpose. +// Only operations are assign and (binary) left/right shift. +// Can do binary floating point in multiprecision decimal precisely +// because 2 divides 10; cannot do decimal floating point +// in multiprecision binary precisely. + +package decimal + +type floatInfo struct { + mantbits uint + expbits uint + bias int +} + +var float32info = floatInfo{23, 8, -127} +var float64info = floatInfo{52, 11, -1023} + +// roundShortest rounds d (= mant * 2^exp) to the shortest number of digits +// that will let the original floating point value be precisely reconstructed. +func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) { + // If mantissa is zero, the number is zero; stop now. + if mant == 0 { + d.nd = 0 + return + } + + // Compute upper and lower such that any decimal number + // between upper and lower (possibly inclusive) + // will round to the original floating point number. + + // We may see at once that the number is already shortest. + // + // Suppose d is not denormal, so that 2^exp <= d < 10^dp. + // The closest shorter number is at least 10^(dp-nd) away. + // The lower/upper bounds computed below are at distance + // at most 2^(exp-mantbits). + // + // So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits), + // or equivalently log2(10)*(dp-nd) > exp-mantbits. + // It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32). + minexp := flt.bias + 1 // minimum possible exponent + if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) { + // The number is already shortest. + return + } + + // d = mant << (exp - mantbits) + // Next highest floating point number is mant+1 << exp-mantbits. + // Our upper bound is halfway between, mant*2+1 << exp-mantbits-1. + upper := new(decimal) + upper.Assign(mant*2 + 1) + upper.Shift(exp - int(flt.mantbits) - 1) + + // d = mant << (exp - mantbits) + // Next lowest floating point number is mant-1 << exp-mantbits, + // unless mant-1 drops the significant bit and exp is not the minimum exp, + // in which case the next lowest is mant*2-1 << exp-mantbits-1. + // Either way, call it mantlo << explo-mantbits. + // Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1. + var mantlo uint64 + var explo int + if mant > 1<<flt.mantbits || exp == minexp { + mantlo = mant - 1 + explo = exp + } else { + mantlo = mant*2 - 1 + explo = exp - 1 + } + lower := new(decimal) + lower.Assign(mantlo*2 + 1) + lower.Shift(explo - int(flt.mantbits) - 1) + + // The upper and lower bounds are possible outputs only if + // the original mantissa is even, so that IEEE round-to-even + // would round to the original mantissa and not the neighbors. + inclusive := mant%2 == 0 + + // As we walk the digits we want to know whether rounding up would fall + // within the upper bound. This is tracked by upperdelta: + // + // If upperdelta == 0, the digits of d and upper are the same so far. + // + // If upperdelta == 1, we saw a difference of 1 between d and upper on a + // previous digit and subsequently only 9s for d and 0s for upper. + // (Thus rounding up may fall outside the bound, if it is exclusive.) + // + // If upperdelta == 2, then the difference is greater than 1 + // and we know that rounding up falls within the bound. + var upperdelta uint8 + + // Now we can figure out the minimum number of digits required. + // Walk along until d has distinguished itself from upper and lower. + for ui := 0; ; ui++ { + // lower, d, and upper may have the decimal points at different + // places. In this case upper is the longest, so we iterate from + // ui==0 and start li and mi at (possibly) -1. + mi := ui - upper.dp + d.dp + if mi >= d.nd { + break + } + li := ui - upper.dp + lower.dp + l := byte('0') // lower digit + if li >= 0 && li < lower.nd { + l = lower.d[li] + } + m := byte('0') // middle digit + if mi >= 0 { + m = d.d[mi] + } + u := byte('0') // upper digit + if ui < upper.nd { + u = upper.d[ui] + } + + // Okay to round down (truncate) if lower has a different digit + // or if lower is inclusive and is exactly the result of rounding + // down (i.e., and we have reached the final digit of lower). + okdown := l != m || inclusive && li+1 == lower.nd + + switch { + case upperdelta == 0 && m+1 < u: + // Example: + // m = 12345xxx + // u = 12347xxx + upperdelta = 2 + case upperdelta == 0 && m != u: + // Example: + // m = 12345xxx + // u = 12346xxx + upperdelta = 1 + case upperdelta == 1 && (m != '9' || u != '0'): + // Example: + // m = 1234598x + // u = 1234600x + upperdelta = 2 + } + // Okay to round up if upper has a different digit and either upper + // is inclusive or upper is bigger than the result of rounding up. + okup := upperdelta > 0 && (inclusive || upperdelta > 1 || ui+1 < upper.nd) + + // If it's okay to do either, then round to the nearest one. + // If it's okay to do only one, do it. + switch { + case okdown && okup: + d.Round(mi + 1) + return + case okdown: + d.RoundDown(mi + 1) + return + case okup: + d.RoundUp(mi + 1) + return + } + } +} |
