diff options
| author | mo khan <mo@mokhan.ca> | 2025-07-22 17:35:49 -0600 |
|---|---|---|
| committer | mo khan <mo@mokhan.ca> | 2025-07-22 17:35:49 -0600 |
| commit | 20ef0d92694465ac86b550df139e8366a0a2b4fa (patch) | |
| tree | 3f14589e1ce6eb9306a3af31c3a1f9e1af5ed637 /vendor/github.com/hashicorp/go-memdb | |
| parent | 44e0d272c040cdc53a98b9f1dc58ae7da67752e6 (diff) | |
feat: connect to spicedb
Diffstat (limited to 'vendor/github.com/hashicorp/go-memdb')
| -rw-r--r-- | vendor/github.com/hashicorp/go-memdb/.gitignore | 26 | ||||
| -rw-r--r-- | vendor/github.com/hashicorp/go-memdb/CODEOWNERS | 13 | ||||
| -rw-r--r-- | vendor/github.com/hashicorp/go-memdb/LICENSE | 365 | ||||
| -rw-r--r-- | vendor/github.com/hashicorp/go-memdb/README.md | 146 | ||||
| -rw-r--r-- | vendor/github.com/hashicorp/go-memdb/changes.go | 37 | ||||
| -rw-r--r-- | vendor/github.com/hashicorp/go-memdb/filter.go | 41 | ||||
| -rw-r--r-- | vendor/github.com/hashicorp/go-memdb/index.go | 934 | ||||
| -rw-r--r-- | vendor/github.com/hashicorp/go-memdb/memdb.go | 119 | ||||
| -rw-r--r-- | vendor/github.com/hashicorp/go-memdb/schema.go | 117 | ||||
| -rw-r--r-- | vendor/github.com/hashicorp/go-memdb/txn.go | 1024 | ||||
| -rw-r--r-- | vendor/github.com/hashicorp/go-memdb/watch.go | 155 | ||||
| -rw-r--r-- | vendor/github.com/hashicorp/go-memdb/watch_few.go | 120 |
12 files changed, 3097 insertions, 0 deletions
diff --git a/vendor/github.com/hashicorp/go-memdb/.gitignore b/vendor/github.com/hashicorp/go-memdb/.gitignore new file mode 100644 index 0000000..11b90db --- /dev/null +++ b/vendor/github.com/hashicorp/go-memdb/.gitignore @@ -0,0 +1,26 @@ +# Compiled Object files, Static and Dynamic libs (Shared Objects) +*.o +*.a +*.so + +# Folders +_obj +_test + +# Architecture specific extensions/prefixes +*.[568vq] +[568vq].out + +*.cgo1.go +*.cgo2.c +_cgo_defun.c +_cgo_gotypes.go +_cgo_export.* + +_testmain.go + +*.exe +*.test +*.prof + +.idea diff --git a/vendor/github.com/hashicorp/go-memdb/CODEOWNERS b/vendor/github.com/hashicorp/go-memdb/CODEOWNERS new file mode 100644 index 0000000..2cad39a --- /dev/null +++ b/vendor/github.com/hashicorp/go-memdb/CODEOWNERS @@ -0,0 +1,13 @@ +# Each line is a file pattern followed by one or more owners. +# More on CODEOWNERS files: https://help.github.com/en/github/creating-cloning-and-archiving-repositories/about-code-owners + +# Default owner +* @hashicorp/team-ip-compliance @hashicorp/raft-force + +# Add override rules below. Each line is a file/folder pattern followed by one or more owners. +# Being an owner means those groups or individuals will be added as reviewers to PRs affecting +# those areas of the code. +# Examples: +# /docs/ @docs-team +# *.js @js-team +# *.go @go-team diff --git a/vendor/github.com/hashicorp/go-memdb/LICENSE b/vendor/github.com/hashicorp/go-memdb/LICENSE new file mode 100644 index 0000000..f4f97ee --- /dev/null +++ b/vendor/github.com/hashicorp/go-memdb/LICENSE @@ -0,0 +1,365 @@ +Copyright (c) 2015 HashiCorp, Inc. + +Mozilla Public License, version 2.0 + +1. Definitions + +1.1. "Contributor" + + means each individual or legal entity that creates, contributes to the + creation of, or owns Covered Software. + +1.2. "Contributor Version" + + means the combination of the Contributions of others (if any) used by a + Contributor and that particular Contributor's Contribution. + +1.3. "Contribution" + + means Covered Software of a particular Contributor. + +1.4. "Covered Software" + + means Source Code Form to which the initial Contributor has attached the + notice in Exhibit A, the Executable Form of such Source Code Form, and + Modifications of such Source Code Form, in each case including portions + thereof. + +1.5. "Incompatible With Secondary Licenses" + means + + a. that the initial Contributor has attached the notice described in + Exhibit B to the Covered Software; or + + b. that the Covered Software was made available under the terms of + version 1.1 or earlier of the License, but not also under the terms of + a Secondary License. + +1.6. "Executable Form" + + means any form of the work other than Source Code Form. + +1.7. "Larger Work" + + means a work that combines Covered Software with other material, in a + separate file or files, that is not Covered Software. + +1.8. "License" + + means this document. + +1.9. "Licensable" + + means having the right to grant, to the maximum extent possible, whether + at the time of the initial grant or subsequently, any and all of the + rights conveyed by this License. + +1.10. "Modifications" + + means any of the following: + + a. any file in Source Code Form that results from an addition to, + deletion from, or modification of the contents of Covered Software; or + + b. any new file in Source Code Form that contains any Covered Software. + +1.11. "Patent Claims" of a Contributor + + means any patent claim(s), including without limitation, method, + process, and apparatus claims, in any patent Licensable by such + Contributor that would be infringed, but for the grant of the License, + by the making, using, selling, offering for sale, having made, import, + or transfer of either its Contributions or its Contributor Version. + +1.12. "Secondary License" + + means either the GNU General Public License, Version 2.0, the GNU Lesser + General Public License, Version 2.1, the GNU Affero General Public + License, Version 3.0, or any later versions of those licenses. + +1.13. "Source Code Form" + + means the form of the work preferred for making modifications. + +1.14. "You" (or "Your") + + means an individual or a legal entity exercising rights under this + License. For legal entities, "You" includes any entity that controls, is + controlled by, or is under common control with You. For purposes of this + definition, "control" means (a) the power, direct or indirect, to cause + the direction or management of such entity, whether by contract or + otherwise, or (b) ownership of more than fifty percent (50%) of the + outstanding shares or beneficial ownership of such entity. + + +2. License Grants and Conditions + +2.1. Grants + + Each Contributor hereby grants You a world-wide, royalty-free, + non-exclusive license: + + a. under intellectual property rights (other than patent or trademark) + Licensable by such Contributor to use, reproduce, make available, + modify, display, perform, distribute, and otherwise exploit its + Contributions, either on an unmodified basis, with Modifications, or + as part of a Larger Work; and + + b. under Patent Claims of such Contributor to make, use, sell, offer for + sale, have made, import, and otherwise transfer either its + Contributions or its Contributor Version. + +2.2. Effective Date + + The licenses granted in Section 2.1 with respect to any Contribution + become effective for each Contribution on the date the Contributor first + distributes such Contribution. + +2.3. Limitations on Grant Scope + + The licenses granted in this Section 2 are the only rights granted under + this License. No additional rights or licenses will be implied from the + distribution or licensing of Covered Software under this License. + Notwithstanding Section 2.1(b) above, no patent license is granted by a + Contributor: + + a. for any code that a Contributor has removed from Covered Software; or + + b. for infringements caused by: (i) Your and any other third party's + modifications of Covered Software, or (ii) the combination of its + Contributions with other software (except as part of its Contributor + Version); or + + c. under Patent Claims infringed by Covered Software in the absence of + its Contributions. + + This License does not grant any rights in the trademarks, service marks, + or logos of any Contributor (except as may be necessary to comply with + the notice requirements in Section 3.4). + +2.4. Subsequent Licenses + + No Contributor makes additional grants as a result of Your choice to + distribute the Covered Software under a subsequent version of this + License (see Section 10.2) or under the terms of a Secondary License (if + permitted under the terms of Section 3.3). + +2.5. Representation + + Each Contributor represents that the Contributor believes its + Contributions are its original creation(s) or it has sufficient rights to + grant the rights to its Contributions conveyed by this License. + +2.6. Fair Use + + This License is not intended to limit any rights You have under + applicable copyright doctrines of fair use, fair dealing, or other + equivalents. + +2.7. Conditions + + Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in + Section 2.1. + + +3. Responsibilities + +3.1. Distribution of Source Form + + All distribution of Covered Software in Source Code Form, including any + Modifications that You create or to which You contribute, must be under + the terms of this License. You must inform recipients that the Source + Code Form of the Covered Software is governed by the terms of this + License, and how they can obtain a copy of this License. You may not + attempt to alter or restrict the recipients' rights in the Source Code + Form. + +3.2. Distribution of Executable Form + + If You distribute Covered Software in Executable Form then: + + a. such Covered Software must also be made available in Source Code Form, + as described in Section 3.1, and You must inform recipients of the + Executable Form how they can obtain a copy of such Source Code Form by + reasonable means in a timely manner, at a charge no more than the cost + of distribution to the recipient; and + + b. You may distribute such Executable Form under the terms of this + License, or sublicense it under different terms, provided that the + license for the Executable Form does not attempt to limit or alter the + recipients' rights in the Source Code Form under this License. + +3.3. Distribution of a Larger Work + + You may create and distribute a Larger Work under terms of Your choice, + provided that You also comply with the requirements of this License for + the Covered Software. If the Larger Work is a combination of Covered + Software with a work governed by one or more Secondary Licenses, and the + Covered Software is not Incompatible With Secondary Licenses, this + License permits You to additionally distribute such Covered Software + under the terms of such Secondary License(s), so that the recipient of + the Larger Work may, at their option, further distribute the Covered + Software under the terms of either this License or such Secondary + License(s). + +3.4. Notices + + You may not remove or alter the substance of any license notices + (including copyright notices, patent notices, disclaimers of warranty, or + limitations of liability) contained within the Source Code Form of the + Covered Software, except that You may alter any license notices to the + extent required to remedy known factual inaccuracies. + +3.5. Application of Additional Terms + + You may choose to offer, and to charge a fee for, warranty, support, + indemnity or liability obligations to one or more recipients of Covered + Software. However, You may do so only on Your own behalf, and not on + behalf of any Contributor. You must make it absolutely clear that any + such warranty, support, indemnity, or liability obligation is offered by + You alone, and You hereby agree to indemnify every Contributor for any + liability incurred by such Contributor as a result of warranty, support, + indemnity or liability terms You offer. You may include additional + disclaimers of warranty and limitations of liability specific to any + jurisdiction. + +4. Inability to Comply Due to Statute or Regulation + + If it is impossible for You to comply with any of the terms of this License + with respect to some or all of the Covered Software due to statute, + judicial order, or regulation then You must: (a) comply with the terms of + this License to the maximum extent possible; and (b) describe the + limitations and the code they affect. Such description must be placed in a + text file included with all distributions of the Covered Software under + this License. Except to the extent prohibited by statute or regulation, + such description must be sufficiently detailed for a recipient of ordinary + skill to be able to understand it. + +5. Termination + +5.1. The rights granted under this License will terminate automatically if You + fail to comply with any of its terms. However, if You become compliant, + then the rights granted under this License from a particular Contributor + are reinstated (a) provisionally, unless and until such Contributor + explicitly and finally terminates Your grants, and (b) on an ongoing + basis, if such Contributor fails to notify You of the non-compliance by + some reasonable means prior to 60 days after You have come back into + compliance. Moreover, Your grants from a particular Contributor are + reinstated on an ongoing basis if such Contributor notifies You of the + non-compliance by some reasonable means, this is the first time You have + received notice of non-compliance with this License from such + Contributor, and You become compliant prior to 30 days after Your receipt + of the notice. + +5.2. If You initiate litigation against any entity by asserting a patent + infringement claim (excluding declaratory judgment actions, + counter-claims, and cross-claims) alleging that a Contributor Version + directly or indirectly infringes any patent, then the rights granted to + You by any and all Contributors for the Covered Software under Section + 2.1 of this License shall terminate. + +5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user + license agreements (excluding distributors and resellers) which have been + validly granted by You or Your distributors under this License prior to + termination shall survive termination. + +6. Disclaimer of Warranty + + Covered Software is provided under this License on an "as is" basis, + without warranty of any kind, either expressed, implied, or statutory, + including, without limitation, warranties that the Covered Software is free + of defects, merchantable, fit for a particular purpose or non-infringing. + The entire risk as to the quality and performance of the Covered Software + is with You. Should any Covered Software prove defective in any respect, + You (not any Contributor) assume the cost of any necessary servicing, + repair, or correction. This disclaimer of warranty constitutes an essential + part of this License. No use of any Covered Software is authorized under + this License except under this disclaimer. + +7. Limitation of Liability + + Under no circumstances and under no legal theory, whether tort (including + negligence), contract, or otherwise, shall any Contributor, or anyone who + distributes Covered Software as permitted above, be liable to You for any + direct, indirect, special, incidental, or consequential damages of any + character including, without limitation, damages for lost profits, loss of + goodwill, work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses, even if such party shall have been + informed of the possibility of such damages. This limitation of liability + shall not apply to liability for death or personal injury resulting from + such party's negligence to the extent applicable law prohibits such + limitation. Some jurisdictions do not allow the exclusion or limitation of + incidental or consequential damages, so this exclusion and limitation may + not apply to You. + +8. Litigation + + Any litigation relating to this License may be brought only in the courts + of a jurisdiction where the defendant maintains its principal place of + business and such litigation shall be governed by laws of that + jurisdiction, without reference to its conflict-of-law provisions. Nothing + in this Section shall prevent a party's ability to bring cross-claims or + counter-claims. + +9. Miscellaneous + + This License represents the complete agreement concerning the subject + matter hereof. If any provision of this License is held to be + unenforceable, such provision shall be reformed only to the extent + necessary to make it enforceable. Any law or regulation which provides that + the language of a contract shall be construed against the drafter shall not + be used to construe this License against a Contributor. + + +10. Versions of the License + +10.1. New Versions + + Mozilla Foundation is the license steward. Except as provided in Section + 10.3, no one other than the license steward has the right to modify or + publish new versions of this License. Each version will be given a + distinguishing version number. + +10.2. Effect of New Versions + + You may distribute the Covered Software under the terms of the version + of the License under which You originally received the Covered Software, + or under the terms of any subsequent version published by the license + steward. + +10.3. Modified Versions + + If you create software not governed by this License, and you want to + create a new license for such software, you may create and use a + modified version of this License if you rename the license and remove + any references to the name of the license steward (except to note that + such modified license differs from this License). + +10.4. Distributing Source Code Form that is Incompatible With Secondary + Licenses If You choose to distribute Source Code Form that is + Incompatible With Secondary Licenses under the terms of this version of + the License, the notice described in Exhibit B of this License must be + attached. + +Exhibit A - Source Code Form License Notice + + This Source Code Form is subject to the + terms of the Mozilla Public License, v. + 2.0. If a copy of the MPL was not + distributed with this file, You can + obtain one at + http://mozilla.org/MPL/2.0/. + +If it is not possible or desirable to put the notice in a particular file, +then You may include the notice in a location (such as a LICENSE file in a +relevant directory) where a recipient would be likely to look for such a +notice. + +You may add additional accurate notices of copyright ownership. + +Exhibit B - "Incompatible With Secondary Licenses" Notice + + This Source Code Form is "Incompatible + With Secondary Licenses", as defined by + the Mozilla Public License, v. 2.0. + diff --git a/vendor/github.com/hashicorp/go-memdb/README.md b/vendor/github.com/hashicorp/go-memdb/README.md new file mode 100644 index 0000000..080b744 --- /dev/null +++ b/vendor/github.com/hashicorp/go-memdb/README.md @@ -0,0 +1,146 @@ +# go-memdb [](https://circleci.com/gh/hashicorp/go-memdb/tree/master) + +Provides the `memdb` package that implements a simple in-memory database +built on immutable radix trees. The database provides Atomicity, Consistency +and Isolation from ACID. Being that it is in-memory, it does not provide durability. +The database is instantiated with a schema that specifies the tables and indices +that exist and allows transactions to be executed. + +The database provides the following: + +* Multi-Version Concurrency Control (MVCC) - By leveraging immutable radix trees + the database is able to support any number of concurrent readers without locking, + and allows a writer to make progress. + +* Transaction Support - The database allows for rich transactions, in which multiple + objects are inserted, updated or deleted. The transactions can span multiple tables, + and are applied atomically. The database provides atomicity and isolation in ACID + terminology, such that until commit the updates are not visible. + +* Rich Indexing - Tables can support any number of indexes, which can be simple like + a single field index, or more advanced compound field indexes. Certain types like + UUID can be efficiently compressed from strings into byte indexes for reduced + storage requirements. + +* Watches - Callers can populate a watch set as part of a query, which can be used to + detect when a modification has been made to the database which affects the query + results. This lets callers easily watch for changes in the database in a very general + way. + +For the underlying immutable radix trees, see [go-immutable-radix](https://github.com/hashicorp/go-immutable-radix). + +Documentation +============= + +The full documentation is available on [Godoc](https://pkg.go.dev/github.com/hashicorp/go-memdb). + +Example +======= + +Below is a [simple example](https://play.golang.org/p/gCGE9FA4og1) of usage + +```go +// Create a sample struct +type Person struct { + Email string + Name string + Age int +} + +// Create the DB schema +schema := &memdb.DBSchema{ + Tables: map[string]*memdb.TableSchema{ + "person": &memdb.TableSchema{ + Name: "person", + Indexes: map[string]*memdb.IndexSchema{ + "id": &memdb.IndexSchema{ + Name: "id", + Unique: true, + Indexer: &memdb.StringFieldIndex{Field: "Email"}, + }, + "age": &memdb.IndexSchema{ + Name: "age", + Unique: false, + Indexer: &memdb.IntFieldIndex{Field: "Age"}, + }, + }, + }, + }, +} + +// Create a new data base +db, err := memdb.NewMemDB(schema) +if err != nil { + panic(err) +} + +// Create a write transaction +txn := db.Txn(true) + +// Insert some people +people := []*Person{ + &Person{"joe@aol.com", "Joe", 30}, + &Person{"lucy@aol.com", "Lucy", 35}, + &Person{"tariq@aol.com", "Tariq", 21}, + &Person{"dorothy@aol.com", "Dorothy", 53}, +} +for _, p := range people { + if err := txn.Insert("person", p); err != nil { + panic(err) + } +} + +// Commit the transaction +txn.Commit() + +// Create read-only transaction +txn = db.Txn(false) +defer txn.Abort() + +// Lookup by email +raw, err := txn.First("person", "id", "joe@aol.com") +if err != nil { + panic(err) +} + +// Say hi! +fmt.Printf("Hello %s!\n", raw.(*Person).Name) + +// List all the people +it, err := txn.Get("person", "id") +if err != nil { + panic(err) +} + +fmt.Println("All the people:") +for obj := it.Next(); obj != nil; obj = it.Next() { + p := obj.(*Person) + fmt.Printf(" %s\n", p.Name) +} + +// Range scan over people with ages between 25 and 35 inclusive +it, err = txn.LowerBound("person", "age", 25) +if err != nil { + panic(err) +} + +fmt.Println("People aged 25 - 35:") +for obj := it.Next(); obj != nil; obj = it.Next() { + p := obj.(*Person) + if p.Age > 35 { + break + } + fmt.Printf(" %s is aged %d\n", p.Name, p.Age) +} +// Output: +// Hello Joe! +// All the people: +// Dorothy +// Joe +// Lucy +// Tariq +// People aged 25 - 35: +// Joe is aged 30 +// Lucy is aged 35 +``` + diff --git a/vendor/github.com/hashicorp/go-memdb/changes.go b/vendor/github.com/hashicorp/go-memdb/changes.go new file mode 100644 index 0000000..4761e92 --- /dev/null +++ b/vendor/github.com/hashicorp/go-memdb/changes.go @@ -0,0 +1,37 @@ +// Copyright (c) HashiCorp, Inc. +// SPDX-License-Identifier: MPL-2.0 + +package memdb + +// Changes describes a set of mutations to memDB tables performed during a +// transaction. +type Changes []Change + +// Change describes a mutation to an object in a table. +type Change struct { + Table string + Before interface{} + After interface{} + + // primaryKey stores the raw key value from the primary index so that we can + // de-duplicate multiple updates of the same object in the same transaction + // but we don't expose this implementation detail to the consumer. + primaryKey []byte +} + +// Created returns true if the mutation describes a new object being inserted. +func (m *Change) Created() bool { + return m.Before == nil && m.After != nil +} + +// Updated returns true if the mutation describes an existing object being +// updated. +func (m *Change) Updated() bool { + return m.Before != nil && m.After != nil +} + +// Deleted returns true if the mutation describes an existing object being +// deleted. +func (m *Change) Deleted() bool { + return m.Before != nil && m.After == nil +} diff --git a/vendor/github.com/hashicorp/go-memdb/filter.go b/vendor/github.com/hashicorp/go-memdb/filter.go new file mode 100644 index 0000000..2e13521 --- /dev/null +++ b/vendor/github.com/hashicorp/go-memdb/filter.go @@ -0,0 +1,41 @@ +// Copyright (c) HashiCorp, Inc. +// SPDX-License-Identifier: MPL-2.0 + +package memdb + +// FilterFunc is a function that takes the results of an iterator and returns +// whether the result should be filtered out. +type FilterFunc func(interface{}) bool + +// FilterIterator is used to wrap a ResultIterator and apply a filter over it. +type FilterIterator struct { + // filter is the filter function applied over the base iterator. + filter FilterFunc + + // iter is the iterator that is being wrapped. + iter ResultIterator +} + +// NewFilterIterator wraps a ResultIterator. The filter function is applied +// to each value returned by a call to iter.Next. +// +// See the documentation for ResultIterator to understand the behaviour of the +// returned FilterIterator. +func NewFilterIterator(iter ResultIterator, filter FilterFunc) *FilterIterator { + return &FilterIterator{ + filter: filter, + iter: iter, + } +} + +// WatchCh returns the watch channel of the wrapped iterator. +func (f *FilterIterator) WatchCh() <-chan struct{} { return f.iter.WatchCh() } + +// Next returns the next non-filtered result from the wrapped iterator. +func (f *FilterIterator) Next() interface{} { + for { + if value := f.iter.Next(); value == nil || !f.filter(value) { + return value + } + } +} diff --git a/vendor/github.com/hashicorp/go-memdb/index.go b/vendor/github.com/hashicorp/go-memdb/index.go new file mode 100644 index 0000000..588e1c8 --- /dev/null +++ b/vendor/github.com/hashicorp/go-memdb/index.go @@ -0,0 +1,934 @@ +// Copyright (c) HashiCorp, Inc. +// SPDX-License-Identifier: MPL-2.0 + +package memdb + +import ( + "encoding/binary" + "encoding/hex" + "errors" + "fmt" + "reflect" + "strconv" + "strings" +) + +// Indexer is an interface used for defining indexes. Indexes are used +// for efficient lookup of objects in a MemDB table. An Indexer must also +// implement one of SingleIndexer or MultiIndexer. +// +// Indexers are primarily responsible for returning the lookup key as +// a byte slice. The byte slice is the key data in the underlying data storage. +type Indexer interface { + // FromArgs is called to build the exact index key from a list of arguments. + FromArgs(args ...interface{}) ([]byte, error) +} + +// SingleIndexer is an interface used for defining indexes that generate a +// single value per object +type SingleIndexer interface { + // FromObject extracts the index value from an object. The return values + // are whether the index value was found, the index value, and any error + // while extracting the index value, respectively. + FromObject(raw interface{}) (bool, []byte, error) +} + +// MultiIndexer is an interface used for defining indexes that generate +// multiple values per object. Each value is stored as a seperate index +// pointing to the same object. +// +// For example, an index that extracts the first and last name of a person +// and allows lookup based on eitherd would be a MultiIndexer. The FromObject +// of this example would split the first and last name and return both as +// values. +type MultiIndexer interface { + // FromObject extracts index values from an object. The return values + // are the same as a SingleIndexer except there can be multiple index + // values. + FromObject(raw interface{}) (bool, [][]byte, error) +} + +// PrefixIndexer is an optional interface on top of an Indexer that allows +// indexes to support prefix-based iteration. +type PrefixIndexer interface { + // PrefixFromArgs is the same as FromArgs for an Indexer except that + // the index value returned should return all prefix-matched values. + PrefixFromArgs(args ...interface{}) ([]byte, error) +} + +// StringFieldIndex is used to extract a field from an object +// using reflection and builds an index on that field. +type StringFieldIndex struct { + Field string + Lowercase bool +} + +func (s *StringFieldIndex) FromObject(obj interface{}) (bool, []byte, error) { + v := reflect.ValueOf(obj) + v = reflect.Indirect(v) // Dereference the pointer if any + + fv := v.FieldByName(s.Field) + isPtr := fv.Kind() == reflect.Ptr + fv = reflect.Indirect(fv) + if !isPtr && !fv.IsValid() { + return false, nil, + fmt.Errorf("field '%s' for %#v is invalid %v ", s.Field, obj, isPtr) + } + + if isPtr && !fv.IsValid() { + val := "" + return false, []byte(val), nil + } + + val := fv.String() + if val == "" { + return false, nil, nil + } + + if s.Lowercase { + val = strings.ToLower(val) + } + + // Add the null character as a terminator + val += "\x00" + return true, []byte(val), nil +} + +func (s *StringFieldIndex) FromArgs(args ...interface{}) ([]byte, error) { + if len(args) != 1 { + return nil, fmt.Errorf("must provide only a single argument") + } + arg, ok := args[0].(string) + if !ok { + return nil, fmt.Errorf("argument must be a string: %#v", args[0]) + } + if s.Lowercase { + arg = strings.ToLower(arg) + } + // Add the null character as a terminator + arg += "\x00" + return []byte(arg), nil +} + +func (s *StringFieldIndex) PrefixFromArgs(args ...interface{}) ([]byte, error) { + val, err := s.FromArgs(args...) + if err != nil { + return nil, err + } + + // Strip the null terminator, the rest is a prefix + n := len(val) + if n > 0 { + return val[:n-1], nil + } + return val, nil +} + +// StringSliceFieldIndex builds an index from a field on an object that is a +// string slice ([]string). Each value within the string slice can be used for +// lookup. +type StringSliceFieldIndex struct { + Field string + Lowercase bool +} + +func (s *StringSliceFieldIndex) FromObject(obj interface{}) (bool, [][]byte, error) { + v := reflect.ValueOf(obj) + v = reflect.Indirect(v) // Dereference the pointer if any + + fv := v.FieldByName(s.Field) + if !fv.IsValid() { + return false, nil, + fmt.Errorf("field '%s' for %#v is invalid", s.Field, obj) + } + + if fv.Kind() != reflect.Slice || fv.Type().Elem().Kind() != reflect.String { + return false, nil, fmt.Errorf("field '%s' is not a string slice", s.Field) + } + + length := fv.Len() + vals := make([][]byte, 0, length) + for i := 0; i < fv.Len(); i++ { + val := fv.Index(i).String() + if val == "" { + continue + } + + if s.Lowercase { + val = strings.ToLower(val) + } + + // Add the null character as a terminator + val += "\x00" + vals = append(vals, []byte(val)) + } + if len(vals) == 0 { + return false, nil, nil + } + return true, vals, nil +} + +func (s *StringSliceFieldIndex) FromArgs(args ...interface{}) ([]byte, error) { + if len(args) != 1 { + return nil, fmt.Errorf("must provide only a single argument") + } + arg, ok := args[0].(string) + if !ok { + return nil, fmt.Errorf("argument must be a string: %#v", args[0]) + } + if s.Lowercase { + arg = strings.ToLower(arg) + } + // Add the null character as a terminator + arg += "\x00" + return []byte(arg), nil +} + +func (s *StringSliceFieldIndex) PrefixFromArgs(args ...interface{}) ([]byte, error) { + val, err := s.FromArgs(args...) + if err != nil { + return nil, err + } + + // Strip the null terminator, the rest is a prefix + n := len(val) + if n > 0 { + return val[:n-1], nil + } + return val, nil +} + +// StringMapFieldIndex is used to extract a field of type map[string]string +// from an object using reflection and builds an index on that field. +// +// Note that although FromArgs in theory supports using either one or +// two arguments, there is a bug: FromObject only creates an index +// using key/value, and does not also create an index using key. This +// means a lookup using one argument will never actually work. +// +// It is currently left as-is to prevent backwards compatibility +// issues. +// +// TODO: Fix this in the next major bump. +type StringMapFieldIndex struct { + Field string + Lowercase bool +} + +var MapType = reflect.MapOf(reflect.TypeOf(""), reflect.TypeOf("")).Kind() + +func (s *StringMapFieldIndex) FromObject(obj interface{}) (bool, [][]byte, error) { + v := reflect.ValueOf(obj) + v = reflect.Indirect(v) // Dereference the pointer if any + + fv := v.FieldByName(s.Field) + if !fv.IsValid() { + return false, nil, fmt.Errorf("field '%s' for %#v is invalid", s.Field, obj) + } + + if fv.Kind() != MapType { + return false, nil, fmt.Errorf("field '%s' is not a map[string]string", s.Field) + } + + length := fv.Len() + vals := make([][]byte, 0, length) + for _, key := range fv.MapKeys() { + k := key.String() + if k == "" { + continue + } + val := fv.MapIndex(key).String() + + if s.Lowercase { + k = strings.ToLower(k) + val = strings.ToLower(val) + } + + // Add the null character as a terminator + k += "\x00" + val + "\x00" + + vals = append(vals, []byte(k)) + } + if len(vals) == 0 { + return false, nil, nil + } + return true, vals, nil +} + +// WARNING: Because of a bug in FromObject, this function will never return +// a value when using the single-argument version. +func (s *StringMapFieldIndex) FromArgs(args ...interface{}) ([]byte, error) { + if len(args) > 2 || len(args) == 0 { + return nil, fmt.Errorf("must provide one or two arguments") + } + key, ok := args[0].(string) + if !ok { + return nil, fmt.Errorf("argument must be a string: %#v", args[0]) + } + if s.Lowercase { + key = strings.ToLower(key) + } + // Add the null character as a terminator + key += "\x00" + + if len(args) == 2 { + val, ok := args[1].(string) + if !ok { + return nil, fmt.Errorf("argument must be a string: %#v", args[1]) + } + if s.Lowercase { + val = strings.ToLower(val) + } + // Add the null character as a terminator + key += val + "\x00" + } + + return []byte(key), nil +} + +// IntFieldIndex is used to extract an int field from an object using +// reflection and builds an index on that field. +type IntFieldIndex struct { + Field string +} + +func (i *IntFieldIndex) FromObject(obj interface{}) (bool, []byte, error) { + v := reflect.ValueOf(obj) + v = reflect.Indirect(v) // Dereference the pointer if any + + fv := v.FieldByName(i.Field) + if !fv.IsValid() { + return false, nil, + fmt.Errorf("field '%s' for %#v is invalid", i.Field, obj) + } + + // Check the type + k := fv.Kind() + size, ok := IsIntType(k) + if !ok { + return false, nil, fmt.Errorf("field %q is of type %v; want an int", i.Field, k) + } + + // Get the value and encode it + val := fv.Int() + buf := encodeInt(val, size) + + return true, buf, nil +} + +func (i *IntFieldIndex) FromArgs(args ...interface{}) ([]byte, error) { + if len(args) != 1 { + return nil, fmt.Errorf("must provide only a single argument") + } + + v := reflect.ValueOf(args[0]) + if !v.IsValid() { + return nil, fmt.Errorf("%#v is invalid", args[0]) + } + + k := v.Kind() + size, ok := IsIntType(k) + if !ok { + return nil, fmt.Errorf("arg is of type %v; want a int", k) + } + + val := v.Int() + buf := encodeInt(val, size) + + return buf, nil +} + +func encodeInt(val int64, size int) []byte { + buf := make([]byte, size) + + // This bit flips the sign bit on any sized signed twos-complement integer, + // which when truncated to a uint of the same size will bias the value such + // that the maximum negative int becomes 0, and the maximum positive int + // becomes the maximum positive uint. + scaled := val ^ int64(-1<<(size*8-1)) + + switch size { + case 1: + buf[0] = uint8(scaled) + case 2: + binary.BigEndian.PutUint16(buf, uint16(scaled)) + case 4: + binary.BigEndian.PutUint32(buf, uint32(scaled)) + case 8: + binary.BigEndian.PutUint64(buf, uint64(scaled)) + default: + panic(fmt.Sprintf("unsupported int size parameter: %d", size)) + } + + return buf +} + +// IsIntType returns whether the passed type is a type of int and the number +// of bytes needed to encode the type. +func IsIntType(k reflect.Kind) (size int, okay bool) { + switch k { + case reflect.Int: + return strconv.IntSize / 8, true + case reflect.Int8: + return 1, true + case reflect.Int16: + return 2, true + case reflect.Int32: + return 4, true + case reflect.Int64: + return 8, true + default: + return 0, false + } +} + +// UintFieldIndex is used to extract a uint field from an object using +// reflection and builds an index on that field. +type UintFieldIndex struct { + Field string +} + +func (u *UintFieldIndex) FromObject(obj interface{}) (bool, []byte, error) { + v := reflect.ValueOf(obj) + v = reflect.Indirect(v) // Dereference the pointer if any + + fv := v.FieldByName(u.Field) + if !fv.IsValid() { + return false, nil, + fmt.Errorf("field '%s' for %#v is invalid", u.Field, obj) + } + + // Check the type + k := fv.Kind() + size, ok := IsUintType(k) + if !ok { + return false, nil, fmt.Errorf("field %q is of type %v; want a uint", u.Field, k) + } + + // Get the value and encode it + val := fv.Uint() + buf := encodeUInt(val, size) + + return true, buf, nil +} + +func (u *UintFieldIndex) FromArgs(args ...interface{}) ([]byte, error) { + if len(args) != 1 { + return nil, fmt.Errorf("must provide only a single argument") + } + + v := reflect.ValueOf(args[0]) + if !v.IsValid() { + return nil, fmt.Errorf("%#v is invalid", args[0]) + } + + k := v.Kind() + size, ok := IsUintType(k) + if !ok { + return nil, fmt.Errorf("arg is of type %v; want a uint", k) + } + + val := v.Uint() + buf := encodeUInt(val, size) + + return buf, nil +} + +func encodeUInt(val uint64, size int) []byte { + buf := make([]byte, size) + + switch size { + case 1: + buf[0] = uint8(val) + case 2: + binary.BigEndian.PutUint16(buf, uint16(val)) + case 4: + binary.BigEndian.PutUint32(buf, uint32(val)) + case 8: + binary.BigEndian.PutUint64(buf, val) + default: + panic(fmt.Sprintf("unsupported uint size parameter: %d", size)) + } + + return buf +} + +// IsUintType returns whether the passed type is a type of uint and the number +// of bytes needed to encode the type. +func IsUintType(k reflect.Kind) (size int, okay bool) { + switch k { + case reflect.Uint: + return strconv.IntSize / 8, true + case reflect.Uint8: + return 1, true + case reflect.Uint16: + return 2, true + case reflect.Uint32: + return 4, true + case reflect.Uint64: + return 8, true + default: + return 0, false + } +} + +// BoolFieldIndex is used to extract an boolean field from an object using +// reflection and builds an index on that field. +type BoolFieldIndex struct { + Field string +} + +func (i *BoolFieldIndex) FromObject(obj interface{}) (bool, []byte, error) { + v := reflect.ValueOf(obj) + v = reflect.Indirect(v) // Dereference the pointer if any + + fv := v.FieldByName(i.Field) + if !fv.IsValid() { + return false, nil, + fmt.Errorf("field '%s' for %#v is invalid", i.Field, obj) + } + + // Check the type + k := fv.Kind() + if k != reflect.Bool { + return false, nil, fmt.Errorf("field %q is of type %v; want a bool", i.Field, k) + } + + // Get the value and encode it + buf := make([]byte, 1) + if fv.Bool() { + buf[0] = 1 + } + + return true, buf, nil +} + +func (i *BoolFieldIndex) FromArgs(args ...interface{}) ([]byte, error) { + return fromBoolArgs(args) +} + +// UUIDFieldIndex is used to extract a field from an object +// using reflection and builds an index on that field by treating +// it as a UUID. This is an optimization to using a StringFieldIndex +// as the UUID can be more compactly represented in byte form. +type UUIDFieldIndex struct { + Field string +} + +func (u *UUIDFieldIndex) FromObject(obj interface{}) (bool, []byte, error) { + v := reflect.ValueOf(obj) + v = reflect.Indirect(v) // Dereference the pointer if any + + fv := v.FieldByName(u.Field) + if !fv.IsValid() { + return false, nil, + fmt.Errorf("field '%s' for %#v is invalid", u.Field, obj) + } + + val := fv.String() + if val == "" { + return false, nil, nil + } + + buf, err := u.parseString(val, true) + return true, buf, err +} + +func (u *UUIDFieldIndex) FromArgs(args ...interface{}) ([]byte, error) { + if len(args) != 1 { + return nil, fmt.Errorf("must provide only a single argument") + } + switch arg := args[0].(type) { + case string: + return u.parseString(arg, true) + case []byte: + if len(arg) != 16 { + return nil, fmt.Errorf("byte slice must be 16 characters") + } + return arg, nil + default: + return nil, + fmt.Errorf("argument must be a string or byte slice: %#v", args[0]) + } +} + +func (u *UUIDFieldIndex) PrefixFromArgs(args ...interface{}) ([]byte, error) { + if len(args) != 1 { + return nil, fmt.Errorf("must provide only a single argument") + } + switch arg := args[0].(type) { + case string: + return u.parseString(arg, false) + case []byte: + return arg, nil + default: + return nil, + fmt.Errorf("argument must be a string or byte slice: %#v", args[0]) + } +} + +// parseString parses a UUID from the string. If enforceLength is false, it will +// parse a partial UUID. An error is returned if the input, stripped of hyphens, +// is not even length. +func (u *UUIDFieldIndex) parseString(s string, enforceLength bool) ([]byte, error) { + // Verify the length + l := len(s) + if enforceLength && l != 36 { + return nil, fmt.Errorf("UUID must be 36 characters") + } else if l > 36 { + return nil, fmt.Errorf("Invalid UUID length. UUID have 36 characters; got %d", l) + } + + hyphens := strings.Count(s, "-") + if hyphens > 4 { + return nil, fmt.Errorf(`UUID should have maximum of 4 "-"; got %d`, hyphens) + } + + // The sanitized length is the length of the original string without the "-". + sanitized := strings.Replace(s, "-", "", -1) + sanitizedLength := len(sanitized) + if sanitizedLength%2 != 0 { + return nil, fmt.Errorf("Input (without hyphens) must be even length") + } + + dec, err := hex.DecodeString(sanitized) + if err != nil { + return nil, fmt.Errorf("Invalid UUID: %v", err) + } + + return dec, nil +} + +// FieldSetIndex is used to extract a field from an object using reflection and +// builds an index on whether the field is set by comparing it against its +// type's nil value. +type FieldSetIndex struct { + Field string +} + +func (f *FieldSetIndex) FromObject(obj interface{}) (bool, []byte, error) { + v := reflect.ValueOf(obj) + v = reflect.Indirect(v) // Dereference the pointer if any + + fv := v.FieldByName(f.Field) + if !fv.IsValid() { + return false, nil, + fmt.Errorf("field '%s' for %#v is invalid", f.Field, obj) + } + + if fv.Interface() == reflect.Zero(fv.Type()).Interface() { + return true, []byte{0}, nil + } + + return true, []byte{1}, nil +} + +func (f *FieldSetIndex) FromArgs(args ...interface{}) ([]byte, error) { + return fromBoolArgs(args) +} + +// ConditionalIndex builds an index based on a condition specified by a passed +// user function. This function may examine the passed object and return a +// boolean to encapsulate an arbitrarily complex conditional. +type ConditionalIndex struct { + Conditional ConditionalIndexFunc +} + +// ConditionalIndexFunc is the required function interface for a +// ConditionalIndex. +type ConditionalIndexFunc func(obj interface{}) (bool, error) + +func (c *ConditionalIndex) FromObject(obj interface{}) (bool, []byte, error) { + // Call the user's function + res, err := c.Conditional(obj) + if err != nil { + return false, nil, fmt.Errorf("ConditionalIndexFunc(%#v) failed: %v", obj, err) + } + + if res { + return true, []byte{1}, nil + } + + return true, []byte{0}, nil +} + +func (c *ConditionalIndex) FromArgs(args ...interface{}) ([]byte, error) { + return fromBoolArgs(args) +} + +// fromBoolArgs is a helper that expects only a single boolean argument and +// returns a single length byte array containing either a one or zero depending +// on whether the passed input is true or false respectively. +func fromBoolArgs(args []interface{}) ([]byte, error) { + if len(args) != 1 { + return nil, fmt.Errorf("must provide only a single argument") + } + + if val, ok := args[0].(bool); !ok { + return nil, fmt.Errorf("argument must be a boolean type: %#v", args[0]) + } else if val { + return []byte{1}, nil + } + + return []byte{0}, nil +} + +// CompoundIndex is used to build an index using multiple sub-indexes +// Prefix based iteration is supported as long as the appropriate prefix +// of indexers support it. All sub-indexers are only assumed to expect +// a single argument. +type CompoundIndex struct { + Indexes []Indexer + + // AllowMissing results in an index based on only the indexers + // that return data. If true, you may end up with 2/3 columns + // indexed which might be useful for an index scan. Otherwise, + // the CompoundIndex requires all indexers to be satisfied. + AllowMissing bool +} + +func (c *CompoundIndex) FromObject(raw interface{}) (bool, []byte, error) { + var out []byte + for i, idxRaw := range c.Indexes { + idx, ok := idxRaw.(SingleIndexer) + if !ok { + return false, nil, fmt.Errorf("sub-index %d error: %s", i, "sub-index must be a SingleIndexer") + } + ok, val, err := idx.FromObject(raw) + if err != nil { + return false, nil, fmt.Errorf("sub-index %d error: %v", i, err) + } + if !ok { + if c.AllowMissing { + break + } else { + return false, nil, nil + } + } + out = append(out, val...) + } + return true, out, nil +} + +func (c *CompoundIndex) FromArgs(args ...interface{}) ([]byte, error) { + if len(args) != len(c.Indexes) { + return nil, fmt.Errorf("non-equivalent argument count and index fields") + } + var out []byte + for i, arg := range args { + val, err := c.Indexes[i].FromArgs(arg) + if err != nil { + return nil, fmt.Errorf("sub-index %d error: %v", i, err) + } + out = append(out, val...) + } + return out, nil +} + +func (c *CompoundIndex) PrefixFromArgs(args ...interface{}) ([]byte, error) { + if len(args) > len(c.Indexes) { + return nil, fmt.Errorf("more arguments than index fields") + } + var out []byte + for i, arg := range args { + if i+1 < len(args) { + val, err := c.Indexes[i].FromArgs(arg) + if err != nil { + return nil, fmt.Errorf("sub-index %d error: %v", i, err) + } + out = append(out, val...) + } else { + prefixIndexer, ok := c.Indexes[i].(PrefixIndexer) + if !ok { + return nil, fmt.Errorf("sub-index %d does not support prefix scanning", i) + } + val, err := prefixIndexer.PrefixFromArgs(arg) + if err != nil { + return nil, fmt.Errorf("sub-index %d error: %v", i, err) + } + out = append(out, val...) + } + } + return out, nil +} + +// CompoundMultiIndex is used to build an index using multiple +// sub-indexes. +// +// Unlike CompoundIndex, CompoundMultiIndex can have both +// SingleIndexer and MultiIndexer sub-indexers. However, each +// MultiIndexer adds considerable overhead/complexity in terms of +// the number of indexes created under-the-hood. It is not suggested +// to use more than one or two, if possible. +// +// Another change from CompoundIndexer is that if AllowMissing is +// set, not only is it valid to have empty index fields, but it will +// still create index values up to the first empty index. This means +// that if you have a value with an empty field, rather than using a +// prefix for lookup, you can simply pass in less arguments. As an +// example, if {Foo, Bar} is indexed but Bar is missing for a value +// and AllowMissing is set, an index will still be created for {Foo} +// and it is valid to do a lookup passing in only Foo as an argument. +// Note that the ordering isn't guaranteed -- it's last-insert wins, +// but this is true if you have two objects that have the same +// indexes not using AllowMissing anyways. +// +// Because StringMapFieldIndexers can take a varying number of args, +// it is currently a requirement that whenever it is used, two +// arguments must _always_ be provided for it. In theory we only +// need one, except a bug in that indexer means the single-argument +// version will never work. You can leave the second argument nil, +// but it will never produce a value. We support this for whenever +// that bug is fixed, likely in a next major version bump. +// +// Prefix-based indexing is not currently supported. +type CompoundMultiIndex struct { + Indexes []Indexer + + // AllowMissing results in an index based on only the indexers + // that return data. If true, you may end up with 2/3 columns + // indexed which might be useful for an index scan. Otherwise, + // CompoundMultiIndex requires all indexers to be satisfied. + AllowMissing bool +} + +func (c *CompoundMultiIndex) FromObject(raw interface{}) (bool, [][]byte, error) { + // At each entry, builder is storing the results from the next index + builder := make([][][]byte, 0, len(c.Indexes)) + +forloop: + // This loop goes through each indexer and adds the value(s) provided to the next + // entry in the slice. We can then later walk it like a tree to construct the indices. + for i, idxRaw := range c.Indexes { + switch idx := idxRaw.(type) { + case SingleIndexer: + ok, val, err := idx.FromObject(raw) + if err != nil { + return false, nil, fmt.Errorf("single sub-index %d error: %v", i, err) + } + if !ok { + if c.AllowMissing { + break forloop + } else { + return false, nil, nil + } + } + builder = append(builder, [][]byte{val}) + + case MultiIndexer: + ok, vals, err := idx.FromObject(raw) + if err != nil { + return false, nil, fmt.Errorf("multi sub-index %d error: %v", i, err) + } + if !ok { + if c.AllowMissing { + break forloop + } else { + return false, nil, nil + } + } + + // Add each of the new values to each of the old values + builder = append(builder, vals) + + default: + return false, nil, fmt.Errorf("sub-index %d does not satisfy either SingleIndexer or MultiIndexer", i) + } + } + + // Start with something higher to avoid resizing if possible + out := make([][]byte, 0, len(c.Indexes)^3) + + // We are walking through the builder slice essentially in a depth-first fashion, + // building the prefix and leaves as we go. If AllowMissing is false, we only insert + // these full paths to leaves. Otherwise, we also insert each prefix along the way. + // This allows for lookup in FromArgs when AllowMissing is true that does not contain + // the full set of arguments. e.g. for {Foo, Bar} where an object has only the Foo + // field specified as "abc", it is valid to call FromArgs with just "abc". + var walkVals func([]byte, int) + walkVals = func(currPrefix []byte, depth int) { + if depth >= len(builder) { + return + } + + if depth == len(builder)-1 { + // These are the "leaves", so append directly + for _, v := range builder[depth] { + outcome := make([]byte, len(currPrefix)) + copy(outcome, currPrefix) + out = append(out, append(outcome, v...)) + } + return + } + for _, v := range builder[depth] { + nextPrefix := append(currPrefix, v...) + if c.AllowMissing { + out = append(out, nextPrefix) + } + walkVals(nextPrefix, depth+1) + } + } + + walkVals(nil, 0) + + return true, out, nil +} + +func (c *CompoundMultiIndex) FromArgs(args ...interface{}) ([]byte, error) { + var stringMapCount int + var argCount int + for _, index := range c.Indexes { + if argCount >= len(args) { + break + } + if _, ok := index.(*StringMapFieldIndex); ok { + // We require pairs for StringMapFieldIndex, but only got one + if argCount+1 >= len(args) { + return nil, errors.New("invalid number of arguments") + } + stringMapCount++ + argCount += 2 + } else { + argCount++ + } + } + argCount = 0 + + switch c.AllowMissing { + case true: + if len(args) > len(c.Indexes)+stringMapCount { + return nil, errors.New("too many arguments") + } + + default: + if len(args) != len(c.Indexes)+stringMapCount { + return nil, errors.New("number of arguments does not equal number of indexers") + } + } + + var out []byte + var val []byte + var err error + for i, idx := range c.Indexes { + if argCount >= len(args) { + // We're done; should only hit this if AllowMissing + break + } + if _, ok := idx.(*StringMapFieldIndex); ok { + if args[argCount+1] == nil { + val, err = idx.FromArgs(args[argCount]) + } else { + val, err = idx.FromArgs(args[argCount : argCount+2]...) + } + argCount += 2 + } else { + val, err = idx.FromArgs(args[argCount]) + argCount++ + } + if err != nil { + return nil, fmt.Errorf("sub-index %d error: %v", i, err) + } + out = append(out, val...) + } + return out, nil +} diff --git a/vendor/github.com/hashicorp/go-memdb/memdb.go b/vendor/github.com/hashicorp/go-memdb/memdb.go new file mode 100644 index 0000000..13cc6a8 --- /dev/null +++ b/vendor/github.com/hashicorp/go-memdb/memdb.go @@ -0,0 +1,119 @@ +// Copyright (c) HashiCorp, Inc. +// SPDX-License-Identifier: MPL-2.0 + +// Package memdb provides an in-memory database that supports transactions +// and MVCC. +package memdb + +import ( + "sync" + "sync/atomic" + "unsafe" + + "github.com/hashicorp/go-immutable-radix" +) + +// MemDB is an in-memory database providing Atomicity, Consistency, and +// Isolation from ACID. MemDB doesn't provide Durability since it is an +// in-memory database. +// +// MemDB provides a table abstraction to store objects (rows) with multiple +// indexes based on inserted values. The database makes use of immutable radix +// trees to provide transactions and MVCC. +// +// Objects inserted into MemDB are not copied. It is **extremely important** +// that objects are not modified in-place after they are inserted since they +// are stored directly in MemDB. It remains unsafe to modify inserted objects +// even after they've been deleted from MemDB since there may still be older +// snapshots of the DB being read from other goroutines. +type MemDB struct { + schema *DBSchema + root unsafe.Pointer // *iradix.Tree underneath + primary bool + + // There can only be a single writer at once + writer sync.Mutex +} + +// NewMemDB creates a new MemDB with the given schema. +func NewMemDB(schema *DBSchema) (*MemDB, error) { + // Validate the schema + if err := schema.Validate(); err != nil { + return nil, err + } + + // Create the MemDB + db := &MemDB{ + schema: schema, + root: unsafe.Pointer(iradix.New()), + primary: true, + } + if err := db.initialize(); err != nil { + return nil, err + } + + return db, nil +} + +// DBSchema returns schema in use for introspection. +// +// The method is intended for *read-only* debugging use cases, +// returned schema should *never be modified in-place*. +func (db *MemDB) DBSchema() *DBSchema { + return db.schema +} + +// getRoot is used to do an atomic load of the root pointer +func (db *MemDB) getRoot() *iradix.Tree { + root := (*iradix.Tree)(atomic.LoadPointer(&db.root)) + return root +} + +// Txn is used to start a new transaction in either read or write mode. +// There can only be a single concurrent writer, but any number of readers. +func (db *MemDB) Txn(write bool) *Txn { + if write { + db.writer.Lock() + } + txn := &Txn{ + db: db, + write: write, + rootTxn: db.getRoot().Txn(), + } + return txn +} + +// Snapshot is used to capture a point-in-time snapshot of the database that +// will not be affected by any write operations to the existing DB. +// +// If MemDB is storing reference-based values (pointers, maps, slices, etc.), +// the Snapshot will not deep copy those values. Therefore, it is still unsafe +// to modify any inserted values in either DB. +func (db *MemDB) Snapshot() *MemDB { + clone := &MemDB{ + schema: db.schema, + root: unsafe.Pointer(db.getRoot()), + primary: false, + } + return clone +} + +// initialize is used to setup the DB for use after creation. This should +// be called only once after allocating a MemDB. +func (db *MemDB) initialize() error { + root := db.getRoot() + for tName, tableSchema := range db.schema.Tables { + for iName := range tableSchema.Indexes { + index := iradix.New() + path := indexPath(tName, iName) + root, _, _ = root.Insert(path, index) + } + } + db.root = unsafe.Pointer(root) + return nil +} + +// indexPath returns the path from the root to the given table index +func indexPath(table, index string) []byte { + return []byte(table + "." + index) +} diff --git a/vendor/github.com/hashicorp/go-memdb/schema.go b/vendor/github.com/hashicorp/go-memdb/schema.go new file mode 100644 index 0000000..2d66f99 --- /dev/null +++ b/vendor/github.com/hashicorp/go-memdb/schema.go @@ -0,0 +1,117 @@ +// Copyright (c) HashiCorp, Inc. +// SPDX-License-Identifier: MPL-2.0 + +package memdb + +import "fmt" + +// DBSchema is the schema to use for the full database with a MemDB instance. +// +// MemDB will require a valid schema. Schema validation can be tested using +// the Validate function. Calling this function is recommended in unit tests. +type DBSchema struct { + // Tables is the set of tables within this database. The key is the + // table name and must match the Name in TableSchema. + Tables map[string]*TableSchema +} + +// Validate validates the schema. +func (s *DBSchema) Validate() error { + if s == nil { + return fmt.Errorf("schema is nil") + } + + if len(s.Tables) == 0 { + return fmt.Errorf("schema has no tables defined") + } + + for name, table := range s.Tables { + if name != table.Name { + return fmt.Errorf("table name mis-match for '%s'", name) + } + + if err := table.Validate(); err != nil { + return fmt.Errorf("table %q: %s", name, err) + } + } + + return nil +} + +// TableSchema is the schema for a single table. +type TableSchema struct { + // Name of the table. This must match the key in the Tables map in DBSchema. + Name string + + // Indexes is the set of indexes for querying this table. The key + // is a unique name for the index and must match the Name in the + // IndexSchema. + Indexes map[string]*IndexSchema +} + +// Validate is used to validate the table schema +func (s *TableSchema) Validate() error { + if s.Name == "" { + return fmt.Errorf("missing table name") + } + + if len(s.Indexes) == 0 { + return fmt.Errorf("missing table indexes for '%s'", s.Name) + } + + if _, ok := s.Indexes["id"]; !ok { + return fmt.Errorf("must have id index") + } + + if !s.Indexes["id"].Unique { + return fmt.Errorf("id index must be unique") + } + + if _, ok := s.Indexes["id"].Indexer.(SingleIndexer); !ok { + return fmt.Errorf("id index must be a SingleIndexer") + } + + for name, index := range s.Indexes { + if name != index.Name { + return fmt.Errorf("index name mis-match for '%s'", name) + } + + if err := index.Validate(); err != nil { + return fmt.Errorf("index %q: %s", name, err) + } + } + + return nil +} + +// IndexSchema is the schema for an index. An index defines how a table is +// queried. +type IndexSchema struct { + // Name of the index. This must be unique among a tables set of indexes. + // This must match the key in the map of Indexes for a TableSchema. + Name string + + // AllowMissing if true ignores this index if it doesn't produce a + // value. For example, an index that extracts a field that doesn't + // exist from a structure. + AllowMissing bool + + Unique bool + Indexer Indexer +} + +func (s *IndexSchema) Validate() error { + if s.Name == "" { + return fmt.Errorf("missing index name") + } + if s.Indexer == nil { + return fmt.Errorf("missing index function for '%s'", s.Name) + } + switch s.Indexer.(type) { + case SingleIndexer: + case MultiIndexer: + default: + return fmt.Errorf("indexer for '%s' must be a SingleIndexer or MultiIndexer", s.Name) + } + return nil +} diff --git a/vendor/github.com/hashicorp/go-memdb/txn.go b/vendor/github.com/hashicorp/go-memdb/txn.go new file mode 100644 index 0000000..f83f4fa --- /dev/null +++ b/vendor/github.com/hashicorp/go-memdb/txn.go @@ -0,0 +1,1024 @@ +// Copyright (c) HashiCorp, Inc. +// SPDX-License-Identifier: MPL-2.0 + +package memdb + +import ( + "bytes" + "fmt" + "strings" + "sync/atomic" + "unsafe" + + iradix "github.com/hashicorp/go-immutable-radix" +) + +const ( + id = "id" +) + +var ( + // ErrNotFound is returned when the requested item is not found + ErrNotFound = fmt.Errorf("not found") +) + +// tableIndex is a tuple of (Table, Index) used for lookups +type tableIndex struct { + Table string + Index string +} + +// Txn is a transaction against a MemDB. +// This can be a read or write transaction. +type Txn struct { + db *MemDB + write bool + rootTxn *iradix.Txn + after []func() + + // changes is used to track the changes performed during the transaction. If + // it is nil at transaction start then changes are not tracked. + changes Changes + + modified map[tableIndex]*iradix.Txn +} + +// TrackChanges enables change tracking for the transaction. If called at any +// point before commit, subsequent mutations will be recorded and can be +// retrieved using ChangeSet. Once this has been called on a transaction it +// can't be unset. As with other Txn methods it's not safe to call this from a +// different goroutine than the one making mutations or committing the +// transaction. +func (txn *Txn) TrackChanges() { + if txn.changes == nil { + txn.changes = make(Changes, 0, 1) + } +} + +// readableIndex returns a transaction usable for reading the given index in a +// table. If the transaction is a write transaction with modifications, a clone of the +// modified index will be returned. +func (txn *Txn) readableIndex(table, index string) *iradix.Txn { + // Look for existing transaction + if txn.write && txn.modified != nil { + key := tableIndex{table, index} + exist, ok := txn.modified[key] + if ok { + return exist.Clone() + } + } + + // Create a read transaction + path := indexPath(table, index) + raw, _ := txn.rootTxn.Get(path) + indexTxn := raw.(*iradix.Tree).Txn() + return indexTxn +} + +// writableIndex returns a transaction usable for modifying the +// given index in a table. +func (txn *Txn) writableIndex(table, index string) *iradix.Txn { + if txn.modified == nil { + txn.modified = make(map[tableIndex]*iradix.Txn) + } + + // Look for existing transaction + key := tableIndex{table, index} + exist, ok := txn.modified[key] + if ok { + return exist + } + + // Start a new transaction + path := indexPath(table, index) + raw, _ := txn.rootTxn.Get(path) + indexTxn := raw.(*iradix.Tree).Txn() + + // If we are the primary DB, enable mutation tracking. Snapshots should + // not notify, otherwise we will trigger watches on the primary DB when + // the writes will not be visible. + indexTxn.TrackMutate(txn.db.primary) + + // Keep this open for the duration of the txn + txn.modified[key] = indexTxn + return indexTxn +} + +// Abort is used to cancel this transaction. +// This is a noop for read transactions, +// already aborted or commited transactions. +func (txn *Txn) Abort() { + // Noop for a read transaction + if !txn.write { + return + } + + // Check if already aborted or committed + if txn.rootTxn == nil { + return + } + + // Clear the txn + txn.rootTxn = nil + txn.modified = nil + txn.changes = nil + + // Release the writer lock since this is invalid + txn.db.writer.Unlock() +} + +// Commit is used to finalize this transaction. +// This is a noop for read transactions, +// already aborted or committed transactions. +func (txn *Txn) Commit() { + // Noop for a read transaction + if !txn.write { + return + } + + // Check if already aborted or committed + if txn.rootTxn == nil { + return + } + + // Commit each sub-transaction scoped to (table, index) + for key, subTxn := range txn.modified { + path := indexPath(key.Table, key.Index) + final := subTxn.CommitOnly() + txn.rootTxn.Insert(path, final) + } + + // Update the root of the DB + newRoot := txn.rootTxn.CommitOnly() + atomic.StorePointer(&txn.db.root, unsafe.Pointer(newRoot)) + + // Now issue all of the mutation updates (this is safe to call + // even if mutation tracking isn't enabled); we do this after + // the root pointer is swapped so that waking responders will + // see the new state. + for _, subTxn := range txn.modified { + subTxn.Notify() + } + txn.rootTxn.Notify() + + // Clear the txn + txn.rootTxn = nil + txn.modified = nil + + // Release the writer lock since this is invalid + txn.db.writer.Unlock() + + // Run the deferred functions, if any + for i := len(txn.after); i > 0; i-- { + fn := txn.after[i-1] + fn() + } +} + +// Insert is used to add or update an object into the given table. +// +// When updating an object, the obj provided should be a copy rather +// than a value updated in-place. Modifying values in-place that are already +// inserted into MemDB is not supported behavior. +func (txn *Txn) Insert(table string, obj interface{}) error { + if !txn.write { + return fmt.Errorf("cannot insert in read-only transaction") + } + + // Get the table schema + tableSchema, ok := txn.db.schema.Tables[table] + if !ok { + return fmt.Errorf("invalid table '%s'", table) + } + + // Get the primary ID of the object + idSchema := tableSchema.Indexes[id] + idIndexer := idSchema.Indexer.(SingleIndexer) + ok, idVal, err := idIndexer.FromObject(obj) + if err != nil { + return fmt.Errorf("failed to build primary index: %v", err) + } + if !ok { + return fmt.Errorf("object missing primary index") + } + + // Lookup the object by ID first, to see if this is an update + idTxn := txn.writableIndex(table, id) + existing, update := idTxn.Get(idVal) + + // On an update, there is an existing object with the given + // primary ID. We do the update by deleting the current object + // and inserting the new object. + for name, indexSchema := range tableSchema.Indexes { + indexTxn := txn.writableIndex(table, name) + + // Determine the new index value + var ( + ok bool + vals [][]byte + err error + ) + switch indexer := indexSchema.Indexer.(type) { + case SingleIndexer: + var val []byte + ok, val, err = indexer.FromObject(obj) + vals = [][]byte{val} + case MultiIndexer: + ok, vals, err = indexer.FromObject(obj) + } + if err != nil { + return fmt.Errorf("failed to build index '%s': %v", name, err) + } + + // Handle non-unique index by computing a unique index. + // This is done by appending the primary key which must + // be unique anyways. + if ok && !indexSchema.Unique { + for i := range vals { + vals[i] = append(vals[i], idVal...) + } + } + + // Handle the update by deleting from the index first + if update { + var ( + okExist bool + valsExist [][]byte + err error + ) + switch indexer := indexSchema.Indexer.(type) { + case SingleIndexer: + var valExist []byte + okExist, valExist, err = indexer.FromObject(existing) + valsExist = [][]byte{valExist} + case MultiIndexer: + okExist, valsExist, err = indexer.FromObject(existing) + } + if err != nil { + return fmt.Errorf("failed to build index '%s': %v", name, err) + } + if okExist { + for i, valExist := range valsExist { + // Handle non-unique index by computing a unique index. + // This is done by appending the primary key which must + // be unique anyways. + if !indexSchema.Unique { + valExist = append(valExist, idVal...) + } + + // If we are writing to the same index with the same value, + // we can avoid the delete as the insert will overwrite the + // value anyways. + if i >= len(vals) || !bytes.Equal(valExist, vals[i]) { + indexTxn.Delete(valExist) + } + } + } + } + + // If there is no index value, either this is an error or an expected + // case and we can skip updating + if !ok { + if indexSchema.AllowMissing { + continue + } else { + return fmt.Errorf("missing value for index '%s'", name) + } + } + + // Update the value of the index + for _, val := range vals { + indexTxn.Insert(val, obj) + } + } + if txn.changes != nil { + txn.changes = append(txn.changes, Change{ + Table: table, + Before: existing, // might be nil on a create + After: obj, + primaryKey: idVal, + }) + } + return nil +} + +// Delete is used to delete a single object from the given table. +// This object must already exist in the table. +func (txn *Txn) Delete(table string, obj interface{}) error { + if !txn.write { + return fmt.Errorf("cannot delete in read-only transaction") + } + + // Get the table schema + tableSchema, ok := txn.db.schema.Tables[table] + if !ok { + return fmt.Errorf("invalid table '%s'", table) + } + + // Get the primary ID of the object + idSchema := tableSchema.Indexes[id] + idIndexer := idSchema.Indexer.(SingleIndexer) + ok, idVal, err := idIndexer.FromObject(obj) + if err != nil { + return fmt.Errorf("failed to build primary index: %v", err) + } + if !ok { + return fmt.Errorf("object missing primary index") + } + + // Lookup the object by ID first, check if we should continue + idTxn := txn.writableIndex(table, id) + existing, ok := idTxn.Get(idVal) + if !ok { + return ErrNotFound + } + + // Remove the object from all the indexes + for name, indexSchema := range tableSchema.Indexes { + indexTxn := txn.writableIndex(table, name) + + // Handle the update by deleting from the index first + var ( + ok bool + vals [][]byte + err error + ) + switch indexer := indexSchema.Indexer.(type) { + case SingleIndexer: + var val []byte + ok, val, err = indexer.FromObject(existing) + vals = [][]byte{val} + case MultiIndexer: + ok, vals, err = indexer.FromObject(existing) + } + if err != nil { + return fmt.Errorf("failed to build index '%s': %v", name, err) + } + if ok { + // Handle non-unique index by computing a unique index. + // This is done by appending the primary key which must + // be unique anyways. + for _, val := range vals { + if !indexSchema.Unique { + val = append(val, idVal...) + } + indexTxn.Delete(val) + } + } + } + if txn.changes != nil { + txn.changes = append(txn.changes, Change{ + Table: table, + Before: existing, + After: nil, // Now nil indicates deletion + primaryKey: idVal, + }) + } + return nil +} + +// DeletePrefix is used to delete an entire subtree based on a prefix. +// The given index must be a prefix index, and will be used to perform a scan and enumerate the set of objects to delete. +// These will be removed from all other indexes, and then a special prefix operation will delete the objects from the given index in an efficient subtree delete operation. +// This is useful when you have a very large number of objects indexed by the given index, along with a much smaller number of entries in the other indexes for those objects. +func (txn *Txn) DeletePrefix(table string, prefix_index string, prefix string) (bool, error) { + if !txn.write { + return false, fmt.Errorf("cannot delete in read-only transaction") + } + + if !strings.HasSuffix(prefix_index, "_prefix") { + return false, fmt.Errorf("Index name for DeletePrefix must be a prefix index, Got %v ", prefix_index) + } + + deletePrefixIndex := strings.TrimSuffix(prefix_index, "_prefix") + + // Get an iterator over all of the keys with the given prefix. + entries, err := txn.Get(table, prefix_index, prefix) + if err != nil { + return false, fmt.Errorf("failed kvs lookup: %s", err) + } + // Get the table schema + tableSchema, ok := txn.db.schema.Tables[table] + if !ok { + return false, fmt.Errorf("invalid table '%s'", table) + } + + foundAny := false + for entry := entries.Next(); entry != nil; entry = entries.Next() { + if !foundAny { + foundAny = true + } + // Get the primary ID of the object + idSchema := tableSchema.Indexes[id] + idIndexer := idSchema.Indexer.(SingleIndexer) + ok, idVal, err := idIndexer.FromObject(entry) + if err != nil { + return false, fmt.Errorf("failed to build primary index: %v", err) + } + if !ok { + return false, fmt.Errorf("object missing primary index") + } + if txn.changes != nil { + // Record the deletion + idTxn := txn.writableIndex(table, id) + existing, ok := idTxn.Get(idVal) + if ok { + txn.changes = append(txn.changes, Change{ + Table: table, + Before: existing, + After: nil, // Now nil indicates deletion + primaryKey: idVal, + }) + } + } + // Remove the object from all the indexes except the given prefix index + for name, indexSchema := range tableSchema.Indexes { + if name == deletePrefixIndex { + continue + } + indexTxn := txn.writableIndex(table, name) + + // Handle the update by deleting from the index first + var ( + ok bool + vals [][]byte + err error + ) + switch indexer := indexSchema.Indexer.(type) { + case SingleIndexer: + var val []byte + ok, val, err = indexer.FromObject(entry) + vals = [][]byte{val} + case MultiIndexer: + ok, vals, err = indexer.FromObject(entry) + } + if err != nil { + return false, fmt.Errorf("failed to build index '%s': %v", name, err) + } + + if ok { + // Handle non-unique index by computing a unique index. + // This is done by appending the primary key which must + // be unique anyways. + for _, val := range vals { + if !indexSchema.Unique { + val = append(val, idVal...) + } + indexTxn.Delete(val) + } + } + } + + } + if foundAny { + indexTxn := txn.writableIndex(table, deletePrefixIndex) + ok = indexTxn.DeletePrefix([]byte(prefix)) + if !ok { + panic(fmt.Errorf("prefix %v matched some entries but DeletePrefix did not delete any ", prefix)) + } + return true, nil + } + return false, nil +} + +// DeleteAll is used to delete all the objects in a given table +// matching the constraints on the index +func (txn *Txn) DeleteAll(table, index string, args ...interface{}) (int, error) { + if !txn.write { + return 0, fmt.Errorf("cannot delete in read-only transaction") + } + + // Get all the objects + iter, err := txn.Get(table, index, args...) + if err != nil { + return 0, err + } + + // Put them into a slice so there are no safety concerns while actually + // performing the deletes + var objs []interface{} + for { + obj := iter.Next() + if obj == nil { + break + } + + objs = append(objs, obj) + } + + // Do the deletes + num := 0 + for _, obj := range objs { + if err := txn.Delete(table, obj); err != nil { + return num, err + } + num++ + } + return num, nil +} + +// FirstWatch is used to return the first matching object for +// the given constraints on the index along with the watch channel. +// +// Note that all values read in the transaction form a consistent snapshot +// from the time when the transaction was created. +// +// The watch channel is closed when a subsequent write transaction +// has updated the result of the query. Since each read transaction +// operates on an isolated snapshot, a new read transaction must be +// started to observe the changes that have been made. +// +// If the value of index ends with "_prefix", FirstWatch will perform a prefix +// match instead of full match on the index. The registered indexer must implement +// PrefixIndexer, otherwise an error is returned. +func (txn *Txn) FirstWatch(table, index string, args ...interface{}) (<-chan struct{}, interface{}, error) { + // Get the index value + indexSchema, val, err := txn.getIndexValue(table, index, args...) + if err != nil { + return nil, nil, err + } + + // Get the index itself + indexTxn := txn.readableIndex(table, indexSchema.Name) + + // Do an exact lookup + if indexSchema.Unique && val != nil && indexSchema.Name == index { + watch, obj, ok := indexTxn.GetWatch(val) + if !ok { + return watch, nil, nil + } + return watch, obj, nil + } + + // Handle non-unique index by using an iterator and getting the first value + iter := indexTxn.Root().Iterator() + watch := iter.SeekPrefixWatch(val) + _, value, _ := iter.Next() + return watch, value, nil +} + +// LastWatch is used to return the last matching object for +// the given constraints on the index along with the watch channel. +// +// Note that all values read in the transaction form a consistent snapshot +// from the time when the transaction was created. +// +// The watch channel is closed when a subsequent write transaction +// has updated the result of the query. Since each read transaction +// operates on an isolated snapshot, a new read transaction must be +// started to observe the changes that have been made. +// +// If the value of index ends with "_prefix", LastWatch will perform a prefix +// match instead of full match on the index. The registered indexer must implement +// PrefixIndexer, otherwise an error is returned. +func (txn *Txn) LastWatch(table, index string, args ...interface{}) (<-chan struct{}, interface{}, error) { + // Get the index value + indexSchema, val, err := txn.getIndexValue(table, index, args...) + if err != nil { + return nil, nil, err + } + + // Get the index itself + indexTxn := txn.readableIndex(table, indexSchema.Name) + + // Do an exact lookup + if indexSchema.Unique && val != nil && indexSchema.Name == index { + watch, obj, ok := indexTxn.GetWatch(val) + if !ok { + return watch, nil, nil + } + return watch, obj, nil + } + + // Handle non-unique index by using an iterator and getting the last value + iter := indexTxn.Root().ReverseIterator() + watch := iter.SeekPrefixWatch(val) + _, value, _ := iter.Previous() + return watch, value, nil +} + +// First is used to return the first matching object for +// the given constraints on the index. +// +// Note that all values read in the transaction form a consistent snapshot +// from the time when the transaction was created. +func (txn *Txn) First(table, index string, args ...interface{}) (interface{}, error) { + _, val, err := txn.FirstWatch(table, index, args...) + return val, err +} + +// Last is used to return the last matching object for +// the given constraints on the index. +// +// Note that all values read in the transaction form a consistent snapshot +// from the time when the transaction was created. +func (txn *Txn) Last(table, index string, args ...interface{}) (interface{}, error) { + _, val, err := txn.LastWatch(table, index, args...) + return val, err +} + +// LongestPrefix is used to fetch the longest prefix match for the given +// constraints on the index. Note that this will not work with the memdb +// StringFieldIndex because it adds null terminators which prevent the +// algorithm from correctly finding a match (it will get to right before the +// null and fail to find a leaf node). This should only be used where the prefix +// given is capable of matching indexed entries directly, which typically only +// applies to a custom indexer. See the unit test for an example. +// +// Note that all values read in the transaction form a consistent snapshot +// from the time when the transaction was created. +func (txn *Txn) LongestPrefix(table, index string, args ...interface{}) (interface{}, error) { + // Enforce that this only works on prefix indexes. + if !strings.HasSuffix(index, "_prefix") { + return nil, fmt.Errorf("must use '%s_prefix' on index", index) + } + + // Get the index value. + indexSchema, val, err := txn.getIndexValue(table, index, args...) + if err != nil { + return nil, err + } + + // This algorithm only makes sense against a unique index, otherwise the + // index keys will have the IDs appended to them. + if !indexSchema.Unique { + return nil, fmt.Errorf("index '%s' is not unique", index) + } + + // Find the longest prefix match with the given index. + indexTxn := txn.readableIndex(table, indexSchema.Name) + if _, value, ok := indexTxn.Root().LongestPrefix(val); ok { + return value, nil + } + return nil, nil +} + +// getIndexValue is used to get the IndexSchema and the value +// used to scan the index given the parameters. This handles prefix based +// scans when the index has the "_prefix" suffix. The index must support +// prefix iteration. +func (txn *Txn) getIndexValue(table, index string, args ...interface{}) (*IndexSchema, []byte, error) { + // Get the table schema + tableSchema, ok := txn.db.schema.Tables[table] + if !ok { + return nil, nil, fmt.Errorf("invalid table '%s'", table) + } + + // Check for a prefix scan + prefixScan := false + if strings.HasSuffix(index, "_prefix") { + index = strings.TrimSuffix(index, "_prefix") + prefixScan = true + } + + // Get the index schema + indexSchema, ok := tableSchema.Indexes[index] + if !ok { + return nil, nil, fmt.Errorf("invalid index '%s'", index) + } + + // Hot-path for when there are no arguments + if len(args) == 0 { + return indexSchema, nil, nil + } + + // Special case the prefix scanning + if prefixScan { + prefixIndexer, ok := indexSchema.Indexer.(PrefixIndexer) + if !ok { + return indexSchema, nil, + fmt.Errorf("index '%s' does not support prefix scanning", index) + } + + val, err := prefixIndexer.PrefixFromArgs(args...) + if err != nil { + return indexSchema, nil, fmt.Errorf("index error: %v", err) + } + return indexSchema, val, err + } + + // Get the exact match index + val, err := indexSchema.Indexer.FromArgs(args...) + if err != nil { + return indexSchema, nil, fmt.Errorf("index error: %v", err) + } + return indexSchema, val, err +} + +// ResultIterator is used to iterate over a list of results from a query on a table. +// +// When a ResultIterator is created from a write transaction, the results from +// Next will reflect a snapshot of the table at the time the ResultIterator is +// created. +// This means that calling Insert or Delete on a transaction while iterating is +// allowed, but the changes made by Insert or Delete will not be observed in the +// results returned from subsequent calls to Next. For example if an item is deleted +// from the index used by the iterator it will still be returned by Next. If an +// item is inserted into the index used by the iterator, it will not be returned +// by Next. However, an iterator created after a call to Insert or Delete will +// reflect the modifications. +// +// When a ResultIterator is created from a write transaction, and there are already +// modifications to the index used by the iterator, the modification cache of the +// index will be invalidated. This may result in some additional allocations if +// the same node in the index is modified again. +type ResultIterator interface { + WatchCh() <-chan struct{} + // Next returns the next result from the iterator. If there are no more results + // nil is returned. + Next() interface{} +} + +// Get is used to construct a ResultIterator over all the rows that match the +// given constraints of an index. The index values must match exactly (this +// is not a range-based or prefix-based lookup) by default. +// +// Prefix lookups: if the named index implements PrefixIndexer, you may perform +// prefix-based lookups by appending "_prefix" to the index name. In this +// scenario, the index values given in args are treated as prefix lookups. For +// example, a StringFieldIndex will match any string with the given value +// as a prefix: "mem" matches "memdb". +// +// See the documentation for ResultIterator to understand the behaviour of the +// returned ResultIterator. +func (txn *Txn) Get(table, index string, args ...interface{}) (ResultIterator, error) { + indexIter, val, err := txn.getIndexIterator(table, index, args...) + if err != nil { + return nil, err + } + + // Seek the iterator to the appropriate sub-set + watchCh := indexIter.SeekPrefixWatch(val) + + // Create an iterator + iter := &radixIterator{ + iter: indexIter, + watchCh: watchCh, + } + return iter, nil +} + +// GetReverse is used to construct a Reverse ResultIterator over all the +// rows that match the given constraints of an index. +// The returned ResultIterator's Next() will return the next Previous value. +// +// See the documentation on Get for details on arguments. +// +// See the documentation for ResultIterator to understand the behaviour of the +// returned ResultIterator. +func (txn *Txn) GetReverse(table, index string, args ...interface{}) (ResultIterator, error) { + indexIter, val, err := txn.getIndexIteratorReverse(table, index, args...) + if err != nil { + return nil, err + } + + // Seek the iterator to the appropriate sub-set + watchCh := indexIter.SeekPrefixWatch(val) + + // Create an iterator + iter := &radixReverseIterator{ + iter: indexIter, + watchCh: watchCh, + } + return iter, nil +} + +// LowerBound is used to construct a ResultIterator over all the the range of +// rows that have an index value greater than or equal to the provide args. +// Calling this then iterating until the rows are larger than required allows +// range scans within an index. It is not possible to watch the resulting +// iterator since the radix tree doesn't efficiently allow watching on lower +// bound changes. The WatchCh returned will be nill and so will block forever. +// +// If the value of index ends with "_prefix", LowerBound will perform a prefix match instead of +// a full match on the index. The registered index must implement PrefixIndexer, +// otherwise an error is returned. +// +// See the documentation for ResultIterator to understand the behaviour of the +// returned ResultIterator. +func (txn *Txn) LowerBound(table, index string, args ...interface{}) (ResultIterator, error) { + indexIter, val, err := txn.getIndexIterator(table, index, args...) + if err != nil { + return nil, err + } + + // Seek the iterator to the appropriate sub-set + indexIter.SeekLowerBound(val) + + // Create an iterator + iter := &radixIterator{ + iter: indexIter, + } + return iter, nil +} + +// ReverseLowerBound is used to construct a Reverse ResultIterator over all the +// the range of rows that have an index value less than or equal to the +// provide args. Calling this then iterating until the rows are lower than +// required allows range scans within an index. It is not possible to watch the +// resulting iterator since the radix tree doesn't efficiently allow watching +// on lower bound changes. The WatchCh returned will be nill and so will block +// forever. +// +// See the documentation for ResultIterator to understand the behaviour of the +// returned ResultIterator. +func (txn *Txn) ReverseLowerBound(table, index string, args ...interface{}) (ResultIterator, error) { + indexIter, val, err := txn.getIndexIteratorReverse(table, index, args...) + if err != nil { + return nil, err + } + + // Seek the iterator to the appropriate sub-set + indexIter.SeekReverseLowerBound(val) + + // Create an iterator + iter := &radixReverseIterator{ + iter: indexIter, + } + return iter, nil +} + +// objectID is a tuple of table name and the raw internal id byte slice +// converted to a string. It's only converted to a string to make it comparable +// so this struct can be used as a map index. +type objectID struct { + Table string + IndexVal string +} + +// mutInfo stores metadata about mutations to allow collapsing multiple +// mutations to the same object into one. +type mutInfo struct { + firstBefore interface{} + lastIdx int +} + +// Changes returns the set of object changes that have been made in the +// transaction so far. If change tracking is not enabled it wil always return +// nil. It can be called before or after Commit. If it is before Commit it will +// return all changes made so far which may not be the same as the final +// Changes. After abort it will always return nil. As with other Txn methods +// it's not safe to call this from a different goroutine than the one making +// mutations or committing the transaction. Mutations will appear in the order +// they were performed in the transaction but multiple operations to the same +// object will be collapsed so only the effective overall change to that object +// is present. If transaction operations are dependent (e.g. copy object X to Y +// then delete X) this might mean the set of mutations is incomplete to verify +// history, but it is complete in that the net effect is preserved (Y got a new +// value, X got removed). +func (txn *Txn) Changes() Changes { + if txn.changes == nil { + return nil + } + + // De-duplicate mutations by key so all take effect at the point of the last + // write but we keep the mutations in order. + dups := make(map[objectID]mutInfo) + for i, m := range txn.changes { + oid := objectID{ + Table: m.Table, + IndexVal: string(m.primaryKey), + } + // Store the latest mutation index for each key value + mi, ok := dups[oid] + if !ok { + // First entry for key, store the before value + mi.firstBefore = m.Before + } + mi.lastIdx = i + dups[oid] = mi + } + if len(dups) == len(txn.changes) { + // No duplicates found, fast path return it as is + return txn.changes + } + + // Need to remove the duplicates + cs := make(Changes, 0, len(dups)) + for i, m := range txn.changes { + oid := objectID{ + Table: m.Table, + IndexVal: string(m.primaryKey), + } + mi := dups[oid] + if mi.lastIdx == i { + // This was the latest value for this key copy it with the before value in + // case it's different. Note that m is not a pointer so we are not + // modifying the txn.changeSet here - it's already a copy. + m.Before = mi.firstBefore + + // Edge case - if the object was inserted and then eventually deleted in + // the same transaction, then the net affect on that key is a no-op. Don't + // emit a mutation with nil for before and after as it's meaningless and + // might violate expectations and cause a panic in code that assumes at + // least one must be set. + if m.Before == nil && m.After == nil { + continue + } + cs = append(cs, m) + } + } + // Store the de-duped version in case this is called again + txn.changes = cs + return cs +} + +func (txn *Txn) getIndexIterator(table, index string, args ...interface{}) (*iradix.Iterator, []byte, error) { + // Get the index value to scan + indexSchema, val, err := txn.getIndexValue(table, index, args...) + if err != nil { + return nil, nil, err + } + + // Get the index itself + indexTxn := txn.readableIndex(table, indexSchema.Name) + indexRoot := indexTxn.Root() + + // Get an iterator over the index + indexIter := indexRoot.Iterator() + return indexIter, val, nil +} + +func (txn *Txn) getIndexIteratorReverse(table, index string, args ...interface{}) (*iradix.ReverseIterator, []byte, error) { + // Get the index value to scan + indexSchema, val, err := txn.getIndexValue(table, index, args...) + if err != nil { + return nil, nil, err + } + + // Get the index itself + indexTxn := txn.readableIndex(table, indexSchema.Name) + indexRoot := indexTxn.Root() + + // Get an interator over the index + indexIter := indexRoot.ReverseIterator() + return indexIter, val, nil +} + +// Defer is used to push a new arbitrary function onto a stack which +// gets called when a transaction is committed and finished. Deferred +// functions are called in LIFO order, and only invoked at the end of +// write transactions. +func (txn *Txn) Defer(fn func()) { + txn.after = append(txn.after, fn) +} + +// radixIterator is used to wrap an underlying iradix iterator. +// This is much more efficient than a sliceIterator as we are not +// materializing the entire view. +type radixIterator struct { + iter *iradix.Iterator + watchCh <-chan struct{} +} + +func (r *radixIterator) WatchCh() <-chan struct{} { + return r.watchCh +} + +func (r *radixIterator) Next() interface{} { + _, value, ok := r.iter.Next() + if !ok { + return nil + } + return value +} + +type radixReverseIterator struct { + iter *iradix.ReverseIterator + watchCh <-chan struct{} +} + +func (r *radixReverseIterator) Next() interface{} { + _, value, ok := r.iter.Previous() + if !ok { + return nil + } + return value +} + +func (r *radixReverseIterator) WatchCh() <-chan struct{} { + return r.watchCh +} + +// Snapshot creates a snapshot of the current state of the transaction. +// Returns a new read-only transaction or nil if the transaction is already +// aborted or committed. +func (txn *Txn) Snapshot() *Txn { + if txn.rootTxn == nil { + return nil + } + + snapshot := &Txn{ + db: txn.db, + rootTxn: txn.rootTxn.Clone(), + } + + // Commit sub-transactions into the snapshot + for key, subTxn := range txn.modified { + path := indexPath(key.Table, key.Index) + final := subTxn.CommitOnly() + snapshot.rootTxn.Insert(path, final) + } + + return snapshot +} diff --git a/vendor/github.com/hashicorp/go-memdb/watch.go b/vendor/github.com/hashicorp/go-memdb/watch.go new file mode 100644 index 0000000..4d9cc7e --- /dev/null +++ b/vendor/github.com/hashicorp/go-memdb/watch.go @@ -0,0 +1,155 @@ +// Copyright (c) HashiCorp, Inc. +// SPDX-License-Identifier: MPL-2.0 + +package memdb + +import ( + "context" + "time" +) + +// WatchSet is a collection of watch channels. The zero value is not usable. +// Use NewWatchSet to create a WatchSet. +type WatchSet map[<-chan struct{}]struct{} + +// NewWatchSet constructs a new watch set. +func NewWatchSet() WatchSet { + return make(map[<-chan struct{}]struct{}) +} + +// Add appends a watchCh to the WatchSet if non-nil. +func (w WatchSet) Add(watchCh <-chan struct{}) { + if w == nil { + return + } + + if _, ok := w[watchCh]; !ok { + w[watchCh] = struct{}{} + } +} + +// AddWithLimit appends a watchCh to the WatchSet if non-nil, and if the given +// softLimit hasn't been exceeded. Otherwise, it will watch the given alternate +// channel. It's expected that the altCh will be the same on many calls to this +// function, so you will exceed the soft limit a little bit if you hit this, but +// not by much. +// +// This is useful if you want to track individual items up to some limit, after +// which you watch a higher-level channel (usually a channel from start of +// an iterator higher up in the radix tree) that will watch a superset of items. +func (w WatchSet) AddWithLimit(softLimit int, watchCh <-chan struct{}, altCh <-chan struct{}) { + // This is safe for a nil WatchSet so we don't need to check that here. + if len(w) < softLimit { + w.Add(watchCh) + } else { + w.Add(altCh) + } +} + +// Watch blocks until one of the channels in the watch set is closed, or +// timeoutCh sends a value. +// Returns true if timeoutCh is what caused Watch to unblock. +func (w WatchSet) Watch(timeoutCh <-chan time.Time) bool { + if w == nil { + return false + } + + // Create a context that gets cancelled when the timeout is triggered + ctx, cancel := context.WithCancel(context.Background()) + defer cancel() + + go func() { + select { + case <-timeoutCh: + cancel() + case <-ctx.Done(): + } + }() + + return w.WatchCtx(ctx) == context.Canceled +} + +// WatchCtx blocks until one of the channels in the watch set is closed, or +// ctx is done (cancelled or exceeds the deadline). WatchCtx returns an error +// if the ctx causes it to unblock, otherwise returns nil. +// +// WatchCtx should be preferred over Watch. +func (w WatchSet) WatchCtx(ctx context.Context) error { + if w == nil { + return nil + } + + if n := len(w); n <= aFew { + idx := 0 + chunk := make([]<-chan struct{}, aFew) + for watchCh := range w { + chunk[idx] = watchCh + idx++ + } + return watchFew(ctx, chunk) + } + + return w.watchMany(ctx) +} + +// watchMany is used if there are many watchers. +func (w WatchSet) watchMany(ctx context.Context) error { + // Cancel all watcher goroutines when return. + watcherCtx, cancel := context.WithCancel(ctx) + defer cancel() + + // Set up a goroutine for each watcher. + triggerCh := make(chan struct{}, 1) + watcher := func(chunk []<-chan struct{}) { + if err := watchFew(watcherCtx, chunk); err == nil { + select { + case triggerCh <- struct{}{}: + default: + } + } + } + + // Apportion the watch channels into chunks we can feed into the + // watchFew helper. + idx := 0 + chunk := make([]<-chan struct{}, aFew) + for watchCh := range w { + subIdx := idx % aFew + chunk[subIdx] = watchCh + idx++ + + // Fire off this chunk and start a fresh one. + if idx%aFew == 0 { + go watcher(chunk) + chunk = make([]<-chan struct{}, aFew) + } + } + + // Make sure to watch any residual channels in the last chunk. + if idx%aFew != 0 { + go watcher(chunk) + } + + // Wait for a channel to trigger or timeout. + select { + case <-triggerCh: + return nil + case <-ctx.Done(): + return ctx.Err() + } +} + +// WatchCh returns a channel that is used to wait for any channel of the watch set to trigger +// or for the context to be cancelled. WatchCh creates a new goroutine each call, so +// callers may need to cache the returned channel to avoid creating extra goroutines. +func (w WatchSet) WatchCh(ctx context.Context) <-chan error { + // Create the outgoing channel + triggerCh := make(chan error, 1) + + // Create a goroutine to collect the error from WatchCtx + go func() { + triggerCh <- w.WatchCtx(ctx) + }() + + return triggerCh +} diff --git a/vendor/github.com/hashicorp/go-memdb/watch_few.go b/vendor/github.com/hashicorp/go-memdb/watch_few.go new file mode 100644 index 0000000..ccdbff0 --- /dev/null +++ b/vendor/github.com/hashicorp/go-memdb/watch_few.go @@ -0,0 +1,120 @@ +// Copyright (c) HashiCorp, Inc. +// SPDX-License-Identifier: MPL-2.0 + +package memdb + +//go:generate sh -c "go run watch-gen/main.go >watch_few.go" + +import ( + "context" +) + +// aFew gives how many watchers this function is wired to support. You must +// always pass a full slice of this length, but unused channels can be nil. +const aFew = 32 + +// watchFew is used if there are only a few watchers as a performance +// optimization. +func watchFew(ctx context.Context, ch []<-chan struct{}) error { + select { + + case <-ch[0]: + return nil + + case <-ch[1]: + return nil + + case <-ch[2]: + return nil + + case <-ch[3]: + return nil + + case <-ch[4]: + return nil + + case <-ch[5]: + return nil + + case <-ch[6]: + return nil + + case <-ch[7]: + return nil + + case <-ch[8]: + return nil + + case <-ch[9]: + return nil + + case <-ch[10]: + return nil + + case <-ch[11]: + return nil + + case <-ch[12]: + return nil + + case <-ch[13]: + return nil + + case <-ch[14]: + return nil + + case <-ch[15]: + return nil + + case <-ch[16]: + return nil + + case <-ch[17]: + return nil + + case <-ch[18]: + return nil + + case <-ch[19]: + return nil + + case <-ch[20]: + return nil + + case <-ch[21]: + return nil + + case <-ch[22]: + return nil + + case <-ch[23]: + return nil + + case <-ch[24]: + return nil + + case <-ch[25]: + return nil + + case <-ch[26]: + return nil + + case <-ch[27]: + return nil + + case <-ch[28]: + return nil + + case <-ch[29]: + return nil + + case <-ch[30]: + return nil + + case <-ch[31]: + return nil + + case <-ctx.Done(): + return ctx.Err() + } +} |
