summaryrefslogtreecommitdiff
path: root/vendor/petgraph/tests/quickcheck.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/petgraph/tests/quickcheck.rs')
-rw-r--r--vendor/petgraph/tests/quickcheck.rs1457
1 files changed, 1457 insertions, 0 deletions
diff --git a/vendor/petgraph/tests/quickcheck.rs b/vendor/petgraph/tests/quickcheck.rs
new file mode 100644
index 00000000..899e053e
--- /dev/null
+++ b/vendor/petgraph/tests/quickcheck.rs
@@ -0,0 +1,1457 @@
+#![cfg(feature = "quickcheck")]
+#[macro_use]
+extern crate quickcheck;
+extern crate petgraph;
+extern crate rand;
+#[macro_use]
+extern crate defmac;
+
+extern crate itertools;
+extern crate odds;
+
+mod utils;
+
+use utils::{Small, Tournament};
+
+use odds::prelude::*;
+use std::collections::{BTreeSet, HashMap, HashSet};
+use std::hash::Hash;
+
+use itertools::assert_equal;
+use itertools::cloned;
+use quickcheck::{Arbitrary, Gen};
+use rand::Rng;
+
+use petgraph::algo::{
+ bellman_ford, condensation, dijkstra, dsatur_coloring, find_negative_cycle, floyd_warshall,
+ ford_fulkerson, greedy_feedback_arc_set, greedy_matching, is_cyclic_directed,
+ is_cyclic_undirected, is_isomorphic, is_isomorphic_matching, k_shortest_path, kosaraju_scc,
+ maximum_matching, min_spanning_tree, page_rank, tarjan_scc, toposort, Matching,
+};
+use petgraph::data::FromElements;
+use petgraph::dot::{Config, Dot};
+use petgraph::graph::{edge_index, node_index, IndexType};
+use petgraph::graphmap::NodeTrait;
+use petgraph::operator::complement;
+use petgraph::prelude::*;
+use petgraph::visit::{
+ EdgeFiltered, EdgeIndexable, IntoEdgeReferences, IntoEdges, IntoNeighbors, IntoNodeIdentifiers,
+ IntoNodeReferences, NodeCount, NodeIndexable, Reversed, Topo, VisitMap, Visitable,
+};
+use petgraph::EdgeType;
+
+fn mst_graph<N, E, Ty, Ix>(g: &Graph<N, E, Ty, Ix>) -> Graph<N, E, Undirected, Ix>
+where
+ Ty: EdgeType,
+ Ix: IndexType,
+ N: Clone,
+ E: Clone + PartialOrd,
+{
+ Graph::from_elements(min_spanning_tree(&g))
+}
+
+use std::fmt;
+
+quickcheck! {
+ fn mst_directed(g: Small<Graph<(), u32>>) -> bool {
+ // filter out isolated nodes
+ let no_singles = g.filter_map(
+ |nx, w| g.neighbors_undirected(nx).next().map(|_| w),
+ |_, w| Some(w));
+ for i in no_singles.node_indices() {
+ assert!(no_singles.neighbors_undirected(i).count() > 0);
+ }
+ assert_eq!(no_singles.edge_count(), g.edge_count());
+ let mst = mst_graph(&no_singles);
+ assert!(!is_cyclic_undirected(&mst));
+ true
+ }
+}
+
+quickcheck! {
+ fn mst_undirected(g: Graph<(), u32, Undirected>) -> bool {
+ // filter out isolated nodes
+ let no_singles = g.filter_map(
+ |nx, w| g.neighbors_undirected(nx).next().map(|_| w),
+ |_, w| Some(w));
+ for i in no_singles.node_indices() {
+ assert!(no_singles.neighbors_undirected(i).count() > 0);
+ }
+ assert_eq!(no_singles.edge_count(), g.edge_count());
+ let mst = mst_graph(&no_singles);
+ assert!(!is_cyclic_undirected(&mst));
+ true
+ }
+}
+
+quickcheck! {
+ fn reverse_undirected(g: Small<UnGraph<(), ()>>) -> bool {
+ let mut h = (*g).clone();
+ h.reverse();
+ is_isomorphic(&*g, &h)
+ }
+}
+
+fn assert_graph_consistent<N, E, Ty, Ix>(g: &Graph<N, E, Ty, Ix>)
+where
+ Ty: EdgeType,
+ Ix: IndexType,
+{
+ assert_eq!(g.node_count(), g.node_indices().count());
+ assert_eq!(g.edge_count(), g.edge_indices().count());
+ for edge in g.raw_edges() {
+ assert!(
+ g.find_edge(edge.source(), edge.target()).is_some(),
+ "Edge not in graph! {:?} to {:?}",
+ edge.source(),
+ edge.target()
+ );
+ }
+}
+
+#[test]
+fn reverse_directed() {
+ fn prop<Ty: EdgeType>(mut g: Graph<(), (), Ty>) -> bool {
+ let node_outdegrees = g
+ .node_indices()
+ .map(|i| g.neighbors_directed(i, Outgoing).count())
+ .collect::<Vec<_>>();
+ let node_indegrees = g
+ .node_indices()
+ .map(|i| g.neighbors_directed(i, Incoming).count())
+ .collect::<Vec<_>>();
+
+ g.reverse();
+ let new_outdegrees = g
+ .node_indices()
+ .map(|i| g.neighbors_directed(i, Outgoing).count())
+ .collect::<Vec<_>>();
+ let new_indegrees = g
+ .node_indices()
+ .map(|i| g.neighbors_directed(i, Incoming).count())
+ .collect::<Vec<_>>();
+ assert_eq!(node_outdegrees, new_indegrees);
+ assert_eq!(node_indegrees, new_outdegrees);
+ assert_graph_consistent(&g);
+ true
+ }
+ quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>) -> bool);
+}
+
+#[test]
+fn graph_retain_nodes() {
+ fn prop<Ty: EdgeType>(mut g: Graph<i32, i32, Ty>) -> bool {
+ // Remove all negative nodes, these should be randomly spread
+ let og = g.clone();
+ let nodes = g.node_count();
+ let num_negs = g.raw_nodes().iter().filter(|n| n.weight < 0).count();
+ let mut removed = 0;
+ g.retain_nodes(|g, i| {
+ let keep = g[i] >= 0;
+ if !keep {
+ removed += 1;
+ }
+ keep
+ });
+ let num_negs_post = g.raw_nodes().iter().filter(|n| n.weight < 0).count();
+ let num_pos_post = g.raw_nodes().iter().filter(|n| n.weight >= 0).count();
+ assert_eq!(num_negs_post, 0);
+ assert_eq!(removed, num_negs);
+ assert_eq!(num_negs + g.node_count(), nodes);
+ assert_eq!(num_pos_post, g.node_count());
+
+ // check against filter_map
+ let filtered = og.filter_map(
+ |_, w| if *w >= 0 { Some(*w) } else { None },
+ |_, w| Some(*w),
+ );
+ assert_eq!(g.node_count(), filtered.node_count());
+ /*
+ println!("Iso of graph with nodes={}, edges={}",
+ g.node_count(), g.edge_count());
+ */
+ assert!(is_isomorphic_matching(
+ &filtered,
+ &g,
+ PartialEq::eq,
+ PartialEq::eq
+ ));
+
+ true
+ }
+ quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>) -> bool);
+ quickcheck::quickcheck(prop as fn(Graph<_, _, Undirected>) -> bool);
+}
+
+#[test]
+fn graph_retain_edges() {
+ fn prop<Ty: EdgeType>(mut g: Graph<(), i32, Ty>) -> bool {
+ // Remove all negative edges, these should be randomly spread
+ let og = g.clone();
+ let edges = g.edge_count();
+ let num_negs = g.raw_edges().iter().filter(|n| n.weight < 0).count();
+ let mut removed = 0;
+ g.retain_edges(|g, i| {
+ let keep = g[i] >= 0;
+ if !keep {
+ removed += 1;
+ }
+ keep
+ });
+ let num_negs_post = g.raw_edges().iter().filter(|n| n.weight < 0).count();
+ let num_pos_post = g.raw_edges().iter().filter(|n| n.weight >= 0).count();
+ assert_eq!(num_negs_post, 0);
+ assert_eq!(removed, num_negs);
+ assert_eq!(num_negs + g.edge_count(), edges);
+ assert_eq!(num_pos_post, g.edge_count());
+ if og.edge_count() < 30 {
+ // check against filter_map
+ let filtered = og.filter_map(
+ |_, w| Some(*w),
+ |_, w| if *w >= 0 { Some(*w) } else { None },
+ );
+ assert_eq!(g.node_count(), filtered.node_count());
+ assert!(is_isomorphic(&filtered, &g));
+ }
+ true
+ }
+ quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>) -> bool);
+ quickcheck::quickcheck(prop as fn(Graph<_, _, Undirected>) -> bool);
+}
+
+#[test]
+fn stable_graph_retain_edges() {
+ fn prop<Ty: EdgeType>(mut g: StableGraph<(), i32, Ty>) -> bool {
+ // Remove all negative edges, these should be randomly spread
+ let og = g.clone();
+ let edges = g.edge_count();
+ let num_negs = g.edge_references().filter(|n| *n.weight() < 0).count();
+ let mut removed = 0;
+ g.retain_edges(|g, i| {
+ let keep = g[i] >= 0;
+ if !keep {
+ removed += 1;
+ }
+ keep
+ });
+ let num_negs_post = g.edge_references().filter(|n| *n.weight() < 0).count();
+ let num_pos_post = g.edge_references().filter(|n| *n.weight() >= 0).count();
+ assert_eq!(num_negs_post, 0);
+ assert_eq!(removed, num_negs);
+ assert_eq!(num_negs + g.edge_count(), edges);
+ assert_eq!(num_pos_post, g.edge_count());
+ if og.edge_count() < 30 {
+ // check against filter_map
+ let filtered = og.filter_map(
+ |_, w| Some(*w),
+ |_, w| if *w >= 0 { Some(*w) } else { None },
+ );
+ assert_eq!(g.node_count(), filtered.node_count());
+ }
+ true
+ }
+ quickcheck::quickcheck(prop as fn(StableGraph<_, _, Directed>) -> bool);
+ quickcheck::quickcheck(prop as fn(StableGraph<_, _, Undirected>) -> bool);
+}
+
+#[test]
+fn isomorphism_1() {
+ // using small weights so that duplicates are likely
+ fn prop<Ty: EdgeType>(g: Small<Graph<i8, i8, Ty>>) -> bool {
+ let mut rng = rand::thread_rng();
+ // several trials of different isomorphisms of the same graph
+ // mapping of node indices
+ let mut map = g.node_indices().collect::<Vec<_>>();
+ let mut ng = Graph::<_, _, Ty>::with_capacity(g.node_count(), g.edge_count());
+ for _ in 0..1 {
+ rng.shuffle(&mut map);
+ ng.clear();
+
+ for _ in g.node_indices() {
+ ng.add_node(0);
+ }
+ // Assign node weights
+ for i in g.node_indices() {
+ ng[map[i.index()]] = g[i];
+ }
+ // Add edges
+ for i in g.edge_indices() {
+ let (s, t) = g.edge_endpoints(i).unwrap();
+ ng.add_edge(map[s.index()], map[t.index()], g[i]);
+ }
+ if g.node_count() < 20 && g.edge_count() < 50 {
+ assert!(is_isomorphic(&*g, &ng));
+ }
+ assert!(is_isomorphic_matching(
+ &*g,
+ &ng,
+ PartialEq::eq,
+ PartialEq::eq
+ ));
+ }
+ true
+ }
+ quickcheck::quickcheck(prop::<Undirected> as fn(_) -> bool);
+ quickcheck::quickcheck(prop::<Directed> as fn(_) -> bool);
+}
+
+#[test]
+fn isomorphism_modify() {
+ // using small weights so that duplicates are likely
+ fn prop<Ty: EdgeType>(g: Small<Graph<i16, i8, Ty>>, node: u8, edge: u8) -> bool {
+ println!("graph {:#?}", g);
+ let mut ng = (*g).clone();
+ let i = node_index(node as usize);
+ let j = edge_index(edge as usize);
+ if i.index() < g.node_count() {
+ ng[i] = (g[i] == 0) as i16;
+ }
+ if j.index() < g.edge_count() {
+ ng[j] = (g[j] == 0) as i8;
+ }
+ if i.index() < g.node_count() || j.index() < g.edge_count() {
+ assert!(!is_isomorphic_matching(
+ &*g,
+ &ng,
+ PartialEq::eq,
+ PartialEq::eq
+ ));
+ } else {
+ assert!(is_isomorphic_matching(
+ &*g,
+ &ng,
+ PartialEq::eq,
+ PartialEq::eq
+ ));
+ }
+ true
+ }
+ quickcheck::quickcheck(prop::<Undirected> as fn(_, _, _) -> bool);
+ quickcheck::quickcheck(prop::<Directed> as fn(_, _, _) -> bool);
+}
+
+#[test]
+fn graph_remove_edge() {
+ fn prop<Ty: EdgeType>(mut g: Graph<(), (), Ty>, a: u8, b: u8) -> bool {
+ let a = node_index(a as usize);
+ let b = node_index(b as usize);
+ let edge = g.find_edge(a, b);
+ if !g.is_directed() {
+ assert_eq!(edge.is_some(), g.find_edge(b, a).is_some());
+ }
+ if let Some(ex) = edge {
+ assert!(g.remove_edge(ex).is_some());
+ }
+ assert_graph_consistent(&g);
+ assert!(g.find_edge(a, b).is_none());
+ assert!(g.neighbors(a).find(|x| *x == b).is_none());
+ if !g.is_directed() {
+ assert!(g.neighbors(b).find(|x| *x == a).is_none());
+ }
+ true
+ }
+ quickcheck::quickcheck(prop as fn(Graph<_, _, Undirected>, _, _) -> bool);
+ quickcheck::quickcheck(prop as fn(Graph<_, _, Directed>, _, _) -> bool);
+}
+
+#[cfg(feature = "stable_graph")]
+#[test]
+fn stable_graph_remove_edge() {
+ fn prop<Ty: EdgeType>(mut g: StableGraph<(), (), Ty>, a: u8, b: u8) -> bool {
+ let a = node_index(a as usize);
+ let b = node_index(b as usize);
+ let edge = g.find_edge(a, b);
+ if !g.is_directed() {
+ assert_eq!(edge.is_some(), g.find_edge(b, a).is_some());
+ }
+ if let Some(ex) = edge {
+ assert!(g.remove_edge(ex).is_some());
+ }
+ //assert_graph_consistent(&g);
+ assert!(g.find_edge(a, b).is_none());
+ assert!(g.neighbors(a).find(|x| *x == b).is_none());
+ if !g.is_directed() {
+ assert!(g.find_edge(b, a).is_none());
+ assert!(g.neighbors(b).find(|x| *x == a).is_none());
+ }
+ true
+ }
+ quickcheck::quickcheck(prop as fn(StableGraph<_, _, Undirected>, _, _) -> bool);
+ quickcheck::quickcheck(prop as fn(StableGraph<_, _, Directed>, _, _) -> bool);
+}
+
+#[cfg(feature = "stable_graph")]
+#[test]
+fn stable_graph_add_remove_edges() {
+ fn prop<Ty: EdgeType>(mut g: StableGraph<(), (), Ty>, edges: Vec<(u8, u8)>) -> bool {
+ for &(a, b) in &edges {
+ let a = node_index(a as usize);
+ let b = node_index(b as usize);
+ let edge = g.find_edge(a, b);
+
+ if edge.is_none() && g.contains_node(a) && g.contains_node(b) {
+ let _index = g.add_edge(a, b, ());
+ continue;
+ }
+
+ if !g.is_directed() {
+ assert_eq!(edge.is_some(), g.find_edge(b, a).is_some());
+ }
+ if let Some(ex) = edge {
+ assert!(g.remove_edge(ex).is_some());
+ }
+ //assert_graph_consistent(&g);
+ assert!(
+ g.find_edge(a, b).is_none(),
+ "failed to remove edge {:?} from graph {:?}",
+ (a, b),
+ g
+ );
+ assert!(g.neighbors(a).find(|x| *x == b).is_none());
+ if !g.is_directed() {
+ assert!(g.find_edge(b, a).is_none());
+ assert!(g.neighbors(b).find(|x| *x == a).is_none());
+ }
+ }
+ true
+ }
+ quickcheck::quickcheck(prop as fn(StableGraph<_, _, Undirected>, _) -> bool);
+ quickcheck::quickcheck(prop as fn(StableGraph<_, _, Directed>, _) -> bool);
+}
+
+fn assert_graphmap_consistent<N, E, Ty>(g: &GraphMap<N, E, Ty>)
+where
+ Ty: EdgeType,
+ N: NodeTrait + fmt::Debug,
+{
+ for (a, b, _weight) in g.all_edges() {
+ assert!(
+ g.contains_edge(a, b),
+ "Edge not in graph! {:?} to {:?}",
+ a,
+ b
+ );
+ assert!(
+ g.neighbors(a).find(|x| *x == b).is_some(),
+ "Edge {:?} not in neighbor list for {:?}",
+ (a, b),
+ a
+ );
+ if !g.is_directed() {
+ assert!(
+ g.neighbors(b).find(|x| *x == a).is_some(),
+ "Edge {:?} not in neighbor list for {:?}",
+ (b, a),
+ b
+ );
+ }
+ }
+}
+
+#[test]
+fn graphmap_remove() {
+ fn prop<Ty: EdgeType>(mut g: GraphMap<i8, (), Ty>, a: i8, b: i8) -> bool {
+ //if g.edge_count() > 20 { return true; }
+ assert_graphmap_consistent(&g);
+ let contains = g.contains_edge(a, b);
+ if !g.is_directed() {
+ assert_eq!(contains, g.contains_edge(b, a));
+ }
+ assert_eq!(g.remove_edge(a, b).is_some(), contains);
+ assert!(!g.contains_edge(a, b) && g.neighbors(a).find(|x| *x == b).is_none());
+ //(g.is_directed() || g.neighbors(b).find(|x| *x == a).is_none()));
+ assert!(g.remove_edge(a, b).is_none());
+ assert_graphmap_consistent(&g);
+ true
+ }
+ quickcheck::quickcheck(prop as fn(DiGraphMap<_, _>, _, _) -> bool);
+ quickcheck::quickcheck(prop as fn(UnGraphMap<_, _>, _, _) -> bool);
+}
+
+#[test]
+fn graphmap_add_remove() {
+ fn prop(mut g: UnGraphMap<i8, ()>, a: i8, b: i8) -> bool {
+ assert_eq!(g.contains_edge(a, b), g.add_edge(a, b, ()).is_some());
+ g.remove_edge(a, b);
+ !g.contains_edge(a, b)
+ && g.neighbors(a).find(|x| *x == b).is_none()
+ && g.neighbors(b).find(|x| *x == a).is_none()
+ }
+ quickcheck::quickcheck(prop as fn(_, _, _) -> bool);
+}
+
+fn sort_sccs<T: Ord>(v: &mut [Vec<T>]) {
+ for scc in &mut *v {
+ scc.sort();
+ }
+ v.sort();
+}
+
+quickcheck! {
+ fn graph_sccs(g: Graph<(), ()>) -> bool {
+ let mut sccs = kosaraju_scc(&g);
+ let mut tsccs = tarjan_scc(&g);
+ sort_sccs(&mut sccs);
+ sort_sccs(&mut tsccs);
+ if sccs != tsccs {
+ println!("{:?}",
+ Dot::with_config(&g, &[Config::EdgeNoLabel,
+ Config::NodeIndexLabel]));
+ println!("Sccs {:?}", sccs);
+ println!("Sccs (Tarjan) {:?}", tsccs);
+ return false;
+ }
+ true
+ }
+}
+
+quickcheck! {
+ fn kosaraju_scc_is_topo_sort(g: Graph<(), ()>) -> bool {
+ let tsccs = kosaraju_scc(&g);
+ let firsts = tsccs.iter().rev().map(|v| v[0]).collect::<Vec<_>>();
+ subset_is_topo_order(&g, &firsts)
+ }
+}
+
+quickcheck! {
+ fn tarjan_scc_is_topo_sort(g: Graph<(), ()>) -> bool {
+ let tsccs = tarjan_scc(&g);
+ let firsts = tsccs.iter().rev().map(|v| v[0]).collect::<Vec<_>>();
+ subset_is_topo_order(&g, &firsts)
+ }
+}
+
+quickcheck! {
+ // Reversed edges gives the same sccs (when sorted)
+ fn graph_reverse_sccs(g: Graph<(), ()>) -> bool {
+ let mut sccs = kosaraju_scc(&g);
+ let mut tsccs = kosaraju_scc(Reversed(&g));
+ sort_sccs(&mut sccs);
+ sort_sccs(&mut tsccs);
+ if sccs != tsccs {
+ println!("{:?}",
+ Dot::with_config(&g, &[Config::EdgeNoLabel,
+ Config::NodeIndexLabel]));
+ println!("Sccs {:?}", sccs);
+ println!("Sccs (Reversed) {:?}", tsccs);
+ return false;
+ }
+ true
+ }
+}
+
+quickcheck! {
+ // Reversed edges gives the same sccs (when sorted)
+ fn graphmap_reverse_sccs(g: DiGraphMap<u16, ()>) -> bool {
+ let mut sccs = kosaraju_scc(&g);
+ let mut tsccs = kosaraju_scc(Reversed(&g));
+ sort_sccs(&mut sccs);
+ sort_sccs(&mut tsccs);
+ if sccs != tsccs {
+ println!("{:?}",
+ Dot::with_config(&g, &[Config::EdgeNoLabel,
+ Config::NodeIndexLabel]));
+ println!("Sccs {:?}", sccs);
+ println!("Sccs (Reversed) {:?}", tsccs);
+ return false;
+ }
+ true
+ }
+}
+
+#[test]
+fn graph_condensation_acyclic() {
+ fn prop(g: Graph<(), ()>) -> bool {
+ !is_cyclic_directed(&condensation(g, /* make_acyclic */ true))
+ }
+ quickcheck::quickcheck(prop as fn(_) -> bool);
+}
+
+#[derive(Debug, Clone)]
+struct DAG<N: Default + Clone + Send + 'static>(Graph<N, ()>);
+
+impl<N: Default + Clone + Send + 'static> Arbitrary for DAG<N> {
+ fn arbitrary<G: Gen>(g: &mut G) -> Self {
+ let nodes = usize::arbitrary(g);
+ if nodes == 0 {
+ return DAG(Graph::with_capacity(0, 0));
+ }
+ let split = g.gen_range(0., 1.);
+ let max_width = f64::sqrt(nodes as f64) as usize;
+ let tall = (max_width as f64 * split) as usize;
+ let fat = max_width - tall;
+
+ let edge_prob = 1. - (1. - g.gen_range(0., 1.)) * (1. - g.gen_range(0., 1.));
+ let edges = ((nodes as f64).powi(2) * edge_prob) as usize;
+ let mut gr = Graph::with_capacity(nodes, edges);
+ let mut nodes = 0;
+ for _ in 0..tall {
+ let cur_nodes = g.gen_range(0, fat);
+ for _ in 0..cur_nodes {
+ gr.add_node(N::default());
+ }
+ for j in 0..nodes {
+ for k in 0..cur_nodes {
+ if g.gen_range(0., 1.) < edge_prob {
+ gr.add_edge(NodeIndex::new(j), NodeIndex::new(k + nodes), ());
+ }
+ }
+ }
+ nodes += cur_nodes;
+ }
+ DAG(gr)
+ }
+
+ // shrink the graph by splitting it in two by a very
+ // simple algorithm, just even and odd node indices
+ fn shrink(&self) -> Box<dyn Iterator<Item = Self>> {
+ let self_ = self.clone();
+ Box::new((0..2).filter_map(move |x| {
+ let gr = self_.0.filter_map(
+ |i, w| {
+ if i.index() % 2 == x {
+ Some(w.clone())
+ } else {
+ None
+ }
+ },
+ |_, w| Some(w.clone()),
+ );
+ // make sure we shrink
+ if gr.node_count() < self_.0.node_count() {
+ Some(DAG(gr))
+ } else {
+ None
+ }
+ }))
+ }
+}
+
+fn is_topo_order<N>(gr: &Graph<N, (), Directed>, order: &[NodeIndex]) -> bool {
+ if gr.node_count() != order.len() {
+ println!(
+ "Graph ({}) and count ({}) had different amount of nodes.",
+ gr.node_count(),
+ order.len()
+ );
+ return false;
+ }
+ // check all the edges of the graph
+ for edge in gr.raw_edges() {
+ let a = edge.source();
+ let b = edge.target();
+ let ai = order.find(&a).unwrap();
+ let bi = order.find(&b).unwrap();
+ if ai >= bi {
+ println!("{:?} > {:?} ", a, b);
+ return false;
+ }
+ }
+ true
+}
+
+fn subset_is_topo_order<N>(gr: &Graph<N, (), Directed>, order: &[NodeIndex]) -> bool {
+ if gr.node_count() < order.len() {
+ println!(
+ "Graph (len={}) had less nodes than order (len={})",
+ gr.node_count(),
+ order.len()
+ );
+ return false;
+ }
+ // check all the edges of the graph
+ for edge in gr.raw_edges() {
+ let a = edge.source();
+ let b = edge.target();
+ if a == b {
+ continue;
+ }
+ // skip those that are not in the subset
+ let ai = match order.find(&a) {
+ Some(i) => i,
+ None => continue,
+ };
+ let bi = match order.find(&b) {
+ Some(i) => i,
+ None => continue,
+ };
+ if ai >= bi {
+ println!("{:?} > {:?} ", a, b);
+ return false;
+ }
+ }
+ true
+}
+
+#[test]
+fn full_topo() {
+ fn prop(DAG(gr): DAG<()>) -> bool {
+ let order = toposort(&gr, None).unwrap();
+ is_topo_order(&gr, &order)
+ }
+ quickcheck::quickcheck(prop as fn(_) -> bool);
+}
+
+#[test]
+fn full_topo_generic() {
+ fn prop_generic(DAG(mut gr): DAG<usize>) -> bool {
+ assert!(!is_cyclic_directed(&gr));
+ let mut index = 0;
+ let mut topo = Topo::new(&gr);
+ while let Some(nx) = topo.next(&gr) {
+ gr[nx] = index;
+ index += 1;
+ }
+
+ let mut order = Vec::new();
+ index = 0;
+ let mut topo = Topo::new(&gr);
+ while let Some(nx) = topo.next(&gr) {
+ order.push(nx);
+ assert_eq!(gr[nx], index);
+ index += 1;
+ }
+ if !is_topo_order(&gr, &order) {
+ println!("{:?}", gr);
+ return false;
+ }
+
+ {
+ order.clear();
+ let mut topo = Topo::new(&gr);
+ while let Some(nx) = topo.next(&gr) {
+ order.push(nx);
+ }
+ if !is_topo_order(&gr, &order) {
+ println!("{:?}", gr);
+ return false;
+ }
+ }
+
+ {
+ order.clear();
+ let init_nodes = gr.node_identifiers().filter(|n| {
+ gr.neighbors_directed(n.clone(), Direction::Incoming)
+ .next()
+ .is_none()
+ });
+ let mut topo = Topo::with_initials(&gr, init_nodes);
+ while let Some(nx) = topo.next(&gr) {
+ order.push(nx);
+ }
+ if !is_topo_order(&gr, &order) {
+ println!("{:?}", gr);
+ return false;
+ }
+ }
+
+ {
+ order.clear();
+ let mut topo = Topo::with_initials(&gr, gr.node_identifiers());
+ while let Some(nx) = topo.next(&gr) {
+ order.push(nx);
+ }
+ if !is_topo_order(&gr, &order) {
+ println!("{:?}", gr);
+ return false;
+ }
+ }
+ true
+ }
+ quickcheck::quickcheck(prop_generic as fn(_) -> bool);
+}
+
+quickcheck! {
+ // checks that the distances computed by dijkstra satisfy the triangle
+ // inequality.
+ fn dijkstra_triangle_ineq(g: Graph<u32, u32>, node: usize) -> bool {
+ if g.node_count() == 0 {
+ return true;
+ }
+ let v = node_index(node % g.node_count());
+ let distances = dijkstra(&g, v, None, |e| *e.weight());
+ for v2 in distances.keys() {
+ let dv2 = distances[v2];
+ // triangle inequality:
+ // d(v,u) <= d(v,v2) + w(v2,u)
+ for edge in g.edges(*v2) {
+ let u = edge.target();
+ let w = edge.weight();
+ if distances.contains_key(&u) && distances[&u] > dv2 + w {
+ return false;
+ }
+ }
+ }
+ true
+ }
+}
+
+quickcheck! {
+ // checks that the distances computed by k'th shortest path is always greater or equal compared to their dijkstra computation
+ fn k_shortest_path_(g: Graph<u32, u32>, node: usize) -> bool {
+ if g.node_count() == 0 {
+ return true;
+ }
+ let v = node_index(node % g.node_count());
+ let second_best_distances = k_shortest_path(&g, v, None, 2, |e| *e.weight());
+ let dijkstra_distances = dijkstra(&g, v, None, |e| *e.weight());
+ for v in second_best_distances.keys() {
+ if second_best_distances[&v] < dijkstra_distances[&v] {
+ return false;
+ }
+ }
+ true
+ }
+}
+
+quickcheck! {
+ // checks floyd_warshall against dijkstra results
+ fn floyd_warshall_(g: Graph<u32, u32>) -> bool {
+ if g.node_count() == 0 {
+ return true;
+ }
+
+ let fw_res = floyd_warshall(&g, |e| *e.weight()).unwrap();
+
+ for node1 in g.node_identifiers() {
+ let dijkstra_res = dijkstra(&g, node1, None, |e| *e.weight());
+
+ for node2 in g.node_identifiers() {
+ // if dijkstra found a path then the results must be same
+ if let Some(distance) = dijkstra_res.get(&node2) {
+ let floyd_distance = fw_res.get(&(node1, node2)).unwrap();
+ if distance != floyd_distance {
+ return false;
+ }
+ } else {
+ // if there are no path between two nodes then floyd_warshall will return maximum value possible
+ if *fw_res.get(&(node1, node2)).unwrap() != u32::MAX {
+ return false;
+ }
+ }
+ }
+ }
+ true
+ }
+}
+
+quickcheck! {
+ // checks that the complement of the complement is the same as the input if the input does not contain self-loops
+ fn complement_(g: Graph<u32, u32>, _node: usize) -> bool {
+ if g.node_count() == 0 {
+ return true;
+ }
+ for x in g.node_indices() {
+ if g.contains_edge(x, x) {
+ return true;
+ }
+ }
+ let mut complement_graph: Graph<u32, u32> = Graph::new();
+ let mut result: Graph<u32, u32> = Graph::new();
+ complement(&g, &mut complement_graph, 0);
+ complement(&complement_graph, &mut result, 0);
+
+ for x in g.node_indices() {
+ for y in g.node_indices() {
+ if g.contains_edge(x, y) != result.contains_edge(x, y){
+ return false;
+ }
+ }
+ }
+ true
+ }
+}
+
+fn set<I>(iter: I) -> HashSet<I::Item>
+where
+ I: IntoIterator,
+ I::Item: Hash + Eq,
+{
+ iter.into_iter().collect()
+}
+
+quickcheck! {
+ fn dfs_visit(gr: Graph<(), ()>, node: usize) -> bool {
+ use petgraph::visit::{Visitable, VisitMap};
+ use petgraph::visit::DfsEvent::*;
+ use petgraph::visit::{Time, depth_first_search};
+ if gr.node_count() == 0 {
+ return true;
+ }
+ let start_node = node_index(node % gr.node_count());
+
+ let invalid_time = Time(!0);
+ let mut discover_time = vec![invalid_time; gr.node_count()];
+ let mut finish_time = vec![invalid_time; gr.node_count()];
+ let mut has_tree_edge = gr.visit_map();
+ let mut edges = HashSet::new();
+ depth_first_search(&gr, Some(start_node).into_iter().chain(gr.node_indices()),
+ |evt| {
+ match evt {
+ Discover(n, t) => discover_time[n.index()] = t,
+ Finish(n, t) => finish_time[n.index()] = t,
+ TreeEdge(u, v) => {
+ // v is an ancestor of u
+ assert!(has_tree_edge.visit(v), "Two tree edges to {:?}!", v);
+ assert!(discover_time[v.index()] == invalid_time);
+ assert!(discover_time[u.index()] != invalid_time);
+ assert!(finish_time[u.index()] == invalid_time);
+ edges.insert((u, v));
+ }
+ BackEdge(u, v) => {
+ // u is an ancestor of v
+ assert!(discover_time[v.index()] != invalid_time);
+ assert!(finish_time[v.index()] == invalid_time);
+ edges.insert((u, v));
+ }
+ CrossForwardEdge(u, v) => {
+ edges.insert((u, v));
+ }
+ }
+ });
+ assert!(discover_time.iter().all(|x| *x != invalid_time));
+ assert!(finish_time.iter().all(|x| *x != invalid_time));
+ assert_eq!(edges.len(), gr.edge_count());
+ assert_eq!(edges, set(gr.edge_references().map(|e| (e.source(), e.target()))));
+ true
+ }
+}
+
+quickcheck! {
+ fn test_bellman_ford(gr: Graph<(), f32>) -> bool {
+ let mut gr = gr;
+ for elt in gr.edge_weights_mut() {
+ *elt = elt.abs();
+ }
+ if gr.node_count() == 0 {
+ return true;
+ }
+ for (i, start) in gr.node_indices().enumerate() {
+ if i >= 10 { break; } // testing all is too slow
+ bellman_ford(&gr, start).unwrap();
+ }
+ true
+ }
+}
+
+quickcheck! {
+ fn test_find_negative_cycle(gr: Graph<(), f32>) -> bool {
+ let gr = gr;
+ if gr.node_count() == 0 {
+ return true;
+ }
+ for (i, start) in gr.node_indices().enumerate() {
+ if i >= 10 { break; } // testing all is too slow
+ if let Some(path) = find_negative_cycle(&gr, start) {
+ assert!(path.len() >= 1);
+ }
+ }
+ true
+ }
+}
+
+quickcheck! {
+ fn test_bellman_ford_undir(gr: Graph<(), f32, Undirected>) -> bool {
+ let mut gr = gr;
+ for elt in gr.edge_weights_mut() {
+ *elt = elt.abs();
+ }
+ if gr.node_count() == 0 {
+ return true;
+ }
+ for (i, start) in gr.node_indices().enumerate() {
+ if i >= 10 { break; } // testing all is too slow
+ bellman_ford(&gr, start).unwrap();
+ }
+ true
+ }
+}
+
+defmac!(iter_eq a, b => a.eq(b));
+defmac!(nodes_eq ref a, ref b => a.node_references().eq(b.node_references()));
+defmac!(edgew_eq ref a, ref b => a.edge_references().eq(b.edge_references()));
+defmac!(edges_eq ref a, ref b =>
+ iter_eq!(
+ a.edge_references().map(|e| (e.source(), e.target())),
+ b.edge_references().map(|e| (e.source(), e.target()))));
+
+quickcheck! {
+ fn test_di_from(gr1: DiGraph<i32, i32>) -> () {
+ let sgr = StableGraph::from(gr1.clone());
+ let gr2 = Graph::from(sgr);
+
+ assert!(nodes_eq!(&gr1, &gr2));
+ assert!(edgew_eq!(&gr1, &gr2));
+ assert!(edges_eq!(&gr1, &gr2));
+ }
+ fn test_un_from(gr1: UnGraph<i32, i32>) -> () {
+ let sgr = StableGraph::from(gr1.clone());
+ let gr2 = Graph::from(sgr);
+
+ assert!(nodes_eq!(&gr1, &gr2));
+ assert!(edgew_eq!(&gr1, &gr2));
+ assert!(edges_eq!(&gr1, &gr2));
+ }
+
+ fn test_graph_from_stable_graph(gr1: StableDiGraph<usize, usize>) -> () {
+ let mut gr1 = gr1;
+ let gr2 = Graph::from(gr1.clone());
+
+ // renumber the stablegraph nodes and put the new index in the
+ // associated data
+ let mut index = 0;
+ for i in 0..gr1.node_bound() {
+ let ni = node_index(i);
+ if gr1.contains_node(ni) {
+ gr1[ni] = index;
+ index += 1;
+ }
+ }
+ if let Some(edge_bound) = gr1.edge_references().next_back()
+ .map(|ed| ed.id().index() + 1)
+ {
+ index = 0;
+ for i in 0..edge_bound {
+ let ni = edge_index(i);
+ if gr1.edge_weight(ni).is_some() {
+ gr1[ni] = index;
+ index += 1;
+ }
+ }
+ }
+
+ assert_equal(
+ // Remap the stablegraph to compact indices
+ gr1.edge_references().map(|ed| (edge_index(*ed.weight()), gr1[ed.source()], gr1[ed.target()])),
+ gr2.edge_references().map(|ed| (ed.id(), ed.source().index(), ed.target().index()))
+ );
+ }
+
+ fn stable_di_graph_map_id(gr1: StableDiGraph<usize, usize>) -> () {
+ let gr2 = gr1.map(|_, &nw| nw, |_, &ew| ew);
+ assert!(nodes_eq!(&gr1, &gr2));
+ assert!(edgew_eq!(&gr1, &gr2));
+ assert!(edges_eq!(&gr1, &gr2));
+ }
+
+ fn stable_un_graph_map_id(gr1: StableUnGraph<usize, usize>) -> () {
+ let gr2 = gr1.map(|_, &nw| nw, |_, &ew| ew);
+ assert!(nodes_eq!(&gr1, &gr2));
+ assert!(edgew_eq!(&gr1, &gr2));
+ assert!(edges_eq!(&gr1, &gr2));
+ }
+
+ fn stable_di_graph_filter_map_id(gr1: StableDiGraph<usize, usize>) -> () {
+ let gr2 = gr1.filter_map(|_, &nw| Some(nw), |_, &ew| Some(ew));
+ assert!(nodes_eq!(&gr1, &gr2));
+ assert!(edgew_eq!(&gr1, &gr2));
+ assert!(edges_eq!(&gr1, &gr2));
+ }
+
+ fn test_stable_un_graph_filter_map_id(gr1: StableUnGraph<usize, usize>) -> () {
+ let gr2 = gr1.filter_map(|_, &nw| Some(nw), |_, &ew| Some(ew));
+ assert!(nodes_eq!(&gr1, &gr2));
+ assert!(edgew_eq!(&gr1, &gr2));
+ assert!(edges_eq!(&gr1, &gr2));
+ }
+
+ fn stable_di_graph_filter_map_remove(gr1: Small<StableDiGraph<i32, i32>>,
+ nodes: Vec<usize>,
+ edges: Vec<usize>) -> ()
+ {
+ let gr2 = gr1.filter_map(|ix, &nw| {
+ if !nodes.contains(&ix.index()) { Some(nw) } else { None }
+ },
+ |ix, &ew| {
+ if !edges.contains(&ix.index()) { Some(ew) } else { None }
+ });
+ let check_nodes = &set(gr1.node_indices()) - &set(cloned(&nodes).map(node_index));
+ let mut check_edges = &set(gr1.edge_indices()) - &set(cloned(&edges).map(edge_index));
+ // remove all edges with endpoint in removed nodes
+ for edge in gr1.edge_references() {
+ if nodes.contains(&edge.source().index()) ||
+ nodes.contains(&edge.target().index()) {
+ check_edges.remove(&edge.id());
+ }
+ }
+ // assert maintained
+ for i in check_nodes {
+ assert_eq!(gr1[i], gr2[i]);
+ }
+ for i in check_edges {
+ assert_eq!(gr1[i], gr2[i]);
+ assert_eq!(gr1.edge_endpoints(i), gr2.edge_endpoints(i));
+ }
+
+ // assert removals
+ for i in nodes {
+ assert!(gr2.node_weight(node_index(i)).is_none());
+ }
+ for i in edges {
+ assert!(gr2.edge_weight(edge_index(i)).is_none());
+ }
+ }
+}
+
+fn naive_closure_foreach<G, F>(g: G, mut f: F)
+where
+ G: Visitable + IntoNeighbors + IntoNodeIdentifiers,
+ F: FnMut(G::NodeId, G::NodeId),
+{
+ let mut dfs = Dfs::empty(&g);
+ for i in g.node_identifiers() {
+ dfs.reset(&g);
+ dfs.move_to(i);
+ while let Some(nx) = dfs.next(&g) {
+ if i != nx {
+ f(i, nx);
+ }
+ }
+ }
+}
+
+fn naive_closure<G>(g: G) -> Vec<(G::NodeId, G::NodeId)>
+where
+ G: Visitable + IntoNodeIdentifiers + IntoNeighbors,
+{
+ let mut res = Vec::new();
+ naive_closure_foreach(g, |a, b| res.push((a, b)));
+ res
+}
+
+fn naive_closure_edgecount<G>(g: G) -> usize
+where
+ G: Visitable + IntoNodeIdentifiers + IntoNeighbors,
+{
+ let mut res = 0;
+ naive_closure_foreach(g, |_, _| res += 1);
+ res
+}
+
+quickcheck! {
+ fn test_tred(g: DAG<()>) -> bool {
+ let acyclic = g.0;
+ println!("acyclic graph {:#?}", &acyclic);
+ let toposort = toposort(&acyclic, None).unwrap();
+ println!("Toposort:");
+ for (new, old) in toposort.iter().enumerate() {
+ println!("{} -> {}", old.index(), new);
+ }
+ let (toposorted, revtopo): (petgraph::adj::List<(), usize>, _) =
+ petgraph::algo::tred::dag_to_toposorted_adjacency_list(&acyclic, &toposort);
+ println!("checking revtopo");
+ for (i, ix) in toposort.iter().enumerate() {
+ assert_eq!(i, revtopo[ix.index()]);
+ }
+ println!("toposorted adjacency list: {:#?}", &toposorted);
+ let (tred, tclos) = petgraph::algo::tred::dag_transitive_reduction_closure(&toposorted);
+ println!("tred: {:#?}", &tred);
+ println!("tclos: {:#?}", &tclos);
+ if tred.node_count() != tclos.node_count() {
+ println!("Different node count");
+ return false;
+ }
+ if acyclic.node_count() != tclos.node_count() {
+ println!("Different node count from original graph");
+ return false;
+ }
+ // check the closure
+ let mut clos_edges: Vec<(_, _)> = tclos.edge_references().map(|i| (i.source(), i.target())).collect();
+ clos_edges.sort();
+ let mut tred_closure = naive_closure(&tred);
+ tred_closure.sort();
+ if tred_closure != clos_edges {
+ println!("tclos is not the transitive closure of tred");
+ return false
+ }
+ // check the transitive reduction is a transitive reduction
+ for i in tred.edge_references() {
+ let filtered = EdgeFiltered::from_fn(&tred, |edge| {
+ edge.source() !=i.source() || edge.target() != i.target()
+ });
+ let new = naive_closure_edgecount(&filtered);
+ if new >= clos_edges.len() {
+ println!("when removing ({} -> {}) the transitive closure does not shrink",
+ i.source().index(), i.target().index());
+ return false
+ }
+ }
+ // check that the transitive reduction is included in the original graph
+ for i in tred.edge_references() {
+ if acyclic.find_edge(toposort[i.source().index()], toposort[i.target().index()]).is_none() {
+ println!("tred is not included in the original graph");
+ return false
+ }
+ }
+ println!("ok!");
+ true
+ }
+}
+
+quickcheck! {
+ fn greedy_fas_remaining_graph_is_acyclic(g: StableDiGraph<(), ()>) -> bool {
+ let mut g = g;
+ let fas: Vec<EdgeIndex> = greedy_feedback_arc_set(&g).map(|e| e.id()).collect();
+
+ for edge_id in fas {
+ g.remove_edge(edge_id);
+ }
+
+ !is_cyclic_directed(&g)
+ }
+
+ /// Assert that the size of the feedback arc set of a tournament does not exceed
+ /// **|E| / 2 - |V| / 6**
+ fn greedy_fas_performance_within_bound(t: Tournament<(), ()>) -> bool {
+ let Tournament(g) = t;
+
+ let expected_bound = if g.node_count() < 2 {
+ 0
+ } else {
+ ((g.edge_count() as f64) / 2.0 - (g.node_count() as f64) / 6.0) as usize
+ };
+
+ let fas_size = greedy_feedback_arc_set(&g).count();
+
+ fas_size <= expected_bound
+ }
+}
+
+fn is_valid_matching<G: NodeIndexable>(m: &Matching<G>) -> bool {
+ // A set of edges is a matching if no two edges from the matching share an
+ // endpoint.
+ for (s1, t1) in m.edges() {
+ for (s2, t2) in m.edges() {
+ if s1 == s2 && t1 == t2 {
+ continue;
+ }
+
+ if s1 == s2 || s1 == t2 || t1 == s2 || t1 == t2 {
+ // Two edges share an endpoint.
+ return false;
+ }
+ }
+ }
+
+ true
+}
+
+fn is_maximum_matching<G: NodeIndexable + IntoEdges + IntoNodeIdentifiers + Visitable>(
+ g: G,
+ m: &Matching<G>,
+) -> bool {
+ // Berge's lemma: a matching is maximum iff there is no augmenting path (a
+ // path that starts and ends in unmatched vertices, and alternates between
+ // matched and unmatched edges). Thus if we find an augmenting path, the
+ // matching is not maximum.
+ //
+ // Start with an unmatched node and traverse the graph alternating matched
+ // and unmatched edges. If an unmatched node is found, then an augmenting
+ // path was found.
+ for unmatched in g.node_identifiers().filter(|u| !m.contains_node(*u)) {
+ let visited = &mut g.visit_map();
+ let mut stack = Vec::new();
+
+ stack.push((unmatched, false));
+ while let Some((u, do_matched_edges)) = stack.pop() {
+ if visited.visit(u) {
+ for e in g.edges(u) {
+ if e.source() == e.target() {
+ // Ignore self-loops.
+ continue;
+ }
+
+ let is_matched = m.contains_edge(e.source(), e.target());
+
+ if do_matched_edges && is_matched || !do_matched_edges && !is_matched {
+ stack.push((e.target(), !do_matched_edges));
+
+ // Found another free node (other than the starting one)
+ // that is unmatched - an augmenting path.
+ if !is_matched && !m.contains_node(e.target()) && e.target() != unmatched {
+ return false;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ true
+}
+
+fn is_perfect_matching<G: NodeCount + NodeIndexable>(g: G, m: &Matching<G>) -> bool {
+ // By definition.
+ g.node_count() % 2 == 0 && m.edges().count() == g.node_count() / 2
+}
+
+quickcheck! {
+ fn matching(g: Graph<(), (), Undirected>) -> bool {
+ let m1 = greedy_matching(&g);
+ let m2 = maximum_matching(&g);
+
+ assert!(is_valid_matching(&m1), "greedy_matching returned an invalid matching");
+ assert!(is_valid_matching(&m2), "maximum_matching returned an invalid matching");
+ assert!(is_maximum_matching(&g, &m2), "maximum_matching returned a matching that is not maximum");
+ assert_eq!(m1.is_perfect(), is_perfect_matching(&g, &m1), "greedy_matching incorrectly determined whether the matching is perfect");
+ assert_eq!(m2.is_perfect(), is_perfect_matching(&g, &m2), "maximum_matching incorrectly determined whether the matching is perfect");
+
+ true
+ }
+
+ fn matching_in_stable_graph(g: StableGraph<(), (), Undirected>) -> bool {
+ let m1 = greedy_matching(&g);
+ let m2 = maximum_matching(&g);
+
+ assert!(is_valid_matching(&m1), "greedy_matching returned an invalid matching");
+ assert!(is_valid_matching(&m2), "maximum_matching returned an invalid matching");
+ assert!(is_maximum_matching(&g, &m2), "maximum_matching returned a matching that is not maximum");
+ assert_eq!(m1.is_perfect(), is_perfect_matching(&g, &m1), "greedy_matching incorrectly determined whether the matching is perfect");
+ assert_eq!(m2.is_perfect(), is_perfect_matching(&g, &m2), "maximum_matching incorrectly determined whether the matching is perfect");
+
+ true
+ }
+}
+
+quickcheck! {
+ // The ranks are probabilities,
+ // as such they are positive and they should sum up to 1.
+ fn test_page_rank_proba(gr: Graph<(), f32>) -> bool {
+ if gr.node_count() == 0 {
+ return true;
+ }
+ let tol = 1e-10;
+ let ranks: Vec<f64> = page_rank(&gr, 0.85_f64, 5);
+ let at_least_one_neg_rank = ranks.iter().any(|rank| *rank < 0.);
+ let not_sumup_to_one = (ranks.iter().sum::<f64>() - 1.).abs() > tol;
+ if at_least_one_neg_rank | not_sumup_to_one{
+ return false;
+ }
+ true
+ }
+}
+
+fn sum_flows<N, F: std::iter::Sum + Copy>(
+ gr: &Graph<N, F>,
+ flows: &[F],
+ node: NodeIndex,
+ dir: Direction,
+) -> F {
+ gr.edges_directed(node, dir)
+ .map(|edge| flows[EdgeIndexable::to_index(&gr, edge.id())])
+ .sum::<F>()
+}
+
+quickcheck! {
+ // 1. (Capacity)
+ // The flows should be <= capacities
+ // 2. (Flow conservation)
+ // For every internal node (i.e a node different from the
+ // source node and the destination (or sink) node), the sum
+ // of incoming flows (i.e flows of incoming edges) is equal
+ // to the sum of the outgoing flows (i.e flows of outgoing edges).
+ // 3. (Maximum flow)
+ // It is equal to the sum of the destination node incoming flows and
+ // also the sum of the outgoing flows of the source node.
+ fn test_ford_fulkerson_flows(gr: Graph<usize, u32>) -> bool {
+ if gr.node_count() <= 1 || gr.edge_count() == 0 {
+ return true;
+ }
+ let source = NodeIndex::from(0);
+ let destination = NodeIndex::from(gr.node_count() as u32 / 2);
+ let (max_flow, flows) = ford_fulkerson(&gr, source, destination);
+ let capacity_constraint = flows
+ .iter()
+ .enumerate()
+ .all(|(ix, flow)| flow <= gr.edge_weight(EdgeIndexable::from_index(&gr, ix)).unwrap());
+ let flow_conservation_constraint = (0..gr.node_count()).all(|ix| {
+ let node = NodeIndexable::from_index(&gr, ix);
+ if (node != source) && (node != destination){
+ sum_flows(&gr, &flows, node, Direction::Outgoing)
+ == sum_flows(&gr, &flows, node, Direction::Incoming)
+ } else {true}
+ });
+ let max_flow_constaint = (sum_flows(&gr, &flows, source, Direction::Outgoing) == max_flow)
+ && (sum_flows(&gr, &flows, destination, Direction::Incoming) == max_flow);
+ return capacity_constraint && flow_conservation_constraint && max_flow_constaint;
+ }
+}
+
+quickcheck! {
+ fn test_dynamic_toposort(g: DiGraph<(), ()>) -> bool {
+ use petgraph::acyclic::Acyclic;
+ use petgraph::data::{Build, Create};
+ use petgraph::algo::toposort;
+ use std::collections::BTreeMap;
+ use std::iter;
+
+ // We will re-build `g` from scratch, adding edges one by one.
+ let mut acylic_g =
+ Acyclic::<DiGraph<(), ()>>::with_capacity(g.node_count(), g.edge_count());
+ let mut new_g = DiGraph::<(), ()>::new();
+
+ // This test is quite slow, so we bound the number of nodes.
+ const MAX_NODES: usize = 30;
+ let nodes: BTreeSet<_> = g.node_indices().take(MAX_NODES).collect();
+
+ // Add all nodes
+ let acyclic_nodes: BTreeMap<_, _> = nodes
+ .iter()
+ .zip(iter::repeat_with(|| acylic_g.add_node(())))
+ .collect();
+ let new_nodes: BTreeMap<_, _> = nodes
+ .iter()
+ .zip(iter::repeat_with(|| new_g.add_node(())))
+ .collect();
+
+ // Now add edges one by one
+ for e in g.edge_indices() {
+ let (src, dst) = g.edge_endpoints(e).unwrap();
+ if !nodes.contains(&src) || !nodes.contains(&dst) {
+ continue;
+ }
+ let new_g_backup = new_g.clone();
+
+ // Add the edge to the new graph
+ new_g.add_edge(new_nodes[&src], new_nodes[&dst], ());
+ let is_dag_exp = toposort(&new_g, None).is_ok();
+
+ // Add the edge to the acyclic graph
+ let is_dag_dyn = acylic_g
+ .try_add_edge(acyclic_nodes[&src], acyclic_nodes[&dst], ())
+ .is_ok();
+
+ // Check that both approaches agree on whether the graph is a DAG
+ assert_eq!(is_dag_exp, is_dag_dyn);
+
+ if !is_dag_exp {
+ // Remove the edge that makes it non-acyclic
+ new_g = new_g_backup;
+ }
+ }
+ true
+ }
+}
+
+fn is_proper_coloring<G>(g: G, coloring: &HashMap<G::NodeId, usize>) -> bool
+where
+ G: IntoNodeIdentifiers + IntoEdges,
+ G::NodeId: Eq + Hash,
+{
+ for node in g.node_identifiers() {
+ for nbor in g.neighbors(node) {
+ if node != nbor && coloring[&node] == coloring[&nbor] {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+quickcheck! {
+ fn dsatur_coloring_quickcheck(g: Graph<(), (), Undirected>) -> bool {
+ let (coloring, _) = dsatur_coloring(&g);
+ assert!(is_proper_coloring(&g, &coloring), "dsatur_coloring returned a non proper coloring");
+ true
+ }
+}