summaryrefslogtreecommitdiff
path: root/vendor/github.com/shopspring/decimal/decimal.go
diff options
context:
space:
mode:
authormo khan <mo@mokhan.ca>2025-07-22 17:35:49 -0600
committermo khan <mo@mokhan.ca>2025-07-22 17:35:49 -0600
commit20ef0d92694465ac86b550df139e8366a0a2b4fa (patch)
tree3f14589e1ce6eb9306a3af31c3a1f9e1af5ed637 /vendor/github.com/shopspring/decimal/decimal.go
parent44e0d272c040cdc53a98b9f1dc58ae7da67752e6 (diff)
feat: connect to spicedb
Diffstat (limited to 'vendor/github.com/shopspring/decimal/decimal.go')
-rw-r--r--vendor/github.com/shopspring/decimal/decimal.go2339
1 files changed, 2339 insertions, 0 deletions
diff --git a/vendor/github.com/shopspring/decimal/decimal.go b/vendor/github.com/shopspring/decimal/decimal.go
new file mode 100644
index 0000000..a37a230
--- /dev/null
+++ b/vendor/github.com/shopspring/decimal/decimal.go
@@ -0,0 +1,2339 @@
+// Package decimal implements an arbitrary precision fixed-point decimal.
+//
+// The zero-value of a Decimal is 0, as you would expect.
+//
+// The best way to create a new Decimal is to use decimal.NewFromString, ex:
+//
+// n, err := decimal.NewFromString("-123.4567")
+// n.String() // output: "-123.4567"
+//
+// To use Decimal as part of a struct:
+//
+// type StructName struct {
+// Number Decimal
+// }
+//
+// Note: This can "only" represent numbers with a maximum of 2^31 digits after the decimal point.
+package decimal
+
+import (
+ "database/sql/driver"
+ "encoding/binary"
+ "fmt"
+ "math"
+ "math/big"
+ "regexp"
+ "strconv"
+ "strings"
+)
+
+// DivisionPrecision is the number of decimal places in the result when it
+// doesn't divide exactly.
+//
+// Example:
+//
+// d1 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3))
+// d1.String() // output: "0.6666666666666667"
+// d2 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(30000))
+// d2.String() // output: "0.0000666666666667"
+// d3 := decimal.NewFromFloat(20000).Div(decimal.NewFromFloat(3))
+// d3.String() // output: "6666.6666666666666667"
+// decimal.DivisionPrecision = 3
+// d4 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3))
+// d4.String() // output: "0.667"
+var DivisionPrecision = 16
+
+// PowPrecisionNegativeExponent specifies the maximum precision of the result (digits after decimal point)
+// when calculating decimal power. Only used for cases where the exponent is a negative number.
+// This constant applies to Pow, PowInt32 and PowBigInt methods, PowWithPrecision method is not constrained by it.
+//
+// Example:
+//
+// d1, err := decimal.NewFromFloat(15.2).PowInt32(-2)
+// d1.String() // output: "0.0043282548476454"
+//
+// decimal.PowPrecisionNegativeExponent = 24
+// d2, err := decimal.NewFromFloat(15.2).PowInt32(-2)
+// d2.String() // output: "0.004328254847645429362881"
+var PowPrecisionNegativeExponent = 16
+
+// MarshalJSONWithoutQuotes should be set to true if you want the decimal to
+// be JSON marshaled as a number, instead of as a string.
+// WARNING: this is dangerous for decimals with many digits, since many JSON
+// unmarshallers (ex: Javascript's) will unmarshal JSON numbers to IEEE 754
+// double-precision floating point numbers, which means you can potentially
+// silently lose precision.
+var MarshalJSONWithoutQuotes = false
+
+// ExpMaxIterations specifies the maximum number of iterations needed to calculate
+// precise natural exponent value using ExpHullAbrham method.
+var ExpMaxIterations = 1000
+
+// Zero constant, to make computations faster.
+// Zero should never be compared with == or != directly, please use decimal.Equal or decimal.Cmp instead.
+var Zero = New(0, 1)
+
+var zeroInt = big.NewInt(0)
+var oneInt = big.NewInt(1)
+var twoInt = big.NewInt(2)
+var fourInt = big.NewInt(4)
+var fiveInt = big.NewInt(5)
+var tenInt = big.NewInt(10)
+var twentyInt = big.NewInt(20)
+
+var factorials = []Decimal{New(1, 0)}
+
+// Decimal represents a fixed-point decimal. It is immutable.
+// number = value * 10 ^ exp
+type Decimal struct {
+ value *big.Int
+
+ // NOTE(vadim): this must be an int32, because we cast it to float64 during
+ // calculations. If exp is 64 bit, we might lose precision.
+ // If we cared about being able to represent every possible decimal, we
+ // could make exp a *big.Int but it would hurt performance and numbers
+ // like that are unrealistic.
+ exp int32
+}
+
+// New returns a new fixed-point decimal, value * 10 ^ exp.
+func New(value int64, exp int32) Decimal {
+ return Decimal{
+ value: big.NewInt(value),
+ exp: exp,
+ }
+}
+
+// NewFromInt converts an int64 to Decimal.
+//
+// Example:
+//
+// NewFromInt(123).String() // output: "123"
+// NewFromInt(-10).String() // output: "-10"
+func NewFromInt(value int64) Decimal {
+ return Decimal{
+ value: big.NewInt(value),
+ exp: 0,
+ }
+}
+
+// NewFromInt32 converts an int32 to Decimal.
+//
+// Example:
+//
+// NewFromInt(123).String() // output: "123"
+// NewFromInt(-10).String() // output: "-10"
+func NewFromInt32(value int32) Decimal {
+ return Decimal{
+ value: big.NewInt(int64(value)),
+ exp: 0,
+ }
+}
+
+// NewFromUint64 converts an uint64 to Decimal.
+//
+// Example:
+//
+// NewFromUint64(123).String() // output: "123"
+func NewFromUint64(value uint64) Decimal {
+ return Decimal{
+ value: new(big.Int).SetUint64(value),
+ exp: 0,
+ }
+}
+
+// NewFromBigInt returns a new Decimal from a big.Int, value * 10 ^ exp
+func NewFromBigInt(value *big.Int, exp int32) Decimal {
+ return Decimal{
+ value: new(big.Int).Set(value),
+ exp: exp,
+ }
+}
+
+// NewFromBigRat returns a new Decimal from a big.Rat. The numerator and
+// denominator are divided and rounded to the given precision.
+//
+// Example:
+//
+// d1 := NewFromBigRat(big.NewRat(0, 1), 0) // output: "0"
+// d2 := NewFromBigRat(big.NewRat(4, 5), 1) // output: "0.8"
+// d3 := NewFromBigRat(big.NewRat(1000, 3), 3) // output: "333.333"
+// d4 := NewFromBigRat(big.NewRat(2, 7), 4) // output: "0.2857"
+func NewFromBigRat(value *big.Rat, precision int32) Decimal {
+ return Decimal{
+ value: new(big.Int).Set(value.Num()),
+ exp: 0,
+ }.DivRound(Decimal{
+ value: new(big.Int).Set(value.Denom()),
+ exp: 0,
+ }, precision)
+}
+
+// NewFromString returns a new Decimal from a string representation.
+// Trailing zeroes are not trimmed.
+//
+// Example:
+//
+// d, err := NewFromString("-123.45")
+// d2, err := NewFromString(".0001")
+// d3, err := NewFromString("1.47000")
+func NewFromString(value string) (Decimal, error) {
+ originalInput := value
+ var intString string
+ var exp int64
+
+ // Check if number is using scientific notation
+ eIndex := strings.IndexAny(value, "Ee")
+ if eIndex != -1 {
+ expInt, err := strconv.ParseInt(value[eIndex+1:], 10, 32)
+ if err != nil {
+ if e, ok := err.(*strconv.NumError); ok && e.Err == strconv.ErrRange {
+ return Decimal{}, fmt.Errorf("can't convert %s to decimal: fractional part too long", value)
+ }
+ return Decimal{}, fmt.Errorf("can't convert %s to decimal: exponent is not numeric", value)
+ }
+ value = value[:eIndex]
+ exp = expInt
+ }
+
+ pIndex := -1
+ vLen := len(value)
+ for i := 0; i < vLen; i++ {
+ if value[i] == '.' {
+ if pIndex > -1 {
+ return Decimal{}, fmt.Errorf("can't convert %s to decimal: too many .s", value)
+ }
+ pIndex = i
+ }
+ }
+
+ if pIndex == -1 {
+ // There is no decimal point, we can just parse the original string as
+ // an int
+ intString = value
+ } else {
+ if pIndex+1 < vLen {
+ intString = value[:pIndex] + value[pIndex+1:]
+ } else {
+ intString = value[:pIndex]
+ }
+ expInt := -len(value[pIndex+1:])
+ exp += int64(expInt)
+ }
+
+ var dValue *big.Int
+ // strconv.ParseInt is faster than new(big.Int).SetString so this is just a shortcut for strings we know won't overflow
+ if len(intString) <= 18 {
+ parsed64, err := strconv.ParseInt(intString, 10, 64)
+ if err != nil {
+ return Decimal{}, fmt.Errorf("can't convert %s to decimal", value)
+ }
+ dValue = big.NewInt(parsed64)
+ } else {
+ dValue = new(big.Int)
+ _, ok := dValue.SetString(intString, 10)
+ if !ok {
+ return Decimal{}, fmt.Errorf("can't convert %s to decimal", value)
+ }
+ }
+
+ if exp < math.MinInt32 || exp > math.MaxInt32 {
+ // NOTE(vadim): I doubt a string could realistically be this long
+ return Decimal{}, fmt.Errorf("can't convert %s to decimal: fractional part too long", originalInput)
+ }
+
+ return Decimal{
+ value: dValue,
+ exp: int32(exp),
+ }, nil
+}
+
+// NewFromFormattedString returns a new Decimal from a formatted string representation.
+// The second argument - replRegexp, is a regular expression that is used to find characters that should be
+// removed from given decimal string representation. All matched characters will be replaced with an empty string.
+//
+// Example:
+//
+// r := regexp.MustCompile("[$,]")
+// d1, err := NewFromFormattedString("$5,125.99", r)
+//
+// r2 := regexp.MustCompile("[_]")
+// d2, err := NewFromFormattedString("1_000_000", r2)
+//
+// r3 := regexp.MustCompile("[USD\\s]")
+// d3, err := NewFromFormattedString("5000 USD", r3)
+func NewFromFormattedString(value string, replRegexp *regexp.Regexp) (Decimal, error) {
+ parsedValue := replRegexp.ReplaceAllString(value, "")
+ d, err := NewFromString(parsedValue)
+ if err != nil {
+ return Decimal{}, err
+ }
+ return d, nil
+}
+
+// RequireFromString returns a new Decimal from a string representation
+// or panics if NewFromString had returned an error.
+//
+// Example:
+//
+// d := RequireFromString("-123.45")
+// d2 := RequireFromString(".0001")
+func RequireFromString(value string) Decimal {
+ dec, err := NewFromString(value)
+ if err != nil {
+ panic(err)
+ }
+ return dec
+}
+
+// NewFromFloat converts a float64 to Decimal.
+//
+// The converted number will contain the number of significant digits that can be
+// represented in a float with reliable roundtrip.
+// This is typically 15 digits, but may be more in some cases.
+// See https://www.exploringbinary.com/decimal-precision-of-binary-floating-point-numbers/ for more information.
+//
+// For slightly faster conversion, use NewFromFloatWithExponent where you can specify the precision in absolute terms.
+//
+// NOTE: this will panic on NaN, +/-inf
+func NewFromFloat(value float64) Decimal {
+ if value == 0 {
+ return New(0, 0)
+ }
+ return newFromFloat(value, math.Float64bits(value), &float64info)
+}
+
+// NewFromFloat32 converts a float32 to Decimal.
+//
+// The converted number will contain the number of significant digits that can be
+// represented in a float with reliable roundtrip.
+// This is typically 6-8 digits depending on the input.
+// See https://www.exploringbinary.com/decimal-precision-of-binary-floating-point-numbers/ for more information.
+//
+// For slightly faster conversion, use NewFromFloatWithExponent where you can specify the precision in absolute terms.
+//
+// NOTE: this will panic on NaN, +/-inf
+func NewFromFloat32(value float32) Decimal {
+ if value == 0 {
+ return New(0, 0)
+ }
+ // XOR is workaround for https://github.com/golang/go/issues/26285
+ a := math.Float32bits(value) ^ 0x80808080
+ return newFromFloat(float64(value), uint64(a)^0x80808080, &float32info)
+}
+
+func newFromFloat(val float64, bits uint64, flt *floatInfo) Decimal {
+ if math.IsNaN(val) || math.IsInf(val, 0) {
+ panic(fmt.Sprintf("Cannot create a Decimal from %v", val))
+ }
+ exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
+ mant := bits & (uint64(1)<<flt.mantbits - 1)
+
+ switch exp {
+ case 0:
+ // denormalized
+ exp++
+
+ default:
+ // add implicit top bit
+ mant |= uint64(1) << flt.mantbits
+ }
+ exp += flt.bias
+
+ var d decimal
+ d.Assign(mant)
+ d.Shift(exp - int(flt.mantbits))
+ d.neg = bits>>(flt.expbits+flt.mantbits) != 0
+
+ roundShortest(&d, mant, exp, flt)
+ // If less than 19 digits, we can do calculation in an int64.
+ if d.nd < 19 {
+ tmp := int64(0)
+ m := int64(1)
+ for i := d.nd - 1; i >= 0; i-- {
+ tmp += m * int64(d.d[i]-'0')
+ m *= 10
+ }
+ if d.neg {
+ tmp *= -1
+ }
+ return Decimal{value: big.NewInt(tmp), exp: int32(d.dp) - int32(d.nd)}
+ }
+ dValue := new(big.Int)
+ dValue, ok := dValue.SetString(string(d.d[:d.nd]), 10)
+ if ok {
+ return Decimal{value: dValue, exp: int32(d.dp) - int32(d.nd)}
+ }
+
+ return NewFromFloatWithExponent(val, int32(d.dp)-int32(d.nd))
+}
+
+// NewFromFloatWithExponent converts a float64 to Decimal, with an arbitrary
+// number of fractional digits.
+//
+// Example:
+//
+// NewFromFloatWithExponent(123.456, -2).String() // output: "123.46"
+func NewFromFloatWithExponent(value float64, exp int32) Decimal {
+ if math.IsNaN(value) || math.IsInf(value, 0) {
+ panic(fmt.Sprintf("Cannot create a Decimal from %v", value))
+ }
+
+ bits := math.Float64bits(value)
+ mant := bits & (1<<52 - 1)
+ exp2 := int32((bits >> 52) & (1<<11 - 1))
+ sign := bits >> 63
+
+ if exp2 == 0 {
+ // specials
+ if mant == 0 {
+ return Decimal{}
+ }
+ // subnormal
+ exp2++
+ } else {
+ // normal
+ mant |= 1 << 52
+ }
+
+ exp2 -= 1023 + 52
+
+ // normalizing base-2 values
+ for mant&1 == 0 {
+ mant = mant >> 1
+ exp2++
+ }
+
+ // maximum number of fractional base-10 digits to represent 2^N exactly cannot be more than -N if N<0
+ if exp < 0 && exp < exp2 {
+ if exp2 < 0 {
+ exp = exp2
+ } else {
+ exp = 0
+ }
+ }
+
+ // representing 10^M * 2^N as 5^M * 2^(M+N)
+ exp2 -= exp
+
+ temp := big.NewInt(1)
+ dMant := big.NewInt(int64(mant))
+
+ // applying 5^M
+ if exp > 0 {
+ temp = temp.SetInt64(int64(exp))
+ temp = temp.Exp(fiveInt, temp, nil)
+ } else if exp < 0 {
+ temp = temp.SetInt64(-int64(exp))
+ temp = temp.Exp(fiveInt, temp, nil)
+ dMant = dMant.Mul(dMant, temp)
+ temp = temp.SetUint64(1)
+ }
+
+ // applying 2^(M+N)
+ if exp2 > 0 {
+ dMant = dMant.Lsh(dMant, uint(exp2))
+ } else if exp2 < 0 {
+ temp = temp.Lsh(temp, uint(-exp2))
+ }
+
+ // rounding and downscaling
+ if exp > 0 || exp2 < 0 {
+ halfDown := new(big.Int).Rsh(temp, 1)
+ dMant = dMant.Add(dMant, halfDown)
+ dMant = dMant.Quo(dMant, temp)
+ }
+
+ if sign == 1 {
+ dMant = dMant.Neg(dMant)
+ }
+
+ return Decimal{
+ value: dMant,
+ exp: exp,
+ }
+}
+
+// Copy returns a copy of decimal with the same value and exponent, but a different pointer to value.
+func (d Decimal) Copy() Decimal {
+ d.ensureInitialized()
+ return Decimal{
+ value: new(big.Int).Set(d.value),
+ exp: d.exp,
+ }
+}
+
+// rescale returns a rescaled version of the decimal. Returned
+// decimal may be less precise if the given exponent is bigger
+// than the initial exponent of the Decimal.
+// NOTE: this will truncate, NOT round
+//
+// Example:
+//
+// d := New(12345, -4)
+// d2 := d.rescale(-1)
+// d3 := d2.rescale(-4)
+// println(d1)
+// println(d2)
+// println(d3)
+//
+// Output:
+//
+// 1.2345
+// 1.2
+// 1.2000
+func (d Decimal) rescale(exp int32) Decimal {
+ d.ensureInitialized()
+
+ if d.exp == exp {
+ return Decimal{
+ new(big.Int).Set(d.value),
+ d.exp,
+ }
+ }
+
+ // NOTE(vadim): must convert exps to float64 before - to prevent overflow
+ diff := math.Abs(float64(exp) - float64(d.exp))
+ value := new(big.Int).Set(d.value)
+
+ expScale := new(big.Int).Exp(tenInt, big.NewInt(int64(diff)), nil)
+ if exp > d.exp {
+ value = value.Quo(value, expScale)
+ } else if exp < d.exp {
+ value = value.Mul(value, expScale)
+ }
+
+ return Decimal{
+ value: value,
+ exp: exp,
+ }
+}
+
+// Abs returns the absolute value of the decimal.
+func (d Decimal) Abs() Decimal {
+ if !d.IsNegative() {
+ return d
+ }
+ d.ensureInitialized()
+ d2Value := new(big.Int).Abs(d.value)
+ return Decimal{
+ value: d2Value,
+ exp: d.exp,
+ }
+}
+
+// Add returns d + d2.
+func (d Decimal) Add(d2 Decimal) Decimal {
+ rd, rd2 := RescalePair(d, d2)
+
+ d3Value := new(big.Int).Add(rd.value, rd2.value)
+ return Decimal{
+ value: d3Value,
+ exp: rd.exp,
+ }
+}
+
+// Sub returns d - d2.
+func (d Decimal) Sub(d2 Decimal) Decimal {
+ rd, rd2 := RescalePair(d, d2)
+
+ d3Value := new(big.Int).Sub(rd.value, rd2.value)
+ return Decimal{
+ value: d3Value,
+ exp: rd.exp,
+ }
+}
+
+// Neg returns -d.
+func (d Decimal) Neg() Decimal {
+ d.ensureInitialized()
+ val := new(big.Int).Neg(d.value)
+ return Decimal{
+ value: val,
+ exp: d.exp,
+ }
+}
+
+// Mul returns d * d2.
+func (d Decimal) Mul(d2 Decimal) Decimal {
+ d.ensureInitialized()
+ d2.ensureInitialized()
+
+ expInt64 := int64(d.exp) + int64(d2.exp)
+ if expInt64 > math.MaxInt32 || expInt64 < math.MinInt32 {
+ // NOTE(vadim): better to panic than give incorrect results, as
+ // Decimals are usually used for money
+ panic(fmt.Sprintf("exponent %v overflows an int32!", expInt64))
+ }
+
+ d3Value := new(big.Int).Mul(d.value, d2.value)
+ return Decimal{
+ value: d3Value,
+ exp: int32(expInt64),
+ }
+}
+
+// Shift shifts the decimal in base 10.
+// It shifts left when shift is positive and right if shift is negative.
+// In simpler terms, the given value for shift is added to the exponent
+// of the decimal.
+func (d Decimal) Shift(shift int32) Decimal {
+ d.ensureInitialized()
+ return Decimal{
+ value: new(big.Int).Set(d.value),
+ exp: d.exp + shift,
+ }
+}
+
+// Div returns d / d2. If it doesn't divide exactly, the result will have
+// DivisionPrecision digits after the decimal point.
+func (d Decimal) Div(d2 Decimal) Decimal {
+ return d.DivRound(d2, int32(DivisionPrecision))
+}
+
+// QuoRem does division with remainder
+// d.QuoRem(d2,precision) returns quotient q and remainder r such that
+//
+// d = d2 * q + r, q an integer multiple of 10^(-precision)
+// 0 <= r < abs(d2) * 10 ^(-precision) if d>=0
+// 0 >= r > -abs(d2) * 10 ^(-precision) if d<0
+//
+// Note that precision<0 is allowed as input.
+func (d Decimal) QuoRem(d2 Decimal, precision int32) (Decimal, Decimal) {
+ d.ensureInitialized()
+ d2.ensureInitialized()
+ if d2.value.Sign() == 0 {
+ panic("decimal division by 0")
+ }
+ scale := -precision
+ e := int64(d.exp) - int64(d2.exp) - int64(scale)
+ if e > math.MaxInt32 || e < math.MinInt32 {
+ panic("overflow in decimal QuoRem")
+ }
+ var aa, bb, expo big.Int
+ var scalerest int32
+ // d = a 10^ea
+ // d2 = b 10^eb
+ if e < 0 {
+ aa = *d.value
+ expo.SetInt64(-e)
+ bb.Exp(tenInt, &expo, nil)
+ bb.Mul(d2.value, &bb)
+ scalerest = d.exp
+ // now aa = a
+ // bb = b 10^(scale + eb - ea)
+ } else {
+ expo.SetInt64(e)
+ aa.Exp(tenInt, &expo, nil)
+ aa.Mul(d.value, &aa)
+ bb = *d2.value
+ scalerest = scale + d2.exp
+ // now aa = a ^ (ea - eb - scale)
+ // bb = b
+ }
+ var q, r big.Int
+ q.QuoRem(&aa, &bb, &r)
+ dq := Decimal{value: &q, exp: scale}
+ dr := Decimal{value: &r, exp: scalerest}
+ return dq, dr
+}
+
+// DivRound divides and rounds to a given precision
+// i.e. to an integer multiple of 10^(-precision)
+//
+// for a positive quotient digit 5 is rounded up, away from 0
+// if the quotient is negative then digit 5 is rounded down, away from 0
+//
+// Note that precision<0 is allowed as input.
+func (d Decimal) DivRound(d2 Decimal, precision int32) Decimal {
+ // QuoRem already checks initialization
+ q, r := d.QuoRem(d2, precision)
+ // the actual rounding decision is based on comparing r*10^precision and d2/2
+ // instead compare 2 r 10 ^precision and d2
+ var rv2 big.Int
+ rv2.Abs(r.value)
+ rv2.Lsh(&rv2, 1)
+ // now rv2 = abs(r.value) * 2
+ r2 := Decimal{value: &rv2, exp: r.exp + precision}
+ // r2 is now 2 * r * 10 ^ precision
+ var c = r2.Cmp(d2.Abs())
+
+ if c < 0 {
+ return q
+ }
+
+ if d.value.Sign()*d2.value.Sign() < 0 {
+ return q.Sub(New(1, -precision))
+ }
+
+ return q.Add(New(1, -precision))
+}
+
+// Mod returns d % d2.
+func (d Decimal) Mod(d2 Decimal) Decimal {
+ _, r := d.QuoRem(d2, 0)
+ return r
+}
+
+// Pow returns d to the power of d2.
+// When exponent is negative the returned decimal will have maximum precision of PowPrecisionNegativeExponent places after decimal point.
+//
+// Pow returns 0 (zero-value of Decimal) instead of error for power operation edge cases, to handle those edge cases use PowWithPrecision
+// Edge cases not handled by Pow:
+// - 0 ** 0 => undefined value
+// - 0 ** y, where y < 0 => infinity
+// - x ** y, where x < 0 and y is non-integer decimal => imaginary value
+//
+// Example:
+//
+// d1 := decimal.NewFromFloat(4.0)
+// d2 := decimal.NewFromFloat(4.0)
+// res1 := d1.Pow(d2)
+// res1.String() // output: "256"
+//
+// d3 := decimal.NewFromFloat(5.0)
+// d4 := decimal.NewFromFloat(5.73)
+// res2 := d3.Pow(d4)
+// res2.String() // output: "10118.08037125"
+func (d Decimal) Pow(d2 Decimal) Decimal {
+ baseSign := d.Sign()
+ expSign := d2.Sign()
+
+ if baseSign == 0 {
+ if expSign == 0 {
+ return Decimal{}
+ }
+ if expSign == 1 {
+ return Decimal{zeroInt, 0}
+ }
+ if expSign == -1 {
+ return Decimal{}
+ }
+ }
+
+ if expSign == 0 {
+ return Decimal{oneInt, 0}
+ }
+
+ // TODO: optimize extraction of fractional part
+ one := Decimal{oneInt, 0}
+ expIntPart, expFracPart := d2.QuoRem(one, 0)
+
+ if baseSign == -1 && !expFracPart.IsZero() {
+ return Decimal{}
+ }
+
+ intPartPow, _ := d.PowBigInt(expIntPart.value)
+
+ // if exponent is an integer we don't need to calculate d1**frac(d2)
+ if expFracPart.value.Sign() == 0 {
+ return intPartPow
+ }
+
+ // TODO: optimize NumDigits for more performant precision adjustment
+ digitsBase := d.NumDigits()
+ digitsExponent := d2.NumDigits()
+
+ precision := digitsBase
+
+ if digitsExponent > precision {
+ precision += digitsExponent
+ }
+
+ precision += 6
+
+ // Calculate x ** frac(y), where
+ // x ** frac(y) = exp(ln(x ** frac(y)) = exp(ln(x) * frac(y))
+ fracPartPow, err := d.Abs().Ln(-d.exp + int32(precision))
+ if err != nil {
+ return Decimal{}
+ }
+
+ fracPartPow = fracPartPow.Mul(expFracPart)
+
+ fracPartPow, err = fracPartPow.ExpTaylor(-d.exp + int32(precision))
+ if err != nil {
+ return Decimal{}
+ }
+
+ // Join integer and fractional part,
+ // base ** (expBase + expFrac) = base ** expBase * base ** expFrac
+ res := intPartPow.Mul(fracPartPow)
+
+ return res
+}
+
+// PowWithPrecision returns d to the power of d2.
+// Precision parameter specifies minimum precision of the result (digits after decimal point).
+// Returned decimal is not rounded to 'precision' places after decimal point.
+//
+// PowWithPrecision returns error when:
+// - 0 ** 0 => undefined value
+// - 0 ** y, where y < 0 => infinity
+// - x ** y, where x < 0 and y is non-integer decimal => imaginary value
+//
+// Example:
+//
+// d1 := decimal.NewFromFloat(4.0)
+// d2 := decimal.NewFromFloat(4.0)
+// res1, err := d1.PowWithPrecision(d2, 2)
+// res1.String() // output: "256"
+//
+// d3 := decimal.NewFromFloat(5.0)
+// d4 := decimal.NewFromFloat(5.73)
+// res2, err := d3.PowWithPrecision(d4, 5)
+// res2.String() // output: "10118.080371595015625"
+//
+// d5 := decimal.NewFromFloat(-3.0)
+// d6 := decimal.NewFromFloat(-6.0)
+// res3, err := d5.PowWithPrecision(d6, 10)
+// res3.String() // output: "0.0013717421"
+func (d Decimal) PowWithPrecision(d2 Decimal, precision int32) (Decimal, error) {
+ baseSign := d.Sign()
+ expSign := d2.Sign()
+
+ if baseSign == 0 {
+ if expSign == 0 {
+ return Decimal{}, fmt.Errorf("cannot represent undefined value of 0**0")
+ }
+ if expSign == 1 {
+ return Decimal{zeroInt, 0}, nil
+ }
+ if expSign == -1 {
+ return Decimal{}, fmt.Errorf("cannot represent infinity value of 0 ** y, where y < 0")
+ }
+ }
+
+ if expSign == 0 {
+ return Decimal{oneInt, 0}, nil
+ }
+
+ // TODO: optimize extraction of fractional part
+ one := Decimal{oneInt, 0}
+ expIntPart, expFracPart := d2.QuoRem(one, 0)
+
+ if baseSign == -1 && !expFracPart.IsZero() {
+ return Decimal{}, fmt.Errorf("cannot represent imaginary value of x ** y, where x < 0 and y is non-integer decimal")
+ }
+
+ intPartPow, _ := d.powBigIntWithPrecision(expIntPart.value, precision)
+
+ // if exponent is an integer we don't need to calculate d1**frac(d2)
+ if expFracPart.value.Sign() == 0 {
+ return intPartPow, nil
+ }
+
+ // TODO: optimize NumDigits for more performant precision adjustment
+ digitsBase := d.NumDigits()
+ digitsExponent := d2.NumDigits()
+
+ if int32(digitsBase) > precision {
+ precision = int32(digitsBase)
+ }
+ if int32(digitsExponent) > precision {
+ precision += int32(digitsExponent)
+ }
+ // increase precision by 10 to compensate for errors in further calculations
+ precision += 10
+
+ // Calculate x ** frac(y), where
+ // x ** frac(y) = exp(ln(x ** frac(y)) = exp(ln(x) * frac(y))
+ fracPartPow, err := d.Abs().Ln(precision)
+ if err != nil {
+ return Decimal{}, err
+ }
+
+ fracPartPow = fracPartPow.Mul(expFracPart)
+
+ fracPartPow, err = fracPartPow.ExpTaylor(precision)
+ if err != nil {
+ return Decimal{}, err
+ }
+
+ // Join integer and fractional part,
+ // base ** (expBase + expFrac) = base ** expBase * base ** expFrac
+ res := intPartPow.Mul(fracPartPow)
+
+ return res, nil
+}
+
+// PowInt32 returns d to the power of exp, where exp is int32.
+// Only returns error when d and exp is 0, thus result is undefined.
+//
+// When exponent is negative the returned decimal will have maximum precision of PowPrecisionNegativeExponent places after decimal point.
+//
+// Example:
+//
+// d1, err := decimal.NewFromFloat(4.0).PowInt32(4)
+// d1.String() // output: "256"
+//
+// d2, err := decimal.NewFromFloat(3.13).PowInt32(5)
+// d2.String() // output: "300.4150512793"
+func (d Decimal) PowInt32(exp int32) (Decimal, error) {
+ if d.IsZero() && exp == 0 {
+ return Decimal{}, fmt.Errorf("cannot represent undefined value of 0**0")
+ }
+
+ isExpNeg := exp < 0
+ exp = abs(exp)
+
+ n, result := d, New(1, 0)
+
+ for exp > 0 {
+ if exp%2 == 1 {
+ result = result.Mul(n)
+ }
+ exp /= 2
+
+ if exp > 0 {
+ n = n.Mul(n)
+ }
+ }
+
+ if isExpNeg {
+ return New(1, 0).DivRound(result, int32(PowPrecisionNegativeExponent)), nil
+ }
+
+ return result, nil
+}
+
+// PowBigInt returns d to the power of exp, where exp is big.Int.
+// Only returns error when d and exp is 0, thus result is undefined.
+//
+// When exponent is negative the returned decimal will have maximum precision of PowPrecisionNegativeExponent places after decimal point.
+//
+// Example:
+//
+// d1, err := decimal.NewFromFloat(3.0).PowBigInt(big.NewInt(3))
+// d1.String() // output: "27"
+//
+// d2, err := decimal.NewFromFloat(629.25).PowBigInt(big.NewInt(5))
+// d2.String() // output: "98654323103449.5673828125"
+func (d Decimal) PowBigInt(exp *big.Int) (Decimal, error) {
+ return d.powBigIntWithPrecision(exp, int32(PowPrecisionNegativeExponent))
+}
+
+func (d Decimal) powBigIntWithPrecision(exp *big.Int, precision int32) (Decimal, error) {
+ if d.IsZero() && exp.Sign() == 0 {
+ return Decimal{}, fmt.Errorf("cannot represent undefined value of 0**0")
+ }
+
+ tmpExp := new(big.Int).Set(exp)
+ isExpNeg := exp.Sign() < 0
+
+ if isExpNeg {
+ tmpExp.Abs(tmpExp)
+ }
+
+ n, result := d, New(1, 0)
+
+ for tmpExp.Sign() > 0 {
+ if tmpExp.Bit(0) == 1 {
+ result = result.Mul(n)
+ }
+ tmpExp.Rsh(tmpExp, 1)
+
+ if tmpExp.Sign() > 0 {
+ n = n.Mul(n)
+ }
+ }
+
+ if isExpNeg {
+ return New(1, 0).DivRound(result, precision), nil
+ }
+
+ return result, nil
+}
+
+// ExpHullAbrham calculates the natural exponent of decimal (e to the power of d) using Hull-Abraham algorithm.
+// OverallPrecision argument specifies the overall precision of the result (integer part + decimal part).
+//
+// ExpHullAbrham is faster than ExpTaylor for small precision values, but it is much slower for large precision values.
+//
+// Example:
+//
+// NewFromFloat(26.1).ExpHullAbrham(2).String() // output: "220000000000"
+// NewFromFloat(26.1).ExpHullAbrham(20).String() // output: "216314672147.05767284"
+func (d Decimal) ExpHullAbrham(overallPrecision uint32) (Decimal, error) {
+ // Algorithm based on Variable precision exponential function.
+ // ACM Transactions on Mathematical Software by T. E. Hull & A. Abrham.
+ if d.IsZero() {
+ return Decimal{oneInt, 0}, nil
+ }
+
+ currentPrecision := overallPrecision
+
+ // Algorithm does not work if currentPrecision * 23 < |x|.
+ // Precision is automatically increased in such cases, so the value can be calculated precisely.
+ // If newly calculated precision is higher than ExpMaxIterations the currentPrecision will not be changed.
+ f := d.Abs().InexactFloat64()
+ if ncp := f / 23; ncp > float64(currentPrecision) && ncp < float64(ExpMaxIterations) {
+ currentPrecision = uint32(math.Ceil(ncp))
+ }
+
+ // fail if abs(d) beyond an over/underflow threshold
+ overflowThreshold := New(23*int64(currentPrecision), 0)
+ if d.Abs().Cmp(overflowThreshold) > 0 {
+ return Decimal{}, fmt.Errorf("over/underflow threshold, exp(x) cannot be calculated precisely")
+ }
+
+ // Return 1 if abs(d) small enough; this also avoids later over/underflow
+ overflowThreshold2 := New(9, -int32(currentPrecision)-1)
+ if d.Abs().Cmp(overflowThreshold2) <= 0 {
+ return Decimal{oneInt, d.exp}, nil
+ }
+
+ // t is the smallest integer >= 0 such that the corresponding abs(d/k) < 1
+ t := d.exp + int32(d.NumDigits()) // Add d.NumDigits because the paper assumes that d.value [0.1, 1)
+
+ if t < 0 {
+ t = 0
+ }
+
+ k := New(1, t) // reduction factor
+ r := Decimal{new(big.Int).Set(d.value), d.exp - t} // reduced argument
+ p := int32(currentPrecision) + t + 2 // precision for calculating the sum
+
+ // Determine n, the number of therms for calculating sum
+ // use first Newton step (1.435p - 1.182) / log10(p/abs(r))
+ // for solving appropriate equation, along with directed
+ // roundings and simple rational bound for log10(p/abs(r))
+ rf := r.Abs().InexactFloat64()
+ pf := float64(p)
+ nf := math.Ceil((1.453*pf - 1.182) / math.Log10(pf/rf))
+ if nf > float64(ExpMaxIterations) || math.IsNaN(nf) {
+ return Decimal{}, fmt.Errorf("exact value cannot be calculated in <=ExpMaxIterations iterations")
+ }
+ n := int64(nf)
+
+ tmp := New(0, 0)
+ sum := New(1, 0)
+ one := New(1, 0)
+ for i := n - 1; i > 0; i-- {
+ tmp.value.SetInt64(i)
+ sum = sum.Mul(r.DivRound(tmp, p))
+ sum = sum.Add(one)
+ }
+
+ ki := k.IntPart()
+ res := New(1, 0)
+ for i := ki; i > 0; i-- {
+ res = res.Mul(sum)
+ }
+
+ resNumDigits := int32(res.NumDigits())
+
+ var roundDigits int32
+ if resNumDigits > abs(res.exp) {
+ roundDigits = int32(currentPrecision) - resNumDigits - res.exp
+ } else {
+ roundDigits = int32(currentPrecision)
+ }
+
+ res = res.Round(roundDigits)
+
+ return res, nil
+}
+
+// ExpTaylor calculates the natural exponent of decimal (e to the power of d) using Taylor series expansion.
+// Precision argument specifies how precise the result must be (number of digits after decimal point).
+// Negative precision is allowed.
+//
+// ExpTaylor is much faster for large precision values than ExpHullAbrham.
+//
+// Example:
+//
+// d, err := NewFromFloat(26.1).ExpTaylor(2).String()
+// d.String() // output: "216314672147.06"
+//
+// NewFromFloat(26.1).ExpTaylor(20).String()
+// d.String() // output: "216314672147.05767284062928674083"
+//
+// NewFromFloat(26.1).ExpTaylor(-10).String()
+// d.String() // output: "220000000000"
+func (d Decimal) ExpTaylor(precision int32) (Decimal, error) {
+ // Note(mwoss): Implementation can be optimized by exclusively using big.Int API only
+ if d.IsZero() {
+ return Decimal{oneInt, 0}.Round(precision), nil
+ }
+
+ var epsilon Decimal
+ var divPrecision int32
+ if precision < 0 {
+ epsilon = New(1, -1)
+ divPrecision = 8
+ } else {
+ epsilon = New(1, -precision-1)
+ divPrecision = precision + 1
+ }
+
+ decAbs := d.Abs()
+ pow := d.Abs()
+ factorial := New(1, 0)
+
+ result := New(1, 0)
+
+ for i := int64(1); ; {
+ step := pow.DivRound(factorial, divPrecision)
+ result = result.Add(step)
+
+ // Stop Taylor series when current step is smaller than epsilon
+ if step.Cmp(epsilon) < 0 {
+ break
+ }
+
+ pow = pow.Mul(decAbs)
+
+ i++
+
+ // Calculate next factorial number or retrieve cached value
+ if len(factorials) >= int(i) && !factorials[i-1].IsZero() {
+ factorial = factorials[i-1]
+ } else {
+ // To avoid any race conditions, firstly the zero value is appended to a slice to create
+ // a spot for newly calculated factorial. After that, the zero value is replaced by calculated
+ // factorial using the index notation.
+ factorial = factorials[i-2].Mul(New(i, 0))
+ factorials = append(factorials, Zero)
+ factorials[i-1] = factorial
+ }
+ }
+
+ if d.Sign() < 0 {
+ result = New(1, 0).DivRound(result, precision+1)
+ }
+
+ result = result.Round(precision)
+ return result, nil
+}
+
+// Ln calculates natural logarithm of d.
+// Precision argument specifies how precise the result must be (number of digits after decimal point).
+// Negative precision is allowed.
+//
+// Example:
+//
+// d1, err := NewFromFloat(13.3).Ln(2)
+// d1.String() // output: "2.59"
+//
+// d2, err := NewFromFloat(579.161).Ln(10)
+// d2.String() // output: "6.3615805046"
+func (d Decimal) Ln(precision int32) (Decimal, error) {
+ // Algorithm based on The Use of Iteration Methods for Approximating the Natural Logarithm,
+ // James F. Epperson, The American Mathematical Monthly, Vol. 96, No. 9, November 1989, pp. 831-835.
+ if d.IsNegative() {
+ return Decimal{}, fmt.Errorf("cannot calculate natural logarithm for negative decimals")
+ }
+
+ if d.IsZero() {
+ return Decimal{}, fmt.Errorf("cannot represent natural logarithm of 0, result: -infinity")
+ }
+
+ calcPrecision := precision + 2
+ z := d.Copy()
+
+ var comp1, comp3, comp2, comp4, reduceAdjust Decimal
+ comp1 = z.Sub(Decimal{oneInt, 0})
+ comp3 = Decimal{oneInt, -1}
+
+ // for decimal in range [0.9, 1.1] where ln(d) is close to 0
+ usePowerSeries := false
+
+ if comp1.Abs().Cmp(comp3) <= 0 {
+ usePowerSeries = true
+ } else {
+ // reduce input decimal to range [0.1, 1)
+ expDelta := int32(z.NumDigits()) + z.exp
+ z.exp -= expDelta
+
+ // Input decimal was reduced by factor of 10^expDelta, thus we will need to add
+ // ln(10^expDelta) = expDelta * ln(10)
+ // to the result to compensate that
+ ln10 := ln10.withPrecision(calcPrecision)
+ reduceAdjust = NewFromInt32(expDelta)
+ reduceAdjust = reduceAdjust.Mul(ln10)
+
+ comp1 = z.Sub(Decimal{oneInt, 0})
+
+ if comp1.Abs().Cmp(comp3) <= 0 {
+ usePowerSeries = true
+ } else {
+ // initial estimate using floats
+ zFloat := z.InexactFloat64()
+ comp1 = NewFromFloat(math.Log(zFloat))
+ }
+ }
+
+ epsilon := Decimal{oneInt, -calcPrecision}
+
+ if usePowerSeries {
+ // Power Series - https://en.wikipedia.org/wiki/Logarithm#Power_series
+ // Calculating n-th term of formula: ln(z+1) = 2 sum [ 1 / (2n+1) * (z / (z+2))^(2n+1) ]
+ // until the difference between current and next term is smaller than epsilon.
+ // Coverage quite fast for decimals close to 1.0
+
+ // z + 2
+ comp2 = comp1.Add(Decimal{twoInt, 0})
+ // z / (z + 2)
+ comp3 = comp1.DivRound(comp2, calcPrecision)
+ // 2 * (z / (z + 2))
+ comp1 = comp3.Add(comp3)
+ comp2 = comp1.Copy()
+
+ for n := 1; ; n++ {
+ // 2 * (z / (z+2))^(2n+1)
+ comp2 = comp2.Mul(comp3).Mul(comp3)
+
+ // 1 / (2n+1) * 2 * (z / (z+2))^(2n+1)
+ comp4 = NewFromInt(int64(2*n + 1))
+ comp4 = comp2.DivRound(comp4, calcPrecision)
+
+ // comp1 = 2 sum [ 1 / (2n+1) * (z / (z+2))^(2n+1) ]
+ comp1 = comp1.Add(comp4)
+
+ if comp4.Abs().Cmp(epsilon) <= 0 {
+ break
+ }
+ }
+ } else {
+ // Halley's Iteration.
+ // Calculating n-th term of formula: a_(n+1) = a_n - 2 * (exp(a_n) - z) / (exp(a_n) + z),
+ // until the difference between current and next term is smaller than epsilon
+ var prevStep Decimal
+ maxIters := calcPrecision*2 + 10
+
+ for i := int32(0); i < maxIters; i++ {
+ // exp(a_n)
+ comp3, _ = comp1.ExpTaylor(calcPrecision)
+ // exp(a_n) - z
+ comp2 = comp3.Sub(z)
+ // 2 * (exp(a_n) - z)
+ comp2 = comp2.Add(comp2)
+ // exp(a_n) + z
+ comp4 = comp3.Add(z)
+ // 2 * (exp(a_n) - z) / (exp(a_n) + z)
+ comp3 = comp2.DivRound(comp4, calcPrecision)
+ // comp1 = a_(n+1) = a_n - 2 * (exp(a_n) - z) / (exp(a_n) + z)
+ comp1 = comp1.Sub(comp3)
+
+ if prevStep.Add(comp3).IsZero() {
+ // If iteration steps oscillate we should return early and prevent an infinity loop
+ // NOTE(mwoss): This should be quite a rare case, returning error is not necessary
+ break
+ }
+
+ if comp3.Abs().Cmp(epsilon) <= 0 {
+ break
+ }
+
+ prevStep = comp3
+ }
+ }
+
+ comp1 = comp1.Add(reduceAdjust)
+
+ return comp1.Round(precision), nil
+}
+
+// NumDigits returns the number of digits of the decimal coefficient (d.Value)
+func (d Decimal) NumDigits() int {
+ if d.value == nil {
+ return 1
+ }
+
+ if d.value.IsInt64() {
+ i64 := d.value.Int64()
+ // restrict fast path to integers with exact conversion to float64
+ if i64 <= (1<<53) && i64 >= -(1<<53) {
+ if i64 == 0 {
+ return 1
+ }
+ return int(math.Log10(math.Abs(float64(i64)))) + 1
+ }
+ }
+
+ estimatedNumDigits := int(float64(d.value.BitLen()) / math.Log2(10))
+
+ // estimatedNumDigits (lg10) may be off by 1, need to verify
+ digitsBigInt := big.NewInt(int64(estimatedNumDigits))
+ errorCorrectionUnit := digitsBigInt.Exp(tenInt, digitsBigInt, nil)
+
+ if d.value.CmpAbs(errorCorrectionUnit) >= 0 {
+ return estimatedNumDigits + 1
+ }
+
+ return estimatedNumDigits
+}
+
+// IsInteger returns true when decimal can be represented as an integer value, otherwise, it returns false.
+func (d Decimal) IsInteger() bool {
+ // The most typical case, all decimal with exponent higher or equal 0 can be represented as integer
+ if d.exp >= 0 {
+ return true
+ }
+ // When the exponent is negative we have to check every number after the decimal place
+ // If all of them are zeroes, we are sure that given decimal can be represented as an integer
+ var r big.Int
+ q := new(big.Int).Set(d.value)
+ for z := abs(d.exp); z > 0; z-- {
+ q.QuoRem(q, tenInt, &r)
+ if r.Cmp(zeroInt) != 0 {
+ return false
+ }
+ }
+ return true
+}
+
+// Abs calculates absolute value of any int32. Used for calculating absolute value of decimal's exponent.
+func abs(n int32) int32 {
+ if n < 0 {
+ return -n
+ }
+ return n
+}
+
+// Cmp compares the numbers represented by d and d2 and returns:
+//
+// -1 if d < d2
+// 0 if d == d2
+// +1 if d > d2
+func (d Decimal) Cmp(d2 Decimal) int {
+ d.ensureInitialized()
+ d2.ensureInitialized()
+
+ if d.exp == d2.exp {
+ return d.value.Cmp(d2.value)
+ }
+
+ rd, rd2 := RescalePair(d, d2)
+
+ return rd.value.Cmp(rd2.value)
+}
+
+// Compare compares the numbers represented by d and d2 and returns:
+//
+// -1 if d < d2
+// 0 if d == d2
+// +1 if d > d2
+func (d Decimal) Compare(d2 Decimal) int {
+ return d.Cmp(d2)
+}
+
+// Equal returns whether the numbers represented by d and d2 are equal.
+func (d Decimal) Equal(d2 Decimal) bool {
+ return d.Cmp(d2) == 0
+}
+
+// Deprecated: Equals is deprecated, please use Equal method instead.
+func (d Decimal) Equals(d2 Decimal) bool {
+ return d.Equal(d2)
+}
+
+// GreaterThan (GT) returns true when d is greater than d2.
+func (d Decimal) GreaterThan(d2 Decimal) bool {
+ return d.Cmp(d2) == 1
+}
+
+// GreaterThanOrEqual (GTE) returns true when d is greater than or equal to d2.
+func (d Decimal) GreaterThanOrEqual(d2 Decimal) bool {
+ cmp := d.Cmp(d2)
+ return cmp == 1 || cmp == 0
+}
+
+// LessThan (LT) returns true when d is less than d2.
+func (d Decimal) LessThan(d2 Decimal) bool {
+ return d.Cmp(d2) == -1
+}
+
+// LessThanOrEqual (LTE) returns true when d is less than or equal to d2.
+func (d Decimal) LessThanOrEqual(d2 Decimal) bool {
+ cmp := d.Cmp(d2)
+ return cmp == -1 || cmp == 0
+}
+
+// Sign returns:
+//
+// -1 if d < 0
+// 0 if d == 0
+// +1 if d > 0
+func (d Decimal) Sign() int {
+ if d.value == nil {
+ return 0
+ }
+ return d.value.Sign()
+}
+
+// IsPositive return
+//
+// true if d > 0
+// false if d == 0
+// false if d < 0
+func (d Decimal) IsPositive() bool {
+ return d.Sign() == 1
+}
+
+// IsNegative return
+//
+// true if d < 0
+// false if d == 0
+// false if d > 0
+func (d Decimal) IsNegative() bool {
+ return d.Sign() == -1
+}
+
+// IsZero return
+//
+// true if d == 0
+// false if d > 0
+// false if d < 0
+func (d Decimal) IsZero() bool {
+ return d.Sign() == 0
+}
+
+// Exponent returns the exponent, or scale component of the decimal.
+func (d Decimal) Exponent() int32 {
+ return d.exp
+}
+
+// Coefficient returns the coefficient of the decimal. It is scaled by 10^Exponent()
+func (d Decimal) Coefficient() *big.Int {
+ d.ensureInitialized()
+ // we copy the coefficient so that mutating the result does not mutate the Decimal.
+ return new(big.Int).Set(d.value)
+}
+
+// CoefficientInt64 returns the coefficient of the decimal as int64. It is scaled by 10^Exponent()
+// If coefficient cannot be represented in an int64, the result will be undefined.
+func (d Decimal) CoefficientInt64() int64 {
+ d.ensureInitialized()
+ return d.value.Int64()
+}
+
+// IntPart returns the integer component of the decimal.
+func (d Decimal) IntPart() int64 {
+ scaledD := d.rescale(0)
+ return scaledD.value.Int64()
+}
+
+// BigInt returns integer component of the decimal as a BigInt.
+func (d Decimal) BigInt() *big.Int {
+ scaledD := d.rescale(0)
+ return scaledD.value
+}
+
+// BigFloat returns decimal as BigFloat.
+// Be aware that casting decimal to BigFloat might cause a loss of precision.
+func (d Decimal) BigFloat() *big.Float {
+ f := &big.Float{}
+ f.SetString(d.String())
+ return f
+}
+
+// Rat returns a rational number representation of the decimal.
+func (d Decimal) Rat() *big.Rat {
+ d.ensureInitialized()
+ if d.exp <= 0 {
+ // NOTE(vadim): must negate after casting to prevent int32 overflow
+ denom := new(big.Int).Exp(tenInt, big.NewInt(-int64(d.exp)), nil)
+ return new(big.Rat).SetFrac(d.value, denom)
+ }
+
+ mul := new(big.Int).Exp(tenInt, big.NewInt(int64(d.exp)), nil)
+ num := new(big.Int).Mul(d.value, mul)
+ return new(big.Rat).SetFrac(num, oneInt)
+}
+
+// Float64 returns the nearest float64 value for d and a bool indicating
+// whether f represents d exactly.
+// For more details, see the documentation for big.Rat.Float64
+func (d Decimal) Float64() (f float64, exact bool) {
+ return d.Rat().Float64()
+}
+
+// InexactFloat64 returns the nearest float64 value for d.
+// It doesn't indicate if the returned value represents d exactly.
+func (d Decimal) InexactFloat64() float64 {
+ f, _ := d.Float64()
+ return f
+}
+
+// String returns the string representation of the decimal
+// with the fixed point.
+//
+// Example:
+//
+// d := New(-12345, -3)
+// println(d.String())
+//
+// Output:
+//
+// -12.345
+func (d Decimal) String() string {
+ return d.string(true)
+}
+
+// StringFixed returns a rounded fixed-point string with places digits after
+// the decimal point.
+//
+// Example:
+//
+// NewFromFloat(0).StringFixed(2) // output: "0.00"
+// NewFromFloat(0).StringFixed(0) // output: "0"
+// NewFromFloat(5.45).StringFixed(0) // output: "5"
+// NewFromFloat(5.45).StringFixed(1) // output: "5.5"
+// NewFromFloat(5.45).StringFixed(2) // output: "5.45"
+// NewFromFloat(5.45).StringFixed(3) // output: "5.450"
+// NewFromFloat(545).StringFixed(-1) // output: "550"
+func (d Decimal) StringFixed(places int32) string {
+ rounded := d.Round(places)
+ return rounded.string(false)
+}
+
+// StringFixedBank returns a banker rounded fixed-point string with places digits
+// after the decimal point.
+//
+// Example:
+//
+// NewFromFloat(0).StringFixedBank(2) // output: "0.00"
+// NewFromFloat(0).StringFixedBank(0) // output: "0"
+// NewFromFloat(5.45).StringFixedBank(0) // output: "5"
+// NewFromFloat(5.45).StringFixedBank(1) // output: "5.4"
+// NewFromFloat(5.45).StringFixedBank(2) // output: "5.45"
+// NewFromFloat(5.45).StringFixedBank(3) // output: "5.450"
+// NewFromFloat(545).StringFixedBank(-1) // output: "540"
+func (d Decimal) StringFixedBank(places int32) string {
+ rounded := d.RoundBank(places)
+ return rounded.string(false)
+}
+
+// StringFixedCash returns a Swedish/Cash rounded fixed-point string. For
+// more details see the documentation at function RoundCash.
+func (d Decimal) StringFixedCash(interval uint8) string {
+ rounded := d.RoundCash(interval)
+ return rounded.string(false)
+}
+
+// Round rounds the decimal to places decimal places.
+// If places < 0, it will round the integer part to the nearest 10^(-places).
+//
+// Example:
+//
+// NewFromFloat(5.45).Round(1).String() // output: "5.5"
+// NewFromFloat(545).Round(-1).String() // output: "550"
+func (d Decimal) Round(places int32) Decimal {
+ if d.exp == -places {
+ return d
+ }
+ // truncate to places + 1
+ ret := d.rescale(-places - 1)
+
+ // add sign(d) * 0.5
+ if ret.value.Sign() < 0 {
+ ret.value.Sub(ret.value, fiveInt)
+ } else {
+ ret.value.Add(ret.value, fiveInt)
+ }
+
+ // floor for positive numbers, ceil for negative numbers
+ _, m := ret.value.DivMod(ret.value, tenInt, new(big.Int))
+ ret.exp++
+ if ret.value.Sign() < 0 && m.Cmp(zeroInt) != 0 {
+ ret.value.Add(ret.value, oneInt)
+ }
+
+ return ret
+}
+
+// RoundCeil rounds the decimal towards +infinity.
+//
+// Example:
+//
+// NewFromFloat(545).RoundCeil(-2).String() // output: "600"
+// NewFromFloat(500).RoundCeil(-2).String() // output: "500"
+// NewFromFloat(1.1001).RoundCeil(2).String() // output: "1.11"
+// NewFromFloat(-1.454).RoundCeil(1).String() // output: "-1.4"
+func (d Decimal) RoundCeil(places int32) Decimal {
+ if d.exp >= -places {
+ return d
+ }
+
+ rescaled := d.rescale(-places)
+ if d.Equal(rescaled) {
+ return d
+ }
+
+ if d.value.Sign() > 0 {
+ rescaled.value.Add(rescaled.value, oneInt)
+ }
+
+ return rescaled
+}
+
+// RoundFloor rounds the decimal towards -infinity.
+//
+// Example:
+//
+// NewFromFloat(545).RoundFloor(-2).String() // output: "500"
+// NewFromFloat(-500).RoundFloor(-2).String() // output: "-500"
+// NewFromFloat(1.1001).RoundFloor(2).String() // output: "1.1"
+// NewFromFloat(-1.454).RoundFloor(1).String() // output: "-1.5"
+func (d Decimal) RoundFloor(places int32) Decimal {
+ if d.exp >= -places {
+ return d
+ }
+
+ rescaled := d.rescale(-places)
+ if d.Equal(rescaled) {
+ return d
+ }
+
+ if d.value.Sign() < 0 {
+ rescaled.value.Sub(rescaled.value, oneInt)
+ }
+
+ return rescaled
+}
+
+// RoundUp rounds the decimal away from zero.
+//
+// Example:
+//
+// NewFromFloat(545).RoundUp(-2).String() // output: "600"
+// NewFromFloat(500).RoundUp(-2).String() // output: "500"
+// NewFromFloat(1.1001).RoundUp(2).String() // output: "1.11"
+// NewFromFloat(-1.454).RoundUp(1).String() // output: "-1.5"
+func (d Decimal) RoundUp(places int32) Decimal {
+ if d.exp >= -places {
+ return d
+ }
+
+ rescaled := d.rescale(-places)
+ if d.Equal(rescaled) {
+ return d
+ }
+
+ if d.value.Sign() > 0 {
+ rescaled.value.Add(rescaled.value, oneInt)
+ } else if d.value.Sign() < 0 {
+ rescaled.value.Sub(rescaled.value, oneInt)
+ }
+
+ return rescaled
+}
+
+// RoundDown rounds the decimal towards zero.
+//
+// Example:
+//
+// NewFromFloat(545).RoundDown(-2).String() // output: "500"
+// NewFromFloat(-500).RoundDown(-2).String() // output: "-500"
+// NewFromFloat(1.1001).RoundDown(2).String() // output: "1.1"
+// NewFromFloat(-1.454).RoundDown(1).String() // output: "-1.4"
+func (d Decimal) RoundDown(places int32) Decimal {
+ if d.exp >= -places {
+ return d
+ }
+
+ rescaled := d.rescale(-places)
+ if d.Equal(rescaled) {
+ return d
+ }
+ return rescaled
+}
+
+// RoundBank rounds the decimal to places decimal places.
+// If the final digit to round is equidistant from the nearest two integers the
+// rounded value is taken as the even number
+//
+// If places < 0, it will round the integer part to the nearest 10^(-places).
+//
+// Examples:
+//
+// NewFromFloat(5.45).RoundBank(1).String() // output: "5.4"
+// NewFromFloat(545).RoundBank(-1).String() // output: "540"
+// NewFromFloat(5.46).RoundBank(1).String() // output: "5.5"
+// NewFromFloat(546).RoundBank(-1).String() // output: "550"
+// NewFromFloat(5.55).RoundBank(1).String() // output: "5.6"
+// NewFromFloat(555).RoundBank(-1).String() // output: "560"
+func (d Decimal) RoundBank(places int32) Decimal {
+
+ round := d.Round(places)
+ remainder := d.Sub(round).Abs()
+
+ half := New(5, -places-1)
+ if remainder.Cmp(half) == 0 && round.value.Bit(0) != 0 {
+ if round.value.Sign() < 0 {
+ round.value.Add(round.value, oneInt)
+ } else {
+ round.value.Sub(round.value, oneInt)
+ }
+ }
+
+ return round
+}
+
+// RoundCash aka Cash/Penny/öre rounding rounds decimal to a specific
+// interval. The amount payable for a cash transaction is rounded to the nearest
+// multiple of the minimum currency unit available. The following intervals are
+// available: 5, 10, 25, 50 and 100; any other number throws a panic.
+//
+// 5: 5 cent rounding 3.43 => 3.45
+// 10: 10 cent rounding 3.45 => 3.50 (5 gets rounded up)
+// 25: 25 cent rounding 3.41 => 3.50
+// 50: 50 cent rounding 3.75 => 4.00
+// 100: 100 cent rounding 3.50 => 4.00
+//
+// For more details: https://en.wikipedia.org/wiki/Cash_rounding
+func (d Decimal) RoundCash(interval uint8) Decimal {
+ var iVal *big.Int
+ switch interval {
+ case 5:
+ iVal = twentyInt
+ case 10:
+ iVal = tenInt
+ case 25:
+ iVal = fourInt
+ case 50:
+ iVal = twoInt
+ case 100:
+ iVal = oneInt
+ default:
+ panic(fmt.Sprintf("Decimal does not support this Cash rounding interval `%d`. Supported: 5, 10, 25, 50, 100", interval))
+ }
+ dVal := Decimal{
+ value: iVal,
+ }
+
+ // TODO: optimize those calculations to reduce the high allocations (~29 allocs).
+ return d.Mul(dVal).Round(0).Div(dVal).Truncate(2)
+}
+
+// Floor returns the nearest integer value less than or equal to d.
+func (d Decimal) Floor() Decimal {
+ d.ensureInitialized()
+
+ if d.exp >= 0 {
+ return d
+ }
+
+ exp := big.NewInt(10)
+
+ // NOTE(vadim): must negate after casting to prevent int32 overflow
+ exp.Exp(exp, big.NewInt(-int64(d.exp)), nil)
+
+ z := new(big.Int).Div(d.value, exp)
+ return Decimal{value: z, exp: 0}
+}
+
+// Ceil returns the nearest integer value greater than or equal to d.
+func (d Decimal) Ceil() Decimal {
+ d.ensureInitialized()
+
+ if d.exp >= 0 {
+ return d
+ }
+
+ exp := big.NewInt(10)
+
+ // NOTE(vadim): must negate after casting to prevent int32 overflow
+ exp.Exp(exp, big.NewInt(-int64(d.exp)), nil)
+
+ z, m := new(big.Int).DivMod(d.value, exp, new(big.Int))
+ if m.Cmp(zeroInt) != 0 {
+ z.Add(z, oneInt)
+ }
+ return Decimal{value: z, exp: 0}
+}
+
+// Truncate truncates off digits from the number, without rounding.
+//
+// NOTE: precision is the last digit that will not be truncated (must be >= 0).
+//
+// Example:
+//
+// decimal.NewFromString("123.456").Truncate(2).String() // "123.45"
+func (d Decimal) Truncate(precision int32) Decimal {
+ d.ensureInitialized()
+ if precision >= 0 && -precision > d.exp {
+ return d.rescale(-precision)
+ }
+ return d
+}
+
+// UnmarshalJSON implements the json.Unmarshaler interface.
+func (d *Decimal) UnmarshalJSON(decimalBytes []byte) error {
+ if string(decimalBytes) == "null" {
+ return nil
+ }
+
+ str, err := unquoteIfQuoted(decimalBytes)
+ if err != nil {
+ return fmt.Errorf("error decoding string '%s': %s", decimalBytes, err)
+ }
+
+ decimal, err := NewFromString(str)
+ *d = decimal
+ if err != nil {
+ return fmt.Errorf("error decoding string '%s': %s", str, err)
+ }
+ return nil
+}
+
+// MarshalJSON implements the json.Marshaler interface.
+func (d Decimal) MarshalJSON() ([]byte, error) {
+ var str string
+ if MarshalJSONWithoutQuotes {
+ str = d.String()
+ } else {
+ str = "\"" + d.String() + "\""
+ }
+ return []byte(str), nil
+}
+
+// UnmarshalBinary implements the encoding.BinaryUnmarshaler interface. As a string representation
+// is already used when encoding to text, this method stores that string as []byte
+func (d *Decimal) UnmarshalBinary(data []byte) error {
+ // Verify we have at least 4 bytes for the exponent. The GOB encoded value
+ // may be empty.
+ if len(data) < 4 {
+ return fmt.Errorf("error decoding binary %v: expected at least 4 bytes, got %d", data, len(data))
+ }
+
+ // Extract the exponent
+ d.exp = int32(binary.BigEndian.Uint32(data[:4]))
+
+ // Extract the value
+ d.value = new(big.Int)
+ if err := d.value.GobDecode(data[4:]); err != nil {
+ return fmt.Errorf("error decoding binary %v: %s", data, err)
+ }
+
+ return nil
+}
+
+// MarshalBinary implements the encoding.BinaryMarshaler interface.
+func (d Decimal) MarshalBinary() (data []byte, err error) {
+ // exp is written first, but encode value first to know output size
+ var valueData []byte
+ if valueData, err = d.value.GobEncode(); err != nil {
+ return nil, err
+ }
+
+ // Write the exponent in front, since it's a fixed size
+ expData := make([]byte, 4, len(valueData)+4)
+ binary.BigEndian.PutUint32(expData, uint32(d.exp))
+
+ // Return the byte array
+ return append(expData, valueData...), nil
+}
+
+// Scan implements the sql.Scanner interface for database deserialization.
+func (d *Decimal) Scan(value interface{}) error {
+ // first try to see if the data is stored in database as a Numeric datatype
+ switch v := value.(type) {
+
+ case float32:
+ *d = NewFromFloat(float64(v))
+ return nil
+
+ case float64:
+ // numeric in sqlite3 sends us float64
+ *d = NewFromFloat(v)
+ return nil
+
+ case int64:
+ // at least in sqlite3 when the value is 0 in db, the data is sent
+ // to us as an int64 instead of a float64 ...
+ *d = New(v, 0)
+ return nil
+
+ case uint64:
+ // while clickhouse may send 0 in db as uint64
+ *d = NewFromUint64(v)
+ return nil
+
+ default:
+ // default is trying to interpret value stored as string
+ str, err := unquoteIfQuoted(v)
+ if err != nil {
+ return err
+ }
+ *d, err = NewFromString(str)
+ return err
+ }
+}
+
+// Value implements the driver.Valuer interface for database serialization.
+func (d Decimal) Value() (driver.Value, error) {
+ return d.String(), nil
+}
+
+// UnmarshalText implements the encoding.TextUnmarshaler interface for XML
+// deserialization.
+func (d *Decimal) UnmarshalText(text []byte) error {
+ str := string(text)
+
+ dec, err := NewFromString(str)
+ *d = dec
+ if err != nil {
+ return fmt.Errorf("error decoding string '%s': %s", str, err)
+ }
+
+ return nil
+}
+
+// MarshalText implements the encoding.TextMarshaler interface for XML
+// serialization.
+func (d Decimal) MarshalText() (text []byte, err error) {
+ return []byte(d.String()), nil
+}
+
+// GobEncode implements the gob.GobEncoder interface for gob serialization.
+func (d Decimal) GobEncode() ([]byte, error) {
+ return d.MarshalBinary()
+}
+
+// GobDecode implements the gob.GobDecoder interface for gob serialization.
+func (d *Decimal) GobDecode(data []byte) error {
+ return d.UnmarshalBinary(data)
+}
+
+// StringScaled first scales the decimal then calls .String() on it.
+//
+// Deprecated: buggy and unintuitive. Use StringFixed instead.
+func (d Decimal) StringScaled(exp int32) string {
+ return d.rescale(exp).String()
+}
+
+func (d Decimal) string(trimTrailingZeros bool) string {
+ if d.exp >= 0 {
+ return d.rescale(0).value.String()
+ }
+
+ abs := new(big.Int).Abs(d.value)
+ str := abs.String()
+
+ var intPart, fractionalPart string
+
+ // NOTE(vadim): this cast to int will cause bugs if d.exp == INT_MIN
+ // and you are on a 32-bit machine. Won't fix this super-edge case.
+ dExpInt := int(d.exp)
+ if len(str) > -dExpInt {
+ intPart = str[:len(str)+dExpInt]
+ fractionalPart = str[len(str)+dExpInt:]
+ } else {
+ intPart = "0"
+
+ num0s := -dExpInt - len(str)
+ fractionalPart = strings.Repeat("0", num0s) + str
+ }
+
+ if trimTrailingZeros {
+ i := len(fractionalPart) - 1
+ for ; i >= 0; i-- {
+ if fractionalPart[i] != '0' {
+ break
+ }
+ }
+ fractionalPart = fractionalPart[:i+1]
+ }
+
+ number := intPart
+ if len(fractionalPart) > 0 {
+ number += "." + fractionalPart
+ }
+
+ if d.value.Sign() < 0 {
+ return "-" + number
+ }
+
+ return number
+}
+
+func (d *Decimal) ensureInitialized() {
+ if d.value == nil {
+ d.value = new(big.Int)
+ }
+}
+
+// Min returns the smallest Decimal that was passed in the arguments.
+//
+// To call this function with an array, you must do:
+//
+// Min(arr[0], arr[1:]...)
+//
+// This makes it harder to accidentally call Min with 0 arguments.
+func Min(first Decimal, rest ...Decimal) Decimal {
+ ans := first
+ for _, item := range rest {
+ if item.Cmp(ans) < 0 {
+ ans = item
+ }
+ }
+ return ans
+}
+
+// Max returns the largest Decimal that was passed in the arguments.
+//
+// To call this function with an array, you must do:
+//
+// Max(arr[0], arr[1:]...)
+//
+// This makes it harder to accidentally call Max with 0 arguments.
+func Max(first Decimal, rest ...Decimal) Decimal {
+ ans := first
+ for _, item := range rest {
+ if item.Cmp(ans) > 0 {
+ ans = item
+ }
+ }
+ return ans
+}
+
+// Sum returns the combined total of the provided first and rest Decimals
+func Sum(first Decimal, rest ...Decimal) Decimal {
+ total := first
+ for _, item := range rest {
+ total = total.Add(item)
+ }
+
+ return total
+}
+
+// Avg returns the average value of the provided first and rest Decimals
+func Avg(first Decimal, rest ...Decimal) Decimal {
+ count := New(int64(len(rest)+1), 0)
+ sum := Sum(first, rest...)
+ return sum.Div(count)
+}
+
+// RescalePair rescales two decimals to common exponential value (minimal exp of both decimals)
+func RescalePair(d1 Decimal, d2 Decimal) (Decimal, Decimal) {
+ d1.ensureInitialized()
+ d2.ensureInitialized()
+
+ if d1.exp < d2.exp {
+ return d1, d2.rescale(d1.exp)
+ } else if d1.exp > d2.exp {
+ return d1.rescale(d2.exp), d2
+ }
+
+ return d1, d2
+}
+
+func unquoteIfQuoted(value interface{}) (string, error) {
+ var bytes []byte
+
+ switch v := value.(type) {
+ case string:
+ bytes = []byte(v)
+ case []byte:
+ bytes = v
+ default:
+ return "", fmt.Errorf("could not convert value '%+v' to byte array of type '%T'", value, value)
+ }
+
+ // If the amount is quoted, strip the quotes
+ if len(bytes) > 2 && bytes[0] == '"' && bytes[len(bytes)-1] == '"' {
+ bytes = bytes[1 : len(bytes)-1]
+ }
+ return string(bytes), nil
+}
+
+// NullDecimal represents a nullable decimal with compatibility for
+// scanning null values from the database.
+type NullDecimal struct {
+ Decimal Decimal
+ Valid bool
+}
+
+func NewNullDecimal(d Decimal) NullDecimal {
+ return NullDecimal{
+ Decimal: d,
+ Valid: true,
+ }
+}
+
+// Scan implements the sql.Scanner interface for database deserialization.
+func (d *NullDecimal) Scan(value interface{}) error {
+ if value == nil {
+ d.Valid = false
+ return nil
+ }
+ d.Valid = true
+ return d.Decimal.Scan(value)
+}
+
+// Value implements the driver.Valuer interface for database serialization.
+func (d NullDecimal) Value() (driver.Value, error) {
+ if !d.Valid {
+ return nil, nil
+ }
+ return d.Decimal.Value()
+}
+
+// UnmarshalJSON implements the json.Unmarshaler interface.
+func (d *NullDecimal) UnmarshalJSON(decimalBytes []byte) error {
+ if string(decimalBytes) == "null" {
+ d.Valid = false
+ return nil
+ }
+ d.Valid = true
+ return d.Decimal.UnmarshalJSON(decimalBytes)
+}
+
+// MarshalJSON implements the json.Marshaler interface.
+func (d NullDecimal) MarshalJSON() ([]byte, error) {
+ if !d.Valid {
+ return []byte("null"), nil
+ }
+ return d.Decimal.MarshalJSON()
+}
+
+// UnmarshalText implements the encoding.TextUnmarshaler interface for XML
+// deserialization
+func (d *NullDecimal) UnmarshalText(text []byte) error {
+ str := string(text)
+
+ // check for empty XML or XML without body e.g., <tag></tag>
+ if str == "" {
+ d.Valid = false
+ return nil
+ }
+ if err := d.Decimal.UnmarshalText(text); err != nil {
+ d.Valid = false
+ return err
+ }
+ d.Valid = true
+ return nil
+}
+
+// MarshalText implements the encoding.TextMarshaler interface for XML
+// serialization.
+func (d NullDecimal) MarshalText() (text []byte, err error) {
+ if !d.Valid {
+ return []byte{}, nil
+ }
+ return d.Decimal.MarshalText()
+}
+
+// Trig functions
+
+// Atan returns the arctangent, in radians, of x.
+func (d Decimal) Atan() Decimal {
+ if d.Equal(NewFromFloat(0.0)) {
+ return d
+ }
+ if d.GreaterThan(NewFromFloat(0.0)) {
+ return d.satan()
+ }
+ return d.Neg().satan().Neg()
+}
+
+func (d Decimal) xatan() Decimal {
+ P0 := NewFromFloat(-8.750608600031904122785e-01)
+ P1 := NewFromFloat(-1.615753718733365076637e+01)
+ P2 := NewFromFloat(-7.500855792314704667340e+01)
+ P3 := NewFromFloat(-1.228866684490136173410e+02)
+ P4 := NewFromFloat(-6.485021904942025371773e+01)
+ Q0 := NewFromFloat(2.485846490142306297962e+01)
+ Q1 := NewFromFloat(1.650270098316988542046e+02)
+ Q2 := NewFromFloat(4.328810604912902668951e+02)
+ Q3 := NewFromFloat(4.853903996359136964868e+02)
+ Q4 := NewFromFloat(1.945506571482613964425e+02)
+ z := d.Mul(d)
+ b1 := P0.Mul(z).Add(P1).Mul(z).Add(P2).Mul(z).Add(P3).Mul(z).Add(P4).Mul(z)
+ b2 := z.Add(Q0).Mul(z).Add(Q1).Mul(z).Add(Q2).Mul(z).Add(Q3).Mul(z).Add(Q4)
+ z = b1.Div(b2)
+ z = d.Mul(z).Add(d)
+ return z
+}
+
+// satan reduces its argument (known to be positive)
+// to the range [0, 0.66] and calls xatan.
+func (d Decimal) satan() Decimal {
+ Morebits := NewFromFloat(6.123233995736765886130e-17) // pi/2 = PIO2 + Morebits
+ Tan3pio8 := NewFromFloat(2.41421356237309504880) // tan(3*pi/8)
+ pi := NewFromFloat(3.14159265358979323846264338327950288419716939937510582097494459)
+
+ if d.LessThanOrEqual(NewFromFloat(0.66)) {
+ return d.xatan()
+ }
+ if d.GreaterThan(Tan3pio8) {
+ return pi.Div(NewFromFloat(2.0)).Sub(NewFromFloat(1.0).Div(d).xatan()).Add(Morebits)
+ }
+ return pi.Div(NewFromFloat(4.0)).Add((d.Sub(NewFromFloat(1.0)).Div(d.Add(NewFromFloat(1.0)))).xatan()).Add(NewFromFloat(0.5).Mul(Morebits))
+}
+
+// sin coefficients
+var _sin = [...]Decimal{
+ NewFromFloat(1.58962301576546568060e-10), // 0x3de5d8fd1fd19ccd
+ NewFromFloat(-2.50507477628578072866e-8), // 0xbe5ae5e5a9291f5d
+ NewFromFloat(2.75573136213857245213e-6), // 0x3ec71de3567d48a1
+ NewFromFloat(-1.98412698295895385996e-4), // 0xbf2a01a019bfdf03
+ NewFromFloat(8.33333333332211858878e-3), // 0x3f8111111110f7d0
+ NewFromFloat(-1.66666666666666307295e-1), // 0xbfc5555555555548
+}
+
+// Sin returns the sine of the radian argument x.
+func (d Decimal) Sin() Decimal {
+ PI4A := NewFromFloat(7.85398125648498535156e-1) // 0x3fe921fb40000000, Pi/4 split into three parts
+ PI4B := NewFromFloat(3.77489470793079817668e-8) // 0x3e64442d00000000,
+ PI4C := NewFromFloat(2.69515142907905952645e-15) // 0x3ce8469898cc5170,
+ M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi
+
+ if d.Equal(NewFromFloat(0.0)) {
+ return d
+ }
+ // make argument positive but save the sign
+ sign := false
+ if d.LessThan(NewFromFloat(0.0)) {
+ d = d.Neg()
+ sign = true
+ }
+
+ j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle
+ y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float
+
+ // map zeros to origin
+ if j&1 == 1 {
+ j++
+ y = y.Add(NewFromFloat(1.0))
+ }
+ j &= 7 // octant modulo 2Pi radians (360 degrees)
+ // reflect in x axis
+ if j > 3 {
+ sign = !sign
+ j -= 4
+ }
+ z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic
+ zz := z.Mul(z)
+
+ if j == 1 || j == 2 {
+ w := zz.Mul(zz).Mul(_cos[0].Mul(zz).Add(_cos[1]).Mul(zz).Add(_cos[2]).Mul(zz).Add(_cos[3]).Mul(zz).Add(_cos[4]).Mul(zz).Add(_cos[5]))
+ y = NewFromFloat(1.0).Sub(NewFromFloat(0.5).Mul(zz)).Add(w)
+ } else {
+ y = z.Add(z.Mul(zz).Mul(_sin[0].Mul(zz).Add(_sin[1]).Mul(zz).Add(_sin[2]).Mul(zz).Add(_sin[3]).Mul(zz).Add(_sin[4]).Mul(zz).Add(_sin[5])))
+ }
+ if sign {
+ y = y.Neg()
+ }
+ return y
+}
+
+// cos coefficients
+var _cos = [...]Decimal{
+ NewFromFloat(-1.13585365213876817300e-11), // 0xbda8fa49a0861a9b
+ NewFromFloat(2.08757008419747316778e-9), // 0x3e21ee9d7b4e3f05
+ NewFromFloat(-2.75573141792967388112e-7), // 0xbe927e4f7eac4bc6
+ NewFromFloat(2.48015872888517045348e-5), // 0x3efa01a019c844f5
+ NewFromFloat(-1.38888888888730564116e-3), // 0xbf56c16c16c14f91
+ NewFromFloat(4.16666666666665929218e-2), // 0x3fa555555555554b
+}
+
+// Cos returns the cosine of the radian argument x.
+func (d Decimal) Cos() Decimal {
+
+ PI4A := NewFromFloat(7.85398125648498535156e-1) // 0x3fe921fb40000000, Pi/4 split into three parts
+ PI4B := NewFromFloat(3.77489470793079817668e-8) // 0x3e64442d00000000,
+ PI4C := NewFromFloat(2.69515142907905952645e-15) // 0x3ce8469898cc5170,
+ M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi
+
+ // make argument positive
+ sign := false
+ if d.LessThan(NewFromFloat(0.0)) {
+ d = d.Neg()
+ }
+
+ j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle
+ y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float
+
+ // map zeros to origin
+ if j&1 == 1 {
+ j++
+ y = y.Add(NewFromFloat(1.0))
+ }
+ j &= 7 // octant modulo 2Pi radians (360 degrees)
+ // reflect in x axis
+ if j > 3 {
+ sign = !sign
+ j -= 4
+ }
+ if j > 1 {
+ sign = !sign
+ }
+
+ z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic
+ zz := z.Mul(z)
+
+ if j == 1 || j == 2 {
+ y = z.Add(z.Mul(zz).Mul(_sin[0].Mul(zz).Add(_sin[1]).Mul(zz).Add(_sin[2]).Mul(zz).Add(_sin[3]).Mul(zz).Add(_sin[4]).Mul(zz).Add(_sin[5])))
+ } else {
+ w := zz.Mul(zz).Mul(_cos[0].Mul(zz).Add(_cos[1]).Mul(zz).Add(_cos[2]).Mul(zz).Add(_cos[3]).Mul(zz).Add(_cos[4]).Mul(zz).Add(_cos[5]))
+ y = NewFromFloat(1.0).Sub(NewFromFloat(0.5).Mul(zz)).Add(w)
+ }
+ if sign {
+ y = y.Neg()
+ }
+ return y
+}
+
+var _tanP = [...]Decimal{
+ NewFromFloat(-1.30936939181383777646e+4), // 0xc0c992d8d24f3f38
+ NewFromFloat(1.15351664838587416140e+6), // 0x413199eca5fc9ddd
+ NewFromFloat(-1.79565251976484877988e+7), // 0xc1711fead3299176
+}
+var _tanQ = [...]Decimal{
+ NewFromFloat(1.00000000000000000000e+0),
+ NewFromFloat(1.36812963470692954678e+4), //0x40cab8a5eeb36572
+ NewFromFloat(-1.32089234440210967447e+6), //0xc13427bc582abc96
+ NewFromFloat(2.50083801823357915839e+7), //0x4177d98fc2ead8ef
+ NewFromFloat(-5.38695755929454629881e+7), //0xc189afe03cbe5a31
+}
+
+// Tan returns the tangent of the radian argument x.
+func (d Decimal) Tan() Decimal {
+
+ PI4A := NewFromFloat(7.85398125648498535156e-1) // 0x3fe921fb40000000, Pi/4 split into three parts
+ PI4B := NewFromFloat(3.77489470793079817668e-8) // 0x3e64442d00000000,
+ PI4C := NewFromFloat(2.69515142907905952645e-15) // 0x3ce8469898cc5170,
+ M4PI := NewFromFloat(1.273239544735162542821171882678754627704620361328125) // 4/pi
+
+ if d.Equal(NewFromFloat(0.0)) {
+ return d
+ }
+
+ // make argument positive but save the sign
+ sign := false
+ if d.LessThan(NewFromFloat(0.0)) {
+ d = d.Neg()
+ sign = true
+ }
+
+ j := d.Mul(M4PI).IntPart() // integer part of x/(Pi/4), as integer for tests on the phase angle
+ y := NewFromFloat(float64(j)) // integer part of x/(Pi/4), as float
+
+ // map zeros to origin
+ if j&1 == 1 {
+ j++
+ y = y.Add(NewFromFloat(1.0))
+ }
+
+ z := d.Sub(y.Mul(PI4A)).Sub(y.Mul(PI4B)).Sub(y.Mul(PI4C)) // Extended precision modular arithmetic
+ zz := z.Mul(z)
+
+ if zz.GreaterThan(NewFromFloat(1e-14)) {
+ w := zz.Mul(_tanP[0].Mul(zz).Add(_tanP[1]).Mul(zz).Add(_tanP[2]))
+ x := zz.Add(_tanQ[1]).Mul(zz).Add(_tanQ[2]).Mul(zz).Add(_tanQ[3]).Mul(zz).Add(_tanQ[4])
+ y = z.Add(z.Mul(w.Div(x)))
+ } else {
+ y = z
+ }
+ if j&2 == 2 {
+ y = NewFromFloat(-1.0).Div(y)
+ }
+ if sign {
+ y = y.Neg()
+ }
+ return y
+}