summaryrefslogtreecommitdiff
path: root/vendor/github.com/authzed/cel-go/interpreter/interpretable.go
diff options
context:
space:
mode:
authormo khan <mo@mokhan.ca>2025-07-22 17:35:49 -0600
committermo khan <mo@mokhan.ca>2025-07-22 17:35:49 -0600
commit20ef0d92694465ac86b550df139e8366a0a2b4fa (patch)
tree3f14589e1ce6eb9306a3af31c3a1f9e1af5ed637 /vendor/github.com/authzed/cel-go/interpreter/interpretable.go
parent44e0d272c040cdc53a98b9f1dc58ae7da67752e6 (diff)
feat: connect to spicedb
Diffstat (limited to 'vendor/github.com/authzed/cel-go/interpreter/interpretable.go')
-rw-r--r--vendor/github.com/authzed/cel-go/interpreter/interpretable.go1264
1 files changed, 1264 insertions, 0 deletions
diff --git a/vendor/github.com/authzed/cel-go/interpreter/interpretable.go b/vendor/github.com/authzed/cel-go/interpreter/interpretable.go
new file mode 100644
index 0000000..2d583ab
--- /dev/null
+++ b/vendor/github.com/authzed/cel-go/interpreter/interpretable.go
@@ -0,0 +1,1264 @@
+// Copyright 2019 Google LLC
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+package interpreter
+
+import (
+ "fmt"
+
+ "github.com/authzed/cel-go/common/functions"
+ "github.com/authzed/cel-go/common/operators"
+ "github.com/authzed/cel-go/common/overloads"
+ "github.com/authzed/cel-go/common/types"
+ "github.com/authzed/cel-go/common/types/ref"
+ "github.com/authzed/cel-go/common/types/traits"
+)
+
+// Interpretable can accept a given Activation and produce a value along with
+// an accompanying EvalState which can be used to inspect whether additional
+// data might be necessary to complete the evaluation.
+type Interpretable interface {
+ // ID value corresponding to the expression node.
+ ID() int64
+
+ // Eval an Activation to produce an output.
+ Eval(activation Activation) ref.Val
+}
+
+// InterpretableConst interface for tracking whether the Interpretable is a constant value.
+type InterpretableConst interface {
+ Interpretable
+
+ // Value returns the constant value of the instruction.
+ Value() ref.Val
+}
+
+// InterpretableAttribute interface for tracking whether the Interpretable is an attribute.
+type InterpretableAttribute interface {
+ Interpretable
+
+ // Attr returns the Attribute value.
+ Attr() Attribute
+
+ // Adapter returns the type adapter to be used for adapting resolved Attribute values.
+ Adapter() types.Adapter
+
+ // AddQualifier proxies the Attribute.AddQualifier method.
+ //
+ // Note, this method may mutate the current attribute state. If the desire is to clone the
+ // Attribute, the Attribute should first be copied before adding the qualifier. Attributes
+ // are not copyable by default, so this is a capable that would need to be added to the
+ // AttributeFactory or specifically to the underlying Attribute implementation.
+ AddQualifier(Qualifier) (Attribute, error)
+
+ // Qualify replicates the Attribute.Qualify method to permit extension and interception
+ // of object qualification.
+ Qualify(vars Activation, obj any) (any, error)
+
+ // QualifyIfPresent qualifies the object if the qualifier is declared or defined on the object.
+ // The 'presenceOnly' flag indicates that the value is not necessary, just a boolean status as
+ // to whether the qualifier is present.
+ QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error)
+
+ // IsOptional indicates whether the resulting value is an optional type.
+ IsOptional() bool
+
+ // Resolve returns the value of the Attribute given the current Activation.
+ Resolve(Activation) (any, error)
+}
+
+// InterpretableCall interface for inspecting Interpretable instructions related to function calls.
+type InterpretableCall interface {
+ Interpretable
+
+ // Function returns the function name as it appears in text or mangled operator name as it
+ // appears in the operators.go file.
+ Function() string
+
+ // OverloadID returns the overload id associated with the function specialization.
+ // Overload ids are stable across language boundaries and can be treated as synonymous with a
+ // unique function signature.
+ OverloadID() string
+
+ // Args returns the normalized arguments to the function overload.
+ // For receiver-style functions, the receiver target is arg 0.
+ Args() []Interpretable
+}
+
+// InterpretableConstructor interface for inspecting Interpretable instructions that initialize a list, map
+// or struct.
+type InterpretableConstructor interface {
+ Interpretable
+
+ // InitVals returns all the list elements, map key and values or struct field values.
+ InitVals() []Interpretable
+
+ // Type returns the type constructed.
+ Type() ref.Type
+}
+
+// Core Interpretable implementations used during the program planning phase.
+
+type evalTestOnly struct {
+ id int64
+ InterpretableAttribute
+}
+
+// ID implements the Interpretable interface method.
+func (test *evalTestOnly) ID() int64 {
+ return test.id
+}
+
+// Eval implements the Interpretable interface method.
+func (test *evalTestOnly) Eval(ctx Activation) ref.Val {
+ val, err := test.Resolve(ctx)
+ // Return an error if the resolve step fails
+ if err != nil {
+ return types.LabelErrNode(test.id, types.WrapErr(err))
+ }
+ if optVal, isOpt := val.(*types.Optional); isOpt {
+ return types.Bool(optVal.HasValue())
+ }
+ return test.Adapter().NativeToValue(val)
+}
+
+// AddQualifier appends a qualifier that will always and only perform a presence test.
+func (test *evalTestOnly) AddQualifier(q Qualifier) (Attribute, error) {
+ cq, ok := q.(ConstantQualifier)
+ if !ok {
+ return nil, fmt.Errorf("test only expressions must have constant qualifiers: %v", q)
+ }
+ return test.InterpretableAttribute.AddQualifier(&testOnlyQualifier{ConstantQualifier: cq})
+}
+
+type testOnlyQualifier struct {
+ ConstantQualifier
+}
+
+// Qualify determines whether the test-only qualifier is present on the input object.
+func (q *testOnlyQualifier) Qualify(vars Activation, obj any) (any, error) {
+ out, present, err := q.ConstantQualifier.QualifyIfPresent(vars, obj, true)
+ if err != nil {
+ return nil, err
+ }
+ if unk, isUnk := out.(types.Unknown); isUnk {
+ return unk, nil
+ }
+ if opt, isOpt := out.(types.Optional); isOpt {
+ return opt.HasValue(), nil
+ }
+ return present, nil
+}
+
+// QualifyIfPresent returns whether the target field in the test-only expression is present.
+func (q *testOnlyQualifier) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
+ // Only ever test for presence.
+ return q.ConstantQualifier.QualifyIfPresent(vars, obj, true)
+}
+
+// QualifierValueEquals determines whether the test-only constant qualifier equals the input value.
+func (q *testOnlyQualifier) QualifierValueEquals(value any) bool {
+ // The input qualifier will always be of type string
+ return q.ConstantQualifier.Value().Value() == value
+}
+
+// NewConstValue creates a new constant valued Interpretable.
+func NewConstValue(id int64, val ref.Val) InterpretableConst {
+ return &evalConst{
+ id: id,
+ val: val,
+ }
+}
+
+type evalConst struct {
+ id int64
+ val ref.Val
+}
+
+// ID implements the Interpretable interface method.
+func (cons *evalConst) ID() int64 {
+ return cons.id
+}
+
+// Eval implements the Interpretable interface method.
+func (cons *evalConst) Eval(ctx Activation) ref.Val {
+ return cons.val
+}
+
+// Value implements the InterpretableConst interface method.
+func (cons *evalConst) Value() ref.Val {
+ return cons.val
+}
+
+type evalOr struct {
+ id int64
+ terms []Interpretable
+}
+
+// ID implements the Interpretable interface method.
+func (or *evalOr) ID() int64 {
+ return or.id
+}
+
+// Eval implements the Interpretable interface method.
+func (or *evalOr) Eval(ctx Activation) ref.Val {
+ var err ref.Val = nil
+ var unk *types.Unknown
+ for _, term := range or.terms {
+ val := term.Eval(ctx)
+ boolVal, ok := val.(types.Bool)
+ // short-circuit on true.
+ if ok && boolVal == types.True {
+ return types.True
+ }
+ if !ok {
+ isUnk := false
+ unk, isUnk = types.MaybeMergeUnknowns(val, unk)
+ if !isUnk && err == nil {
+ if types.IsError(val) {
+ err = val
+ } else {
+ err = types.MaybeNoSuchOverloadErr(val)
+ }
+ err = types.LabelErrNode(or.id, err)
+ }
+ }
+ }
+ if unk != nil {
+ return unk
+ }
+ if err != nil {
+ return err
+ }
+ return types.False
+}
+
+type evalAnd struct {
+ id int64
+ terms []Interpretable
+}
+
+// ID implements the Interpretable interface method.
+func (and *evalAnd) ID() int64 {
+ return and.id
+}
+
+// Eval implements the Interpretable interface method.
+func (and *evalAnd) Eval(ctx Activation) ref.Val {
+ var err ref.Val = nil
+ var unk *types.Unknown
+ for _, term := range and.terms {
+ val := term.Eval(ctx)
+ boolVal, ok := val.(types.Bool)
+ // short-circuit on false.
+ if ok && boolVal == types.False {
+ return types.False
+ }
+ if !ok {
+ isUnk := false
+ unk, isUnk = types.MaybeMergeUnknowns(val, unk)
+ if !isUnk && err == nil {
+ if types.IsError(val) {
+ err = val
+ } else {
+ err = types.MaybeNoSuchOverloadErr(val)
+ }
+ err = types.LabelErrNode(and.id, err)
+ }
+ }
+ }
+ if unk != nil {
+ return unk
+ }
+ if err != nil {
+ return err
+ }
+ return types.True
+}
+
+type evalEq struct {
+ id int64
+ lhs Interpretable
+ rhs Interpretable
+}
+
+// ID implements the Interpretable interface method.
+func (eq *evalEq) ID() int64 {
+ return eq.id
+}
+
+// Eval implements the Interpretable interface method.
+func (eq *evalEq) Eval(ctx Activation) ref.Val {
+ lVal := eq.lhs.Eval(ctx)
+ rVal := eq.rhs.Eval(ctx)
+ if types.IsUnknownOrError(lVal) {
+ return lVal
+ }
+ if types.IsUnknownOrError(rVal) {
+ return rVal
+ }
+ return types.Equal(lVal, rVal)
+}
+
+// Function implements the InterpretableCall interface method.
+func (*evalEq) Function() string {
+ return operators.Equals
+}
+
+// OverloadID implements the InterpretableCall interface method.
+func (*evalEq) OverloadID() string {
+ return overloads.Equals
+}
+
+// Args implements the InterpretableCall interface method.
+func (eq *evalEq) Args() []Interpretable {
+ return []Interpretable{eq.lhs, eq.rhs}
+}
+
+type evalNe struct {
+ id int64
+ lhs Interpretable
+ rhs Interpretable
+}
+
+// ID implements the Interpretable interface method.
+func (ne *evalNe) ID() int64 {
+ return ne.id
+}
+
+// Eval implements the Interpretable interface method.
+func (ne *evalNe) Eval(ctx Activation) ref.Val {
+ lVal := ne.lhs.Eval(ctx)
+ rVal := ne.rhs.Eval(ctx)
+ if types.IsUnknownOrError(lVal) {
+ return lVal
+ }
+ if types.IsUnknownOrError(rVal) {
+ return rVal
+ }
+ return types.Bool(types.Equal(lVal, rVal) != types.True)
+}
+
+// Function implements the InterpretableCall interface method.
+func (*evalNe) Function() string {
+ return operators.NotEquals
+}
+
+// OverloadID implements the InterpretableCall interface method.
+func (*evalNe) OverloadID() string {
+ return overloads.NotEquals
+}
+
+// Args implements the InterpretableCall interface method.
+func (ne *evalNe) Args() []Interpretable {
+ return []Interpretable{ne.lhs, ne.rhs}
+}
+
+type evalZeroArity struct {
+ id int64
+ function string
+ overload string
+ impl functions.FunctionOp
+}
+
+// ID implements the Interpretable interface method.
+func (zero *evalZeroArity) ID() int64 {
+ return zero.id
+}
+
+// Eval implements the Interpretable interface method.
+func (zero *evalZeroArity) Eval(ctx Activation) ref.Val {
+ return types.LabelErrNode(zero.id, zero.impl())
+}
+
+// Function implements the InterpretableCall interface method.
+func (zero *evalZeroArity) Function() string {
+ return zero.function
+}
+
+// OverloadID implements the InterpretableCall interface method.
+func (zero *evalZeroArity) OverloadID() string {
+ return zero.overload
+}
+
+// Args returns the argument to the unary function.
+func (zero *evalZeroArity) Args() []Interpretable {
+ return []Interpretable{}
+}
+
+type evalUnary struct {
+ id int64
+ function string
+ overload string
+ arg Interpretable
+ trait int
+ impl functions.UnaryOp
+ nonStrict bool
+}
+
+// ID implements the Interpretable interface method.
+func (un *evalUnary) ID() int64 {
+ return un.id
+}
+
+// Eval implements the Interpretable interface method.
+func (un *evalUnary) Eval(ctx Activation) ref.Val {
+ argVal := un.arg.Eval(ctx)
+ // Early return if the argument to the function is unknown or error.
+ strict := !un.nonStrict
+ if strict && types.IsUnknownOrError(argVal) {
+ return argVal
+ }
+ // If the implementation is bound and the argument value has the right traits required to
+ // invoke it, then call the implementation.
+ if un.impl != nil && (un.trait == 0 || (!strict && types.IsUnknownOrError(argVal)) || argVal.Type().HasTrait(un.trait)) {
+ return types.LabelErrNode(un.id, un.impl(argVal))
+ }
+ // Otherwise, if the argument is a ReceiverType attempt to invoke the receiver method on the
+ // operand (arg0).
+ if argVal.Type().HasTrait(traits.ReceiverType) {
+ return types.LabelErrNode(un.id, argVal.(traits.Receiver).Receive(un.function, un.overload, []ref.Val{}))
+ }
+ return types.NewErrWithNodeID(un.id, "no such overload: %s", un.function)
+}
+
+// Function implements the InterpretableCall interface method.
+func (un *evalUnary) Function() string {
+ return un.function
+}
+
+// OverloadID implements the InterpretableCall interface method.
+func (un *evalUnary) OverloadID() string {
+ return un.overload
+}
+
+// Args returns the argument to the unary function.
+func (un *evalUnary) Args() []Interpretable {
+ return []Interpretable{un.arg}
+}
+
+type evalBinary struct {
+ id int64
+ function string
+ overload string
+ lhs Interpretable
+ rhs Interpretable
+ trait int
+ impl functions.BinaryOp
+ nonStrict bool
+}
+
+// ID implements the Interpretable interface method.
+func (bin *evalBinary) ID() int64 {
+ return bin.id
+}
+
+// Eval implements the Interpretable interface method.
+func (bin *evalBinary) Eval(ctx Activation) ref.Val {
+ lVal := bin.lhs.Eval(ctx)
+ rVal := bin.rhs.Eval(ctx)
+ // Early return if any argument to the function is unknown or error.
+ strict := !bin.nonStrict
+ if strict {
+ if types.IsUnknownOrError(lVal) {
+ return lVal
+ }
+ if types.IsUnknownOrError(rVal) {
+ return rVal
+ }
+ }
+ // If the implementation is bound and the argument value has the right traits required to
+ // invoke it, then call the implementation.
+ if bin.impl != nil && (bin.trait == 0 || (!strict && types.IsUnknownOrError(lVal)) || lVal.Type().HasTrait(bin.trait)) {
+ return types.LabelErrNode(bin.id, bin.impl(lVal, rVal))
+ }
+ // Otherwise, if the argument is a ReceiverType attempt to invoke the receiver method on the
+ // operand (arg0).
+ if lVal.Type().HasTrait(traits.ReceiverType) {
+ return types.LabelErrNode(bin.id, lVal.(traits.Receiver).Receive(bin.function, bin.overload, []ref.Val{rVal}))
+ }
+ return types.NewErrWithNodeID(bin.id, "no such overload: %s", bin.function)
+}
+
+// Function implements the InterpretableCall interface method.
+func (bin *evalBinary) Function() string {
+ return bin.function
+}
+
+// OverloadID implements the InterpretableCall interface method.
+func (bin *evalBinary) OverloadID() string {
+ return bin.overload
+}
+
+// Args returns the argument to the unary function.
+func (bin *evalBinary) Args() []Interpretable {
+ return []Interpretable{bin.lhs, bin.rhs}
+}
+
+type evalVarArgs struct {
+ id int64
+ function string
+ overload string
+ args []Interpretable
+ trait int
+ impl functions.FunctionOp
+ nonStrict bool
+}
+
+// NewCall creates a new call Interpretable.
+func NewCall(id int64, function, overload string, args []Interpretable, impl functions.FunctionOp) InterpretableCall {
+ return &evalVarArgs{
+ id: id,
+ function: function,
+ overload: overload,
+ args: args,
+ impl: impl,
+ }
+}
+
+// ID implements the Interpretable interface method.
+func (fn *evalVarArgs) ID() int64 {
+ return fn.id
+}
+
+// Eval implements the Interpretable interface method.
+func (fn *evalVarArgs) Eval(ctx Activation) ref.Val {
+ argVals := make([]ref.Val, len(fn.args))
+ // Early return if any argument to the function is unknown or error.
+ strict := !fn.nonStrict
+ for i, arg := range fn.args {
+ argVals[i] = arg.Eval(ctx)
+ if strict && types.IsUnknownOrError(argVals[i]) {
+ return argVals[i]
+ }
+ }
+ // If the implementation is bound and the argument value has the right traits required to
+ // invoke it, then call the implementation.
+ arg0 := argVals[0]
+ if fn.impl != nil && (fn.trait == 0 || (!strict && types.IsUnknownOrError(arg0)) || arg0.Type().HasTrait(fn.trait)) {
+ return types.LabelErrNode(fn.id, fn.impl(argVals...))
+ }
+ // Otherwise, if the argument is a ReceiverType attempt to invoke the receiver method on the
+ // operand (arg0).
+ if arg0.Type().HasTrait(traits.ReceiverType) {
+ return types.LabelErrNode(fn.id, arg0.(traits.Receiver).Receive(fn.function, fn.overload, argVals[1:]))
+ }
+ return types.NewErrWithNodeID(fn.id, "no such overload: %s %d", fn.function, fn.id)
+}
+
+// Function implements the InterpretableCall interface method.
+func (fn *evalVarArgs) Function() string {
+ return fn.function
+}
+
+// OverloadID implements the InterpretableCall interface method.
+func (fn *evalVarArgs) OverloadID() string {
+ return fn.overload
+}
+
+// Args returns the argument to the unary function.
+func (fn *evalVarArgs) Args() []Interpretable {
+ return fn.args
+}
+
+type evalList struct {
+ id int64
+ elems []Interpretable
+ optionals []bool
+ hasOptionals bool
+ adapter types.Adapter
+}
+
+// ID implements the Interpretable interface method.
+func (l *evalList) ID() int64 {
+ return l.id
+}
+
+// Eval implements the Interpretable interface method.
+func (l *evalList) Eval(ctx Activation) ref.Val {
+ elemVals := make([]ref.Val, 0, len(l.elems))
+ // If any argument is unknown or error early terminate.
+ for i, elem := range l.elems {
+ elemVal := elem.Eval(ctx)
+ if types.IsUnknownOrError(elemVal) {
+ return elemVal
+ }
+ if l.hasOptionals && l.optionals[i] {
+ optVal, ok := elemVal.(*types.Optional)
+ if !ok {
+ return types.LabelErrNode(l.id, invalidOptionalElementInit(elemVal))
+ }
+ if !optVal.HasValue() {
+ continue
+ }
+ elemVal = optVal.GetValue()
+ }
+ elemVals = append(elemVals, elemVal)
+ }
+ return l.adapter.NativeToValue(elemVals)
+}
+
+func (l *evalList) InitVals() []Interpretable {
+ return l.elems
+}
+
+func (l *evalList) Type() ref.Type {
+ return types.ListType
+}
+
+type evalMap struct {
+ id int64
+ keys []Interpretable
+ vals []Interpretable
+ optionals []bool
+ hasOptionals bool
+ adapter types.Adapter
+}
+
+// ID implements the Interpretable interface method.
+func (m *evalMap) ID() int64 {
+ return m.id
+}
+
+// Eval implements the Interpretable interface method.
+func (m *evalMap) Eval(ctx Activation) ref.Val {
+ entries := make(map[ref.Val]ref.Val)
+ // If any argument is unknown or error early terminate.
+ for i, key := range m.keys {
+ keyVal := key.Eval(ctx)
+ if types.IsUnknownOrError(keyVal) {
+ return keyVal
+ }
+ valVal := m.vals[i].Eval(ctx)
+ if types.IsUnknownOrError(valVal) {
+ return valVal
+ }
+ if m.hasOptionals && m.optionals[i] {
+ optVal, ok := valVal.(*types.Optional)
+ if !ok {
+ return types.LabelErrNode(m.id, invalidOptionalEntryInit(keyVal, valVal))
+ }
+ if !optVal.HasValue() {
+ delete(entries, keyVal)
+ continue
+ }
+ valVal = optVal.GetValue()
+ }
+ entries[keyVal] = valVal
+ }
+ return m.adapter.NativeToValue(entries)
+}
+
+func (m *evalMap) InitVals() []Interpretable {
+ if len(m.keys) != len(m.vals) {
+ return nil
+ }
+ result := make([]Interpretable, len(m.keys)+len(m.vals))
+ idx := 0
+ for i, k := range m.keys {
+ v := m.vals[i]
+ result[idx] = k
+ idx++
+ result[idx] = v
+ idx++
+ }
+ return result
+}
+
+func (m *evalMap) Type() ref.Type {
+ return types.MapType
+}
+
+type evalObj struct {
+ id int64
+ typeName string
+ fields []string
+ vals []Interpretable
+ optionals []bool
+ hasOptionals bool
+ provider types.Provider
+}
+
+// ID implements the Interpretable interface method.
+func (o *evalObj) ID() int64 {
+ return o.id
+}
+
+// Eval implements the Interpretable interface method.
+func (o *evalObj) Eval(ctx Activation) ref.Val {
+ fieldVals := make(map[string]ref.Val)
+ // If any argument is unknown or error early terminate.
+ for i, field := range o.fields {
+ val := o.vals[i].Eval(ctx)
+ if types.IsUnknownOrError(val) {
+ return val
+ }
+ if o.hasOptionals && o.optionals[i] {
+ optVal, ok := val.(*types.Optional)
+ if !ok {
+ return types.LabelErrNode(o.id, invalidOptionalEntryInit(field, val))
+ }
+ if !optVal.HasValue() {
+ delete(fieldVals, field)
+ continue
+ }
+ val = optVal.GetValue()
+ }
+ fieldVals[field] = val
+ }
+ return types.LabelErrNode(o.id, o.provider.NewValue(o.typeName, fieldVals))
+}
+
+func (o *evalObj) InitVals() []Interpretable {
+ return o.vals
+}
+
+func (o *evalObj) Type() ref.Type {
+ return types.NewObjectTypeValue(o.typeName)
+}
+
+type evalFold struct {
+ id int64
+ accuVar string
+ iterVar string
+ iterRange Interpretable
+ accu Interpretable
+ cond Interpretable
+ step Interpretable
+ result Interpretable
+ adapter types.Adapter
+ exhaustive bool
+ interruptable bool
+}
+
+// ID implements the Interpretable interface method.
+func (fold *evalFold) ID() int64 {
+ return fold.id
+}
+
+// Eval implements the Interpretable interface method.
+func (fold *evalFold) Eval(ctx Activation) ref.Val {
+ foldRange := fold.iterRange.Eval(ctx)
+ if !foldRange.Type().HasTrait(traits.IterableType) {
+ return types.ValOrErr(foldRange, "got '%T', expected iterable type", foldRange)
+ }
+ // Configure the fold activation with the accumulator initial value.
+ accuCtx := varActivationPool.Get().(*varActivation)
+ accuCtx.parent = ctx
+ accuCtx.name = fold.accuVar
+ accuCtx.val = fold.accu.Eval(ctx)
+ // If the accumulator starts as an empty list, then the comprehension will build a list
+ // so create a mutable list to optimize the cost of the inner loop.
+ l, ok := accuCtx.val.(traits.Lister)
+ buildingList := false
+ if !fold.exhaustive && ok && l.Size() == types.IntZero {
+ buildingList = true
+ accuCtx.val = types.NewMutableList(fold.adapter)
+ }
+ iterCtx := varActivationPool.Get().(*varActivation)
+ iterCtx.parent = accuCtx
+ iterCtx.name = fold.iterVar
+
+ interrupted := false
+ it := foldRange.(traits.Iterable).Iterator()
+ for it.HasNext() == types.True {
+ // Modify the iter var in the fold activation.
+ iterCtx.val = it.Next()
+
+ // Evaluate the condition, terminate the loop if false.
+ cond := fold.cond.Eval(iterCtx)
+ condBool, ok := cond.(types.Bool)
+ if !fold.exhaustive && ok && condBool != types.True {
+ break
+ }
+ // Evaluate the evaluation step into accu var.
+ accuCtx.val = fold.step.Eval(iterCtx)
+ if fold.interruptable {
+ if stop, found := ctx.ResolveName("#interrupted"); found && stop == true {
+ interrupted = true
+ break
+ }
+ }
+ }
+ varActivationPool.Put(iterCtx)
+ if interrupted {
+ varActivationPool.Put(accuCtx)
+ return types.NewErr("operation interrupted")
+ }
+
+ // Compute the result.
+ res := fold.result.Eval(accuCtx)
+ varActivationPool.Put(accuCtx)
+ // Convert a mutable list to an immutable one, if the comprehension has generated a list as a result.
+ if !types.IsUnknownOrError(res) && buildingList {
+ if _, ok := res.(traits.MutableLister); ok {
+ res = res.(traits.MutableLister).ToImmutableList()
+ }
+ }
+ return res
+}
+
+// Optional Interpretable implementations that specialize, subsume, or extend the core evaluation
+// plan via decorators.
+
+// evalSetMembership is an Interpretable implementation which tests whether an input value
+// exists within the set of map keys used to model a set.
+type evalSetMembership struct {
+ inst Interpretable
+ arg Interpretable
+ valueSet map[ref.Val]ref.Val
+}
+
+// ID implements the Interpretable interface method.
+func (e *evalSetMembership) ID() int64 {
+ return e.inst.ID()
+}
+
+// Eval implements the Interpretable interface method.
+func (e *evalSetMembership) Eval(ctx Activation) ref.Val {
+ val := e.arg.Eval(ctx)
+ if types.IsUnknownOrError(val) {
+ return val
+ }
+ if ret, found := e.valueSet[val]; found {
+ return ret
+ }
+ return types.False
+}
+
+// evalWatch is an Interpretable implementation that wraps the execution of a given
+// expression so that it may observe the computed value and send it to an observer.
+type evalWatch struct {
+ Interpretable
+ observer EvalObserver
+}
+
+// Eval implements the Interpretable interface method.
+func (e *evalWatch) Eval(ctx Activation) ref.Val {
+ val := e.Interpretable.Eval(ctx)
+ e.observer(e.ID(), e.Interpretable, val)
+ return val
+}
+
+// evalWatchAttr describes a watcher of an InterpretableAttribute Interpretable.
+//
+// Since the watcher may be selected against at a later stage in program planning, the watcher
+// must implement the InterpretableAttribute interface by proxy.
+type evalWatchAttr struct {
+ InterpretableAttribute
+ observer EvalObserver
+}
+
+// AddQualifier creates a wrapper over the incoming qualifier which observes the qualification
+// result.
+func (e *evalWatchAttr) AddQualifier(q Qualifier) (Attribute, error) {
+ switch qual := q.(type) {
+ // By default, the qualifier is either a constant or an attribute
+ // There may be some custom cases where the attribute is neither.
+ case ConstantQualifier:
+ // Expose a method to test whether the qualifier matches the input pattern.
+ q = &evalWatchConstQual{
+ ConstantQualifier: qual,
+ observer: e.observer,
+ adapter: e.Adapter(),
+ }
+ case *evalWatchAttr:
+ // Unwrap the evalWatchAttr since the observation will be applied during Qualify or
+ // QualifyIfPresent rather than Eval.
+ q = &evalWatchAttrQual{
+ Attribute: qual.InterpretableAttribute,
+ observer: e.observer,
+ adapter: e.Adapter(),
+ }
+ case Attribute:
+ // Expose methods which intercept the qualification prior to being applied as a qualifier.
+ // Using this interface ensures that the qualifier is converted to a constant value one
+ // time during attribute pattern matching as the method embeds the Attribute interface
+ // needed to trip the conversion to a constant.
+ q = &evalWatchAttrQual{
+ Attribute: qual,
+ observer: e.observer,
+ adapter: e.Adapter(),
+ }
+ default:
+ // This is likely a custom qualifier type.
+ q = &evalWatchQual{
+ Qualifier: qual,
+ observer: e.observer,
+ adapter: e.Adapter(),
+ }
+ }
+ _, err := e.InterpretableAttribute.AddQualifier(q)
+ return e, err
+}
+
+// Eval implements the Interpretable interface method.
+func (e *evalWatchAttr) Eval(vars Activation) ref.Val {
+ val := e.InterpretableAttribute.Eval(vars)
+ e.observer(e.ID(), e.InterpretableAttribute, val)
+ return val
+}
+
+// evalWatchConstQual observes the qualification of an object using a constant boolean, int,
+// string, or uint.
+type evalWatchConstQual struct {
+ ConstantQualifier
+ observer EvalObserver
+ adapter types.Adapter
+}
+
+// Qualify observes the qualification of a object via a constant boolean, int, string, or uint.
+func (e *evalWatchConstQual) Qualify(vars Activation, obj any) (any, error) {
+ out, err := e.ConstantQualifier.Qualify(vars, obj)
+ var val ref.Val
+ if err != nil {
+ val = types.LabelErrNode(e.ID(), types.WrapErr(err))
+ } else {
+ val = e.adapter.NativeToValue(out)
+ }
+ e.observer(e.ID(), e.ConstantQualifier, val)
+ return out, err
+}
+
+// QualifyIfPresent conditionally qualifies the variable and only records a value if one is present.
+func (e *evalWatchConstQual) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
+ out, present, err := e.ConstantQualifier.QualifyIfPresent(vars, obj, presenceOnly)
+ var val ref.Val
+ if err != nil {
+ val = types.LabelErrNode(e.ID(), types.WrapErr(err))
+ } else if out != nil {
+ val = e.adapter.NativeToValue(out)
+ } else if presenceOnly {
+ val = types.Bool(present)
+ }
+ if present || presenceOnly {
+ e.observer(e.ID(), e.ConstantQualifier, val)
+ }
+ return out, present, err
+}
+
+// QualifierValueEquals tests whether the incoming value is equal to the qualifying constant.
+func (e *evalWatchConstQual) QualifierValueEquals(value any) bool {
+ qve, ok := e.ConstantQualifier.(qualifierValueEquator)
+ return ok && qve.QualifierValueEquals(value)
+}
+
+// evalWatchAttrQual observes the qualification of an object by a value computed at runtime.
+type evalWatchAttrQual struct {
+ Attribute
+ observer EvalObserver
+ adapter ref.TypeAdapter
+}
+
+// Qualify observes the qualification of a object via a value computed at runtime.
+func (e *evalWatchAttrQual) Qualify(vars Activation, obj any) (any, error) {
+ out, err := e.Attribute.Qualify(vars, obj)
+ var val ref.Val
+ if err != nil {
+ val = types.LabelErrNode(e.ID(), types.WrapErr(err))
+ } else {
+ val = e.adapter.NativeToValue(out)
+ }
+ e.observer(e.ID(), e.Attribute, val)
+ return out, err
+}
+
+// QualifyIfPresent conditionally qualifies the variable and only records a value if one is present.
+func (e *evalWatchAttrQual) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
+ out, present, err := e.Attribute.QualifyIfPresent(vars, obj, presenceOnly)
+ var val ref.Val
+ if err != nil {
+ val = types.LabelErrNode(e.ID(), types.WrapErr(err))
+ } else if out != nil {
+ val = e.adapter.NativeToValue(out)
+ } else if presenceOnly {
+ val = types.Bool(present)
+ }
+ if present || presenceOnly {
+ e.observer(e.ID(), e.Attribute, val)
+ }
+ return out, present, err
+}
+
+// evalWatchQual observes the qualification of an object by a value computed at runtime.
+type evalWatchQual struct {
+ Qualifier
+ observer EvalObserver
+ adapter types.Adapter
+}
+
+// Qualify observes the qualification of a object via a value computed at runtime.
+func (e *evalWatchQual) Qualify(vars Activation, obj any) (any, error) {
+ out, err := e.Qualifier.Qualify(vars, obj)
+ var val ref.Val
+ if err != nil {
+ val = types.LabelErrNode(e.ID(), types.WrapErr(err))
+ } else {
+ val = e.adapter.NativeToValue(out)
+ }
+ e.observer(e.ID(), e.Qualifier, val)
+ return out, err
+}
+
+// QualifyIfPresent conditionally qualifies the variable and only records a value if one is present.
+func (e *evalWatchQual) QualifyIfPresent(vars Activation, obj any, presenceOnly bool) (any, bool, error) {
+ out, present, err := e.Qualifier.QualifyIfPresent(vars, obj, presenceOnly)
+ var val ref.Val
+ if err != nil {
+ val = types.LabelErrNode(e.ID(), types.WrapErr(err))
+ } else if out != nil {
+ val = e.adapter.NativeToValue(out)
+ } else if presenceOnly {
+ val = types.Bool(present)
+ }
+ if present || presenceOnly {
+ e.observer(e.ID(), e.Qualifier, val)
+ }
+ return out, present, err
+}
+
+// evalWatchConst describes a watcher of an instConst Interpretable.
+type evalWatchConst struct {
+ InterpretableConst
+ observer EvalObserver
+}
+
+// Eval implements the Interpretable interface method.
+func (e *evalWatchConst) Eval(vars Activation) ref.Val {
+ val := e.Value()
+ e.observer(e.ID(), e.InterpretableConst, val)
+ return val
+}
+
+// evalExhaustiveOr is just like evalOr, but does not short-circuit argument evaluation.
+type evalExhaustiveOr struct {
+ id int64
+ terms []Interpretable
+}
+
+// ID implements the Interpretable interface method.
+func (or *evalExhaustiveOr) ID() int64 {
+ return or.id
+}
+
+// Eval implements the Interpretable interface method.
+func (or *evalExhaustiveOr) Eval(ctx Activation) ref.Val {
+ var err ref.Val = nil
+ var unk *types.Unknown
+ isTrue := false
+ for _, term := range or.terms {
+ val := term.Eval(ctx)
+ boolVal, ok := val.(types.Bool)
+ // flag the result as true
+ if ok && boolVal == types.True {
+ isTrue = true
+ }
+ if !ok && !isTrue {
+ isUnk := false
+ unk, isUnk = types.MaybeMergeUnknowns(val, unk)
+ if !isUnk && err == nil {
+ if types.IsError(val) {
+ err = val
+ } else {
+ err = types.MaybeNoSuchOverloadErr(val)
+ }
+ }
+ }
+ }
+ if isTrue {
+ return types.True
+ }
+ if unk != nil {
+ return unk
+ }
+ if err != nil {
+ return err
+ }
+ return types.False
+}
+
+// evalExhaustiveAnd is just like evalAnd, but does not short-circuit argument evaluation.
+type evalExhaustiveAnd struct {
+ id int64
+ terms []Interpretable
+}
+
+// ID implements the Interpretable interface method.
+func (and *evalExhaustiveAnd) ID() int64 {
+ return and.id
+}
+
+// Eval implements the Interpretable interface method.
+func (and *evalExhaustiveAnd) Eval(ctx Activation) ref.Val {
+ var err ref.Val = nil
+ var unk *types.Unknown
+ isFalse := false
+ for _, term := range and.terms {
+ val := term.Eval(ctx)
+ boolVal, ok := val.(types.Bool)
+ // short-circuit on false.
+ if ok && boolVal == types.False {
+ isFalse = true
+ }
+ if !ok && !isFalse {
+ isUnk := false
+ unk, isUnk = types.MaybeMergeUnknowns(val, unk)
+ if !isUnk && err == nil {
+ if types.IsError(val) {
+ err = val
+ } else {
+ err = types.MaybeNoSuchOverloadErr(val)
+ }
+ }
+ }
+ }
+ if isFalse {
+ return types.False
+ }
+ if unk != nil {
+ return unk
+ }
+ if err != nil {
+ return err
+ }
+ return types.True
+}
+
+// evalExhaustiveConditional is like evalConditional, but does not short-circuit argument
+// evaluation.
+type evalExhaustiveConditional struct {
+ id int64
+ adapter types.Adapter
+ attr *conditionalAttribute
+}
+
+// ID implements the Interpretable interface method.
+func (cond *evalExhaustiveConditional) ID() int64 {
+ return cond.id
+}
+
+// Eval implements the Interpretable interface method.
+func (cond *evalExhaustiveConditional) Eval(ctx Activation) ref.Val {
+ cVal := cond.attr.expr.Eval(ctx)
+ tVal, tErr := cond.attr.truthy.Resolve(ctx)
+ fVal, fErr := cond.attr.falsy.Resolve(ctx)
+ cBool, ok := cVal.(types.Bool)
+ if !ok {
+ return types.ValOrErr(cVal, "no such overload")
+ }
+ if cBool {
+ if tErr != nil {
+ return types.LabelErrNode(cond.id, types.WrapErr(tErr))
+ }
+ return cond.adapter.NativeToValue(tVal)
+ }
+ if fErr != nil {
+ return types.LabelErrNode(cond.id, types.WrapErr(fErr))
+ }
+ return cond.adapter.NativeToValue(fVal)
+}
+
+// evalAttr evaluates an Attribute value.
+type evalAttr struct {
+ adapter types.Adapter
+ attr Attribute
+ optional bool
+}
+
+var _ InterpretableAttribute = &evalAttr{}
+
+// ID of the attribute instruction.
+func (a *evalAttr) ID() int64 {
+ return a.attr.ID()
+}
+
+// AddQualifier implements the InterpretableAttribute interface method.
+func (a *evalAttr) AddQualifier(qual Qualifier) (Attribute, error) {
+ attr, err := a.attr.AddQualifier(qual)
+ a.attr = attr
+ return attr, err
+}
+
+// Attr implements the InterpretableAttribute interface method.
+func (a *evalAttr) Attr() Attribute {
+ return a.attr
+}
+
+// Adapter implements the InterpretableAttribute interface method.
+func (a *evalAttr) Adapter() types.Adapter {
+ return a.adapter
+}
+
+// Eval implements the Interpretable interface method.
+func (a *evalAttr) Eval(ctx Activation) ref.Val {
+ v, err := a.attr.Resolve(ctx)
+ if err != nil {
+ return types.LabelErrNode(a.ID(), types.WrapErr(err))
+ }
+ return a.adapter.NativeToValue(v)
+}
+
+// Qualify proxies to the Attribute's Qualify method.
+func (a *evalAttr) Qualify(ctx Activation, obj any) (any, error) {
+ return a.attr.Qualify(ctx, obj)
+}
+
+// QualifyIfPresent proxies to the Attribute's QualifyIfPresent method.
+func (a *evalAttr) QualifyIfPresent(ctx Activation, obj any, presenceOnly bool) (any, bool, error) {
+ return a.attr.QualifyIfPresent(ctx, obj, presenceOnly)
+}
+
+func (a *evalAttr) IsOptional() bool {
+ return a.optional
+}
+
+// Resolve proxies to the Attribute's Resolve method.
+func (a *evalAttr) Resolve(ctx Activation) (any, error) {
+ return a.attr.Resolve(ctx)
+}
+
+type evalWatchConstructor struct {
+ constructor InterpretableConstructor
+ observer EvalObserver
+}
+
+// InitVals implements the InterpretableConstructor InitVals function.
+func (c *evalWatchConstructor) InitVals() []Interpretable {
+ return c.constructor.InitVals()
+}
+
+// Type implements the InterpretableConstructor Type function.
+func (c *evalWatchConstructor) Type() ref.Type {
+ return c.constructor.Type()
+}
+
+// ID implements the Interpretable ID function.
+func (c *evalWatchConstructor) ID() int64 {
+ return c.constructor.ID()
+}
+
+// Eval implements the Interpretable Eval function.
+func (c *evalWatchConstructor) Eval(ctx Activation) ref.Val {
+ val := c.constructor.Eval(ctx)
+ c.observer(c.ID(), c.constructor, val)
+ return val
+}
+
+func invalidOptionalEntryInit(field any, value ref.Val) ref.Val {
+ return types.NewErr("cannot initialize optional entry '%v' from non-optional value %v", field, value)
+}
+
+func invalidOptionalElementInit(value ref.Val) ref.Val {
+ return types.NewErr("cannot initialize optional list element from non-optional value %v", value)
+}