diff options
Diffstat (limited to 'vendor/petgraph/src/graph_impl/stable_graph/mod.rs')
| -rw-r--r-- | vendor/petgraph/src/graph_impl/stable_graph/mod.rs | 2103 |
1 files changed, 2103 insertions, 0 deletions
diff --git a/vendor/petgraph/src/graph_impl/stable_graph/mod.rs b/vendor/petgraph/src/graph_impl/stable_graph/mod.rs new file mode 100644 index 00000000..bf03b62d --- /dev/null +++ b/vendor/petgraph/src/graph_impl/stable_graph/mod.rs @@ -0,0 +1,2103 @@ +//! `StableGraph` keeps indices stable across removals. +//! +//! Depends on `feature = "stable_graph"`. +//! + +use std::cmp; +use std::fmt; +use std::iter; +use std::marker::PhantomData; +use std::mem::replace; +use std::mem::size_of; +use std::ops::{Index, IndexMut}; +use std::slice; + +use fixedbitset::FixedBitSet; + +use crate::{Directed, Direction, EdgeType, Graph, Incoming, Outgoing, Undirected}; + +use crate::iter_format::{DebugMap, IterFormatExt, NoPretty}; +use crate::iter_utils::IterUtilsExt; + +use super::{index_twice, Edge, Frozen, Node, Pair, DIRECTIONS}; +use crate::visit; +use crate::visit::{EdgeIndexable, EdgeRef, IntoEdgeReferences, NodeIndexable}; +use crate::IntoWeightedEdge; + +// reexport those things that are shared with Graph +#[doc(no_inline)] +pub use crate::graph::{ + edge_index, node_index, DefaultIx, EdgeIndex, GraphIndex, IndexType, NodeIndex, +}; + +use crate::util::enumerate; + +#[cfg(feature = "serde-1")] +mod serialization; + +/// `StableGraph<N, E, Ty, Ix>` is a graph datastructure using an adjacency +/// list representation. +/// +/// The graph **does not invalidate** any unrelated node or edge indices when +/// items are removed. +/// +/// `StableGraph` is parameterized over: +/// +/// - Associated data `N` for nodes and `E` for edges, also called *weights*. +/// The associated data can be of arbitrary type. +/// - Edge type `Ty` that determines whether the graph edges are directed or undirected. +/// - Index type `Ix`, which determines the maximum size of the graph. +/// +/// The graph uses **O(|V| + |E|)** space, and allows fast node and edge insert +/// and efficient graph search. +/// +/// It implements **O(e')** edge lookup and edge and node removals, where **e'** +/// is some local measure of edge count. +/// +/// - Nodes and edges are each numbered in an interval from *0* to some number +/// *m*, but *not all* indices in the range are valid, since gaps are formed +/// by deletions. +/// +/// - You can select graph index integer type after the size of the graph. A smaller +/// size may have better performance. +/// +/// - Using indices allows mutation while traversing the graph, see `Dfs`. +/// +/// - The `StableGraph` is a regular rust collection and is `Send` and `Sync` +/// (as long as associated data `N` and `E` are). +/// +/// - Indices don't allow as much compile time checking as references. +/// +/// Depends on crate feature `stable_graph` (default). *Stable Graph is still +/// missing a few methods compared to Graph. You can contribute to help it +/// achieve parity.* +pub struct StableGraph<N, E, Ty = Directed, Ix = DefaultIx> { + g: Graph<Option<N>, Option<E>, Ty, Ix>, + node_count: usize, + edge_count: usize, + + // node and edge free lists (both work the same way) + // + // free_node, if not NodeIndex::end(), points to a node index + // that is vacant (after a deletion). + // The free nodes form a doubly linked list using the fields Node.next[0] + // for forward references and Node.next[1] for backwards ones. + // The nodes are stored as EdgeIndex, and the _into_edge()/_into_node() + // methods convert. + // free_edge, if not EdgeIndex::end(), points to a free edge. + // The edges only form a singly linked list using Edge.next[0] to store + // the forward reference. + free_node: NodeIndex<Ix>, + free_edge: EdgeIndex<Ix>, +} + +/// A `StableGraph` with directed edges. +/// +/// For example, an edge from *1* to *2* is distinct from an edge from *2* to +/// *1*. +pub type StableDiGraph<N, E, Ix = DefaultIx> = StableGraph<N, E, Directed, Ix>; + +/// A `StableGraph` with undirected edges. +/// +/// For example, an edge between *1* and *2* is equivalent to an edge between +/// *2* and *1*. +pub type StableUnGraph<N, E, Ix = DefaultIx> = StableGraph<N, E, Undirected, Ix>; + +impl<N, E, Ty, Ix> fmt::Debug for StableGraph<N, E, Ty, Ix> +where + N: fmt::Debug, + E: fmt::Debug, + Ty: EdgeType, + Ix: IndexType, +{ + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + let etype = if self.is_directed() { + "Directed" + } else { + "Undirected" + }; + let mut fmt_struct = f.debug_struct("StableGraph"); + fmt_struct.field("Ty", &etype); + fmt_struct.field("node_count", &self.node_count); + fmt_struct.field("edge_count", &self.edge_count); + if self.g.edges.iter().any(|e| e.weight.is_some()) { + fmt_struct.field( + "edges", + &self + .g + .edges + .iter() + .filter(|e| e.weight.is_some()) + .map(|e| NoPretty((e.source().index(), e.target().index()))) + .format(", "), + ); + } + // skip weights if they are ZST! + if size_of::<N>() != 0 { + fmt_struct.field( + "node weights", + &DebugMap(|| { + self.g + .nodes + .iter() + .map(|n| n.weight.as_ref()) + .enumerate() + .filter_map(|(i, wo)| wo.map(move |w| (i, w))) + }), + ); + } + if size_of::<E>() != 0 { + fmt_struct.field( + "edge weights", + &DebugMap(|| { + self.g + .edges + .iter() + .map(|n| n.weight.as_ref()) + .enumerate() + .filter_map(|(i, wo)| wo.map(move |w| (i, w))) + }), + ); + } + fmt_struct.field("free_node", &self.free_node); + fmt_struct.field("free_edge", &self.free_edge); + fmt_struct.finish() + } +} + +impl<N, E> StableGraph<N, E, Directed> { + /// Create a new `StableGraph` with directed edges. + /// + /// This is a convenience method. See `StableGraph::with_capacity` + /// or `StableGraph::default` for a constructor that is generic in all the + /// type parameters of `StableGraph`. + pub fn new() -> Self { + Self::with_capacity(0, 0) + } +} + +impl<N, E, Ty, Ix> StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + /// Create a new `StableGraph` with estimated capacity. + pub fn with_capacity(nodes: usize, edges: usize) -> Self { + StableGraph { + g: Graph::with_capacity(nodes, edges), + node_count: 0, + edge_count: 0, + free_node: NodeIndex::end(), + free_edge: EdgeIndex::end(), + } + } + + /// Return the current node and edge capacity of the graph. + pub fn capacity(&self) -> (usize, usize) { + self.g.capacity() + } + + /// Reverse the direction of all edges + pub fn reverse(&mut self) { + // swap edge endpoints, + // edge incoming / outgoing lists, + // node incoming / outgoing lists + for edge in &mut self.g.edges { + edge.node.swap(0, 1); + edge.next.swap(0, 1); + } + for node in &mut self.g.nodes { + node.next.swap(0, 1); + } + } + + /// Remove all nodes and edges + pub fn clear(&mut self) { + self.node_count = 0; + self.edge_count = 0; + self.free_node = NodeIndex::end(); + self.free_edge = EdgeIndex::end(); + self.g.clear(); + } + + /// Remove all edges + pub fn clear_edges(&mut self) { + self.edge_count = 0; + self.free_edge = EdgeIndex::end(); + self.g.edges.clear(); + // clear edges without touching the free list + for node in &mut self.g.nodes { + if node.weight.is_some() { + node.next = [EdgeIndex::end(), EdgeIndex::end()]; + } + } + } + + /// Return the number of nodes (vertices) in the graph. + /// + /// Computes in **O(1)** time. + pub fn node_count(&self) -> usize { + self.node_count + } + + /// Return the number of edges in the graph. + /// + /// Computes in **O(1)** time. + pub fn edge_count(&self) -> usize { + self.edge_count + } + + /// Whether the graph has directed edges or not. + #[inline] + pub fn is_directed(&self) -> bool { + Ty::is_directed() + } + + /// Add a node (also called vertex) with associated data `weight` to the graph. + /// + /// Computes in **O(1)** time. + /// + /// Return the index of the new node. + /// + /// **Panics** if the `StableGraph` is at the maximum number of nodes for + /// its index type. + pub fn add_node(&mut self, weight: N) -> NodeIndex<Ix> { + if self.free_node != NodeIndex::end() { + let node_idx = self.free_node; + self.occupy_vacant_node(node_idx, weight); + node_idx + } else { + self.node_count += 1; + self.g.add_node(Some(weight)) + } + } + + /// free_node: Which free list to update for the vacancy + fn add_vacant_node(&mut self, free_node: &mut NodeIndex<Ix>) { + let node_idx = self.g.add_node(None); + // link the free list + let node_slot = &mut self.g.nodes[node_idx.index()]; + node_slot.next = [free_node._into_edge(), EdgeIndex::end()]; + if *free_node != NodeIndex::end() { + self.g.nodes[free_node.index()].next[1] = node_idx._into_edge(); + } + *free_node = node_idx; + } + + /// Remove `a` from the graph if it exists, and return its weight. + /// If it doesn't exist in the graph, return `None`. + /// + /// The node index `a` is invalidated, but none other. + /// Edge indices are invalidated as they would be following the removal of + /// each edge with an endpoint in `a`. + /// + /// Computes in **O(e')** time, where **e'** is the number of affected + /// edges, including *n* calls to `.remove_edge()` where *n* is the number + /// of edges with an endpoint in `a`. + pub fn remove_node(&mut self, a: NodeIndex<Ix>) -> Option<N> { + let node_weight = self.g.nodes.get_mut(a.index())?.weight.take()?; + for d in &DIRECTIONS { + let k = d.index(); + + // Remove all edges from and to this node. + loop { + let next = self.g.nodes[a.index()].next[k]; + if next == EdgeIndex::end() { + break; + } + let ret = self.remove_edge(next); + debug_assert!(ret.is_some()); + let _ = ret; + } + } + + let node_slot = &mut self.g.nodes[a.index()]; + //let node_weight = replace(&mut self.g.nodes[a.index()].weight, Entry::Empty(self.free_node)); + //self.g.nodes[a.index()].next = [EdgeIndex::end(), EdgeIndex::end()]; + node_slot.next = [self.free_node._into_edge(), EdgeIndex::end()]; + if self.free_node != NodeIndex::end() { + self.g.nodes[self.free_node.index()].next[1] = a._into_edge(); + } + self.free_node = a; + self.node_count -= 1; + + Some(node_weight) + } + + pub fn contains_node(&self, a: NodeIndex<Ix>) -> bool { + self.get_node(a).is_some() + } + + // Return the Node if it is not vacant (non-None weight) + fn get_node(&self, a: NodeIndex<Ix>) -> Option<&Node<Option<N>, Ix>> { + self.g + .nodes + .get(a.index()) + .and_then(|node| node.weight.as_ref().map(move |_| node)) + } + + /// Add an edge from `a` to `b` to the graph, with its associated + /// data `weight`. + /// + /// Return the index of the new edge. + /// + /// Computes in **O(1)** time. + /// + /// **Panics** if any of the nodes don't exist.<br> + /// **Panics** if the `StableGraph` is at the maximum number of edges for + /// its index type. + /// + /// **Note:** `StableGraph` allows adding parallel (“duplicate”) edges. + pub fn add_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> EdgeIndex<Ix> { + let edge_idx; + let mut new_edge = None::<Edge<_, _>>; + { + let edge: &mut Edge<_, _>; + + if self.free_edge != EdgeIndex::end() { + edge_idx = self.free_edge; + edge = &mut self.g.edges[edge_idx.index()]; + let _old = replace(&mut edge.weight, Some(weight)); + debug_assert!(_old.is_none()); + self.free_edge = edge.next[0]; + edge.node = [a, b]; + } else { + edge_idx = EdgeIndex::new(self.g.edges.len()); + assert!(<Ix as IndexType>::max().index() == !0 || EdgeIndex::end() != edge_idx); + new_edge = Some(Edge { + weight: Some(weight), + node: [a, b], + next: [EdgeIndex::end(); 2], + }); + edge = new_edge.as_mut().unwrap(); + } + + let wrong_index = match index_twice(&mut self.g.nodes, a.index(), b.index()) { + Pair::None => Some(cmp::max(a.index(), b.index())), + Pair::One(an) => { + if an.weight.is_none() { + Some(a.index()) + } else { + edge.next = an.next; + an.next[0] = edge_idx; + an.next[1] = edge_idx; + None + } + } + Pair::Both(an, bn) => { + // a and b are different indices + if an.weight.is_none() { + Some(a.index()) + } else if bn.weight.is_none() { + Some(b.index()) + } else { + edge.next = [an.next[0], bn.next[1]]; + an.next[0] = edge_idx; + bn.next[1] = edge_idx; + None + } + } + }; + if let Some(i) = wrong_index { + panic!( + "StableGraph::add_edge: node index {} is not a node in the graph", + i + ); + } + self.edge_count += 1; + } + if let Some(edge) = new_edge { + self.g.edges.push(edge); + } + edge_idx + } + + /// free_edge: Which free list to update for the vacancy + fn add_vacant_edge(&mut self, free_edge: &mut EdgeIndex<Ix>) { + let edge_idx = EdgeIndex::new(self.g.edges.len()); + debug_assert!(edge_idx != EdgeIndex::end()); + let mut edge = Edge { + weight: None, + node: [NodeIndex::end(); 2], + next: [EdgeIndex::end(); 2], + }; + edge.next[0] = *free_edge; + *free_edge = edge_idx; + self.g.edges.push(edge); + } + + /// Add or update an edge from `a` to `b`. + /// If the edge already exists, its weight is updated. + /// + /// Return the index of the affected edge. + /// + /// Computes in **O(e')** time, where **e'** is the number of edges + /// connected to `a` (and `b`, if the graph edges are undirected). + /// + /// **Panics** if any of the nodes don't exist. + pub fn update_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> EdgeIndex<Ix> { + if let Some(ix) = self.find_edge(a, b) { + self[ix] = weight; + return ix; + } + self.add_edge(a, b, weight) + } + + /// Remove an edge and return its edge weight, or `None` if it didn't exist. + /// + /// Invalidates the edge index `e` but no other. + /// + /// Computes in **O(e')** time, where **e'** is the number of edges + /// connected to the same endpoints as `e`. + pub fn remove_edge(&mut self, e: EdgeIndex<Ix>) -> Option<E> { + // every edge is part of two lists, + // outgoing and incoming edges. + // Remove it from both + let (is_edge, edge_node, edge_next) = match self.g.edges.get(e.index()) { + None => return None, + Some(x) => (x.weight.is_some(), x.node, x.next), + }; + if !is_edge { + return None; + } + + // Remove the edge from its in and out lists by replacing it with + // a link to the next in the list. + self.g.change_edge_links(edge_node, e, edge_next); + + // Clear the edge and put it in the free list + let edge = &mut self.g.edges[e.index()]; + edge.next = [self.free_edge, EdgeIndex::end()]; + edge.node = [NodeIndex::end(), NodeIndex::end()]; + self.free_edge = e; + self.edge_count -= 1; + edge.weight.take() + } + + /// Access the weight for node `a`. + /// + /// Also available with indexing syntax: `&graph[a]`. + pub fn node_weight(&self, a: NodeIndex<Ix>) -> Option<&N> { + match self.g.nodes.get(a.index()) { + Some(no) => no.weight.as_ref(), + None => None, + } + } + + /// Access the weight for node `a`, mutably. + /// + /// Also available with indexing syntax: `&mut graph[a]`. + pub fn node_weight_mut(&mut self, a: NodeIndex<Ix>) -> Option<&mut N> { + match self.g.nodes.get_mut(a.index()) { + Some(no) => no.weight.as_mut(), + None => None, + } + } + + /// Return an iterator yielding immutable access to all node weights. + /// + /// The order in which weights are yielded matches the order of their node + /// indices. + pub fn node_weights(&self) -> impl Iterator<Item = &N> { + self.g + .node_weights() + .filter_map(|maybe_node| maybe_node.as_ref()) + } + /// Return an iterator yielding mutable access to all node weights. + /// + /// The order in which weights are yielded matches the order of their node + /// indices. + pub fn node_weights_mut(&mut self) -> impl Iterator<Item = &mut N> { + self.g + .node_weights_mut() + .filter_map(|maybe_node| maybe_node.as_mut()) + } + + /// Return an iterator over the node indices of the graph + pub fn node_indices(&self) -> NodeIndices<N, Ix> { + NodeIndices { + iter: enumerate(self.raw_nodes()), + } + } + + /// Access the weight for edge `e`. + /// + /// Also available with indexing syntax: `&graph[e]`. + pub fn edge_weight(&self, e: EdgeIndex<Ix>) -> Option<&E> { + match self.g.edges.get(e.index()) { + Some(ed) => ed.weight.as_ref(), + None => None, + } + } + + /// Access the weight for edge `e`, mutably + /// + /// Also available with indexing syntax: `&mut graph[e]`. + pub fn edge_weight_mut(&mut self, e: EdgeIndex<Ix>) -> Option<&mut E> { + match self.g.edges.get_mut(e.index()) { + Some(ed) => ed.weight.as_mut(), + None => None, + } + } + + /// Return an iterator yielding immutable access to all edge weights. + /// + /// The order in which weights are yielded matches the order of their edge + /// indices. + pub fn edge_weights(&self) -> impl Iterator<Item = &E> { + self.g + .edge_weights() + .filter_map(|maybe_edge| maybe_edge.as_ref()) + } + /// Return an iterator yielding mutable access to all edge weights. + /// + /// The order in which weights are yielded matches the order of their edge + /// indices. + pub fn edge_weights_mut(&mut self) -> impl Iterator<Item = &mut E> { + self.g + .edge_weights_mut() + .filter_map(|maybe_edge| maybe_edge.as_mut()) + } + + /// Access the source and target nodes for `e`. + pub fn edge_endpoints(&self, e: EdgeIndex<Ix>) -> Option<(NodeIndex<Ix>, NodeIndex<Ix>)> { + match self.g.edges.get(e.index()) { + Some(ed) if ed.weight.is_some() => Some((ed.source(), ed.target())), + _otherwise => None, + } + } + + /// Return an iterator over the edge indices of the graph + pub fn edge_indices(&self) -> EdgeIndices<E, Ix> { + EdgeIndices { + iter: enumerate(self.raw_edges()), + } + } + + /// Return an iterator over all the edges connecting `a` and `b`. + /// + /// - `Directed`: Outgoing edges from `a`. + /// - `Undirected`: All edges connected to `a`. + /// + /// Iterator element type is `EdgeReference<E, Ix>`. + pub fn edges_connecting( + &self, + a: NodeIndex<Ix>, + b: NodeIndex<Ix>, + ) -> EdgesConnecting<E, Ty, Ix> { + EdgesConnecting { + target_node: b, + edges: self.edges_directed(a, Direction::Outgoing), + ty: PhantomData, + } + } + + /// Lookup if there is an edge from `a` to `b`. + /// + /// Computes in **O(e')** time, where **e'** is the number of edges + /// connected to `a` (and `b`, if the graph edges are undirected). + pub fn contains_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool { + self.find_edge(a, b).is_some() + } + + /// Lookup an edge from `a` to `b`. + /// + /// Computes in **O(e')** time, where **e'** is the number of edges + /// connected to `a` (and `b`, if the graph edges are undirected). + pub fn find_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> Option<EdgeIndex<Ix>> { + if !self.is_directed() { + self.find_edge_undirected(a, b).map(|(ix, _)| ix) + } else { + match self.get_node(a) { + None => None, + Some(node) => self.g.find_edge_directed_from_node(node, b), + } + } + } + + /// Lookup an edge between `a` and `b`, in either direction. + /// + /// If the graph is undirected, then this is equivalent to `.find_edge()`. + /// + /// Return the edge index and its directionality, with `Outgoing` meaning + /// from `a` to `b` and `Incoming` the reverse, + /// or `None` if the edge does not exist. + pub fn find_edge_undirected( + &self, + a: NodeIndex<Ix>, + b: NodeIndex<Ix>, + ) -> Option<(EdgeIndex<Ix>, Direction)> { + match self.get_node(a) { + None => None, + Some(node) => self.g.find_edge_undirected_from_node(node, b), + } + } + + /// Return an iterator of all nodes with an edge starting from `a`. + /// + /// - `Directed`: Outgoing edges from `a`. + /// - `Undirected`: All edges connected to `a`. + /// + /// Produces an empty iterator if the node doesn't exist.<br> + /// Iterator element type is `NodeIndex<Ix>`. + /// + /// Use [`.neighbors(a).detach()`][1] to get a neighbor walker that does + /// not borrow from the graph. + /// + /// [1]: struct.Neighbors.html#method.detach + pub fn neighbors(&self, a: NodeIndex<Ix>) -> Neighbors<E, Ix> { + self.neighbors_directed(a, Outgoing) + } + + /// Return an iterator of all neighbors that have an edge between them and `a`, + /// in the specified direction. + /// If the graph's edges are undirected, this is equivalent to *.neighbors(a)*. + /// + /// - `Directed`, `Outgoing`: All edges from `a`. + /// - `Directed`, `Incoming`: All edges to `a`. + /// - `Undirected`: All edges connected to `a`. + /// + /// Produces an empty iterator if the node doesn't exist.<br> + /// Iterator element type is `NodeIndex<Ix>`. + /// + /// Use [`.neighbors_directed(a, dir).detach()`][1] to get a neighbor walker that does + /// not borrow from the graph. + /// + /// [1]: struct.Neighbors.html#method.detach + pub fn neighbors_directed(&self, a: NodeIndex<Ix>, dir: Direction) -> Neighbors<E, Ix> { + let mut iter = self.neighbors_undirected(a); + if self.is_directed() { + let k = dir.index(); + iter.next[1 - k] = EdgeIndex::end(); + iter.skip_start = NodeIndex::end(); + } + iter + } + + /// Return an iterator of all neighbors that have an edge between them and `a`, + /// in either direction. + /// If the graph's edges are undirected, this is equivalent to *.neighbors(a)*. + /// + /// - `Directed` and `Undirected`: All edges connected to `a`. + /// + /// Produces an empty iterator if the node doesn't exist.<br> + /// Iterator element type is `NodeIndex<Ix>`. + /// + /// Use [`.neighbors_undirected(a).detach()`][1] to get a neighbor walker that does + /// not borrow from the graph. + /// + /// [1]: struct.Neighbors.html#method.detach + pub fn neighbors_undirected(&self, a: NodeIndex<Ix>) -> Neighbors<E, Ix> { + Neighbors { + skip_start: a, + edges: &self.g.edges, + next: match self.get_node(a) { + None => [EdgeIndex::end(), EdgeIndex::end()], + Some(n) => n.next, + }, + } + } + + /// Return an iterator of all edges of `a`. + /// + /// - `Directed`: Outgoing edges from `a`. + /// - `Undirected`: All edges connected to `a`. + /// + /// Produces an empty iterator if the node doesn't exist.<br> + /// Iterator element type is `EdgeReference<E, Ix>`. + pub fn edges(&self, a: NodeIndex<Ix>) -> Edges<E, Ty, Ix> { + self.edges_directed(a, Outgoing) + } + + /// Return an iterator of all edges of `a`, in the specified direction. + /// + /// - `Directed`, `Outgoing`: All edges from `a`. + /// - `Directed`, `Incoming`: All edges to `a`. + /// - `Undirected`, `Outgoing`: All edges connected to `a`, with `a` being the source of each + /// edge. + /// - `Undirected`, `Incoming`: All edges connected to `a`, with `a` being the target of each + /// edge. + /// + /// Produces an empty iterator if the node `a` doesn't exist.<br> + /// Iterator element type is `EdgeReference<E, Ix>`. + pub fn edges_directed(&self, a: NodeIndex<Ix>, dir: Direction) -> Edges<E, Ty, Ix> { + Edges { + skip_start: a, + edges: &self.g.edges, + direction: dir, + next: match self.get_node(a) { + None => [EdgeIndex::end(), EdgeIndex::end()], + Some(n) => n.next, + }, + ty: PhantomData, + } + } + + /// Return an iterator over either the nodes without edges to them + /// (`Incoming`) or from them (`Outgoing`). + /// + /// An *internal* node has both incoming and outgoing edges. + /// The nodes in `.externals(Incoming)` are the source nodes and + /// `.externals(Outgoing)` are the sinks of the graph. + /// + /// For a graph with undirected edges, both the sinks and the sources are + /// just the nodes without edges. + /// + /// The whole iteration computes in **O(|V|)** time. + pub fn externals(&self, dir: Direction) -> Externals<N, Ty, Ix> { + Externals { + iter: self.raw_nodes().iter().enumerate(), + dir, + ty: PhantomData, + } + } + + /// Index the `StableGraph` by two indices, any combination of + /// node or edge indices is fine. + /// + /// **Panics** if the indices are equal or if they are out of bounds. + pub fn index_twice_mut<T, U>( + &mut self, + i: T, + j: U, + ) -> ( + &mut <Self as Index<T>>::Output, + &mut <Self as Index<U>>::Output, + ) + where + Self: IndexMut<T> + IndexMut<U>, + T: GraphIndex, + U: GraphIndex, + { + assert!(T::is_node_index() != U::is_node_index() || i.index() != j.index()); + + // Allow two mutable indexes here -- they are nonoverlapping + unsafe { + let self_mut = self as *mut _; + ( + <Self as IndexMut<T>>::index_mut(&mut *self_mut, i), + <Self as IndexMut<U>>::index_mut(&mut *self_mut, j), + ) + } + } + + /// Keep all nodes that return `true` from the `visit` closure, + /// remove the others. + /// + /// `visit` is provided a proxy reference to the graph, so that + /// the graph can be walked and associated data modified. + /// + /// The order nodes are visited is not specified. + /// + /// The node indices of the removed nodes are invalidated, but none other. + /// Edge indices are invalidated as they would be following the removal of + /// each edge with an endpoint in a removed node. + /// + /// Computes in **O(n + e')** time, where **n** is the number of node indices and + /// **e'** is the number of affected edges, including *n* calls to `.remove_edge()` + /// where *n* is the number of edges with an endpoint in a removed node. + pub fn retain_nodes<F>(&mut self, mut visit: F) + where + F: FnMut(Frozen<Self>, NodeIndex<Ix>) -> bool, + { + for i in 0..self.node_bound() { + let ix = node_index(i); + if self.contains_node(ix) && !visit(Frozen(self), ix) { + self.remove_node(ix); + } + } + self.check_free_lists(); + } + + /// Keep all edges that return `true` from the `visit` closure, + /// remove the others. + /// + /// `visit` is provided a proxy reference to the graph, so that + /// the graph can be walked and associated data modified. + /// + /// The order edges are visited is not specified. + /// + /// The edge indices of the removed edes are invalidated, but none other. + /// + /// Computes in **O(e'')** time, **e'** is the number of affected edges, + /// including the calls to `.remove_edge()` for each removed edge. + pub fn retain_edges<F>(&mut self, mut visit: F) + where + F: FnMut(Frozen<Self>, EdgeIndex<Ix>) -> bool, + { + for i in 0..self.edge_bound() { + let ix = edge_index(i); + if self.edge_weight(ix).is_some() && !visit(Frozen(self), ix) { + self.remove_edge(ix); + } + } + self.check_free_lists(); + } + + /// Create a new `StableGraph` from an iterable of edges. + /// + /// Node weights `N` are set to default values. + /// Edge weights `E` may either be specified in the list, + /// or they are filled with default values. + /// + /// Nodes are inserted automatically to match the edges. + /// + /// ``` + /// use petgraph::stable_graph::StableGraph; + /// + /// let gr = StableGraph::<(), i32>::from_edges(&[ + /// (0, 1), (0, 2), (0, 3), + /// (1, 2), (1, 3), + /// (2, 3), + /// ]); + /// ``` + pub fn from_edges<I>(iterable: I) -> Self + where + I: IntoIterator, + I::Item: IntoWeightedEdge<E>, + <I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>, + N: Default, + { + let mut g = Self::with_capacity(0, 0); + g.extend_with_edges(iterable); + g + } + + /// Create a new `StableGraph` by mapping node and + /// edge weights to new values. + /// + /// The resulting graph has the same structure and the same + /// graph indices as `self`. + pub fn map<'a, F, G, N2, E2>( + &'a self, + mut node_map: F, + mut edge_map: G, + ) -> StableGraph<N2, E2, Ty, Ix> + where + F: FnMut(NodeIndex<Ix>, &'a N) -> N2, + G: FnMut(EdgeIndex<Ix>, &'a E) -> E2, + { + let g = self.g.map( + move |i, w| w.as_ref().map(|w| node_map(i, w)), + move |i, w| w.as_ref().map(|w| edge_map(i, w)), + ); + StableGraph { + g, + node_count: self.node_count, + edge_count: self.edge_count, + free_node: self.free_node, + free_edge: self.free_edge, + } + } + + /// Create a new `StableGraph` by mapping nodes and edges. + /// A node or edge may be mapped to `None` to exclude it from + /// the resulting graph. + /// + /// Nodes are mapped first with the `node_map` closure, then + /// `edge_map` is called for the edges that have not had any endpoint + /// removed. + /// + /// The resulting graph has the structure of a subgraph of the original graph. + /// Nodes and edges that are not removed maintain their old node or edge + /// indices. + pub fn filter_map<'a, F, G, N2, E2>( + &'a self, + mut node_map: F, + mut edge_map: G, + ) -> StableGraph<N2, E2, Ty, Ix> + where + F: FnMut(NodeIndex<Ix>, &'a N) -> Option<N2>, + G: FnMut(EdgeIndex<Ix>, &'a E) -> Option<E2>, + { + let node_bound = self.node_bound(); + let edge_bound = self.edge_bound(); + let mut result_g = StableGraph::with_capacity(node_bound, edge_bound); + // use separate free lists so that + // add_node / add_edge below do not reuse the tombstones + let mut free_node = NodeIndex::end(); + let mut free_edge = EdgeIndex::end(); + + // the stable graph keeps the node map itself + + for (i, node) in enumerate(self.raw_nodes()) { + if i >= node_bound { + break; + } + if let Some(node_weight) = node.weight.as_ref() { + if let Some(new_weight) = node_map(NodeIndex::new(i), node_weight) { + result_g.add_node(new_weight); + continue; + } + } + result_g.add_vacant_node(&mut free_node); + } + for (i, edge) in enumerate(self.raw_edges()) { + if i >= edge_bound { + break; + } + let source = edge.source(); + let target = edge.target(); + if let Some(edge_weight) = edge.weight.as_ref() { + if result_g.contains_node(source) && result_g.contains_node(target) { + if let Some(new_weight) = edge_map(EdgeIndex::new(i), edge_weight) { + result_g.add_edge(source, target, new_weight); + continue; + } + } + } + result_g.add_vacant_edge(&mut free_edge); + } + result_g.free_node = free_node; + result_g.free_edge = free_edge; + result_g.check_free_lists(); + result_g + } + + /// Extend the graph from an iterable of edges. + /// + /// Node weights `N` are set to default values. + /// Edge weights `E` may either be specified in the list, + /// or they are filled with default values. + /// + /// Nodes are inserted automatically to match the edges. + pub fn extend_with_edges<I>(&mut self, iterable: I) + where + I: IntoIterator, + I::Item: IntoWeightedEdge<E>, + <I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>, + N: Default, + { + let iter = iterable.into_iter(); + + for elt in iter { + let (source, target, weight) = elt.into_weighted_edge(); + let (source, target) = (source.into(), target.into()); + self.ensure_node_exists(source); + self.ensure_node_exists(target); + self.add_edge(source, target, weight); + } + } + + // + // internal methods + // + fn raw_nodes(&self) -> &[Node<Option<N>, Ix>] { + self.g.raw_nodes() + } + + fn raw_edges(&self) -> &[Edge<Option<E>, Ix>] { + self.g.raw_edges() + } + + /// Create a new node using a vacant position, + /// updating the free nodes doubly linked list. + fn occupy_vacant_node(&mut self, node_idx: NodeIndex<Ix>, weight: N) { + let node_slot = &mut self.g.nodes[node_idx.index()]; + let _old = replace(&mut node_slot.weight, Some(weight)); + debug_assert!(_old.is_none()); + let previous_node = node_slot.next[1]; + let next_node = node_slot.next[0]; + node_slot.next = [EdgeIndex::end(), EdgeIndex::end()]; + if previous_node != EdgeIndex::end() { + self.g.nodes[previous_node.index()].next[0] = next_node; + } + if next_node != EdgeIndex::end() { + self.g.nodes[next_node.index()].next[1] = previous_node; + } + if self.free_node == node_idx { + self.free_node = next_node._into_node(); + } + self.node_count += 1; + } + + /// Create the node if it does not exist, + /// adding vacant nodes for padding if needed. + fn ensure_node_exists(&mut self, node_ix: NodeIndex<Ix>) + where + N: Default, + { + if let Some(Some(_)) = self.g.node_weight(node_ix) { + return; + } + while node_ix.index() >= self.g.node_count() { + let mut free_node = self.free_node; + self.add_vacant_node(&mut free_node); + self.free_node = free_node; + } + self.occupy_vacant_node(node_ix, N::default()); + } + + #[cfg(feature = "serde-1")] + /// Fix up node and edge links after deserialization + fn link_edges(&mut self) -> Result<(), NodeIndex<Ix>> { + // set up free node list + self.node_count = 0; + self.edge_count = 0; + let mut free_node = NodeIndex::end(); + for node_index in 0..self.g.node_count() { + let node = &mut self.g.nodes[node_index]; + if node.weight.is_some() { + self.node_count += 1; + } else { + // free node + node.next = [free_node._into_edge(), EdgeIndex::end()]; + if free_node != NodeIndex::end() { + self.g.nodes[free_node.index()].next[1] = EdgeIndex::new(node_index); + } + free_node = NodeIndex::new(node_index); + } + } + self.free_node = free_node; + + let mut free_edge = EdgeIndex::end(); + for (edge_index, edge) in enumerate(&mut self.g.edges) { + if edge.weight.is_none() { + // free edge + edge.next = [free_edge, EdgeIndex::end()]; + free_edge = EdgeIndex::new(edge_index); + continue; + } + let a = edge.source(); + let b = edge.target(); + let edge_idx = EdgeIndex::new(edge_index); + match index_twice(&mut self.g.nodes, a.index(), b.index()) { + Pair::None => return Err(if a > b { a } else { b }), + Pair::One(an) => { + edge.next = an.next; + an.next[0] = edge_idx; + an.next[1] = edge_idx; + } + Pair::Both(an, bn) => { + // a and b are different indices + edge.next = [an.next[0], bn.next[1]]; + an.next[0] = edge_idx; + bn.next[1] = edge_idx; + } + } + self.edge_count += 1; + } + self.free_edge = free_edge; + Ok(()) + } + + #[cfg(not(debug_assertions))] + fn check_free_lists(&self) {} + #[cfg(debug_assertions)] + // internal method to debug check the free lists (linked lists) + // For the nodes, also check the backpointers of the doubly linked list. + fn check_free_lists(&self) { + let mut free_node = self.free_node; + let mut prev_free_node = NodeIndex::end(); + let mut free_node_len = 0; + while free_node != NodeIndex::end() { + if let Some(n) = self.g.nodes.get(free_node.index()) { + if n.weight.is_none() { + debug_assert_eq!(n.next[1]._into_node(), prev_free_node); + prev_free_node = free_node; + free_node = n.next[0]._into_node(); + free_node_len += 1; + continue; + } + debug_assert!( + false, + "Corrupt free list: pointing to existing {:?}", + free_node.index() + ); + } + debug_assert!(false, "Corrupt free list: missing {:?}", free_node.index()); + } + debug_assert_eq!(self.node_count(), self.raw_nodes().len() - free_node_len); + + let mut free_edge_len = 0; + let mut free_edge = self.free_edge; + while free_edge != EdgeIndex::end() { + if let Some(n) = self.g.edges.get(free_edge.index()) { + if n.weight.is_none() { + free_edge = n.next[0]; + free_edge_len += 1; + continue; + } + debug_assert!( + false, + "Corrupt free list: pointing to existing {:?}", + free_node.index() + ); + } + debug_assert!(false, "Corrupt free list: missing {:?}", free_edge.index()); + } + debug_assert_eq!(self.edge_count(), self.raw_edges().len() - free_edge_len); + } +} + +/// The resulting cloned graph has the same graph indices as `self`. +impl<N, E, Ty, Ix: IndexType> Clone for StableGraph<N, E, Ty, Ix> +where + N: Clone, + E: Clone, +{ + fn clone(&self) -> Self { + StableGraph { + g: self.g.clone(), + node_count: self.node_count, + edge_count: self.edge_count, + free_node: self.free_node, + free_edge: self.free_edge, + } + } + + fn clone_from(&mut self, rhs: &Self) { + self.g.clone_from(&rhs.g); + self.node_count = rhs.node_count; + self.edge_count = rhs.edge_count; + self.free_node = rhs.free_node; + self.free_edge = rhs.free_edge; + } +} + +/// Index the `StableGraph` by `NodeIndex` to access node weights. +/// +/// **Panics** if the node doesn't exist. +impl<N, E, Ty, Ix> Index<NodeIndex<Ix>> for StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + type Output = N; + fn index(&self, index: NodeIndex<Ix>) -> &N { + self.node_weight(index).unwrap() + } +} + +/// Index the `StableGraph` by `NodeIndex` to access node weights. +/// +/// **Panics** if the node doesn't exist. +impl<N, E, Ty, Ix> IndexMut<NodeIndex<Ix>> for StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + fn index_mut(&mut self, index: NodeIndex<Ix>) -> &mut N { + self.node_weight_mut(index).unwrap() + } +} + +/// Index the `StableGraph` by `EdgeIndex` to access edge weights. +/// +/// **Panics** if the edge doesn't exist. +impl<N, E, Ty, Ix> Index<EdgeIndex<Ix>> for StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + type Output = E; + fn index(&self, index: EdgeIndex<Ix>) -> &E { + self.edge_weight(index).unwrap() + } +} + +/// Index the `StableGraph` by `EdgeIndex` to access edge weights. +/// +/// **Panics** if the edge doesn't exist. +impl<N, E, Ty, Ix> IndexMut<EdgeIndex<Ix>> for StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + fn index_mut(&mut self, index: EdgeIndex<Ix>) -> &mut E { + self.edge_weight_mut(index).unwrap() + } +} + +/// Create a new empty `StableGraph`. +impl<N, E, Ty, Ix> Default for StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + fn default() -> Self { + Self::with_capacity(0, 0) + } +} + +/// Convert a `Graph` into a `StableGraph` +/// +/// Computes in **O(|V| + |E|)** time. +/// +/// The resulting graph has the same node and edge indices as +/// the original graph. +impl<N, E, Ty, Ix> From<Graph<N, E, Ty, Ix>> for StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + fn from(g: Graph<N, E, Ty, Ix>) -> Self { + let nodes = g.nodes.into_iter().map(|e| Node { + weight: Some(e.weight), + next: e.next, + }); + let edges = g.edges.into_iter().map(|e| Edge { + weight: Some(e.weight), + node: e.node, + next: e.next, + }); + StableGraph { + node_count: nodes.len(), + edge_count: edges.len(), + g: Graph { + edges: edges.collect(), + nodes: nodes.collect(), + ty: g.ty, + }, + free_node: NodeIndex::end(), + free_edge: EdgeIndex::end(), + } + } +} + +/// Convert a `StableGraph` into a `Graph` +/// +/// Computes in **O(|V| + |E|)** time. +/// +/// This translates the stable graph into a graph with node and edge indices in +/// a compact interval without holes (like `Graph`s always are). +/// +/// Only if the stable graph had no vacancies after deletions (if node bound was +/// equal to node count, and the same for edges), would the resulting graph have +/// the same node and edge indices as the input. +impl<N, E, Ty, Ix> From<StableGraph<N, E, Ty, Ix>> for Graph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + fn from(graph: StableGraph<N, E, Ty, Ix>) -> Self { + let mut result_g = Graph::with_capacity(graph.node_count(), graph.edge_count()); + // mapping from old node index to new node index + let mut node_index_map = vec![NodeIndex::end(); graph.node_bound()]; + + for (i, node) in enumerate(graph.g.nodes) { + if let Some(nw) = node.weight { + node_index_map[i] = result_g.add_node(nw); + } + } + for edge in graph.g.edges { + let source_index = edge.source().index(); + let target_index = edge.target().index(); + if let Some(ew) = edge.weight { + let source = node_index_map[source_index]; + let target = node_index_map[target_index]; + debug_assert!(source != NodeIndex::end()); + debug_assert!(target != NodeIndex::end()); + result_g.add_edge(source, target, ew); + } + } + result_g + } +} + +/// Iterator over all nodes of a graph. +#[derive(Debug, Clone)] +pub struct NodeReferences<'a, N: 'a, Ix: IndexType = DefaultIx> { + iter: iter::Enumerate<slice::Iter<'a, Node<Option<N>, Ix>>>, +} + +impl<'a, N, Ix> Iterator for NodeReferences<'a, N, Ix> +where + Ix: IndexType, +{ + type Item = (NodeIndex<Ix>, &'a N); + + fn next(&mut self) -> Option<Self::Item> { + self.iter + .ex_find_map(|(i, node)| node.weight.as_ref().map(move |w| (node_index(i), w))) + } + + fn size_hint(&self) -> (usize, Option<usize>) { + let (_, hi) = self.iter.size_hint(); + (0, hi) + } +} + +impl<N, Ix> DoubleEndedIterator for NodeReferences<'_, N, Ix> +where + Ix: IndexType, +{ + fn next_back(&mut self) -> Option<Self::Item> { + self.iter + .ex_rfind_map(|(i, node)| node.weight.as_ref().map(move |w| (node_index(i), w))) + } +} + +/// Reference to a `StableGraph` edge. +#[derive(Debug)] +pub struct EdgeReference<'a, E: 'a, Ix = DefaultIx> { + index: EdgeIndex<Ix>, + node: [NodeIndex<Ix>; 2], + weight: &'a E, +} + +impl<E, Ix: IndexType> Clone for EdgeReference<'_, E, Ix> { + fn clone(&self) -> Self { + *self + } +} + +impl<E, Ix: IndexType> Copy for EdgeReference<'_, E, Ix> {} + +impl<E, Ix: IndexType> PartialEq for EdgeReference<'_, E, Ix> +where + E: PartialEq, +{ + fn eq(&self, rhs: &Self) -> bool { + self.index == rhs.index && self.weight == rhs.weight + } +} + +impl<'a, Ix, E> EdgeReference<'a, E, Ix> +where + Ix: IndexType, +{ + /// Access the edge’s weight. + /// + /// **NOTE** that this method offers a longer lifetime + /// than the trait (unfortunately they don't match yet). + pub fn weight(&self) -> &'a E { + self.weight + } +} + +/// Iterator over the edges of from or to a node +#[derive(Debug, Clone)] +pub struct Edges<'a, E: 'a, Ty, Ix: 'a = DefaultIx> +where + Ty: EdgeType, + Ix: IndexType, +{ + /// starting node to skip over + skip_start: NodeIndex<Ix>, + edges: &'a [Edge<Option<E>, Ix>], + + /// Next edge to visit. + next: [EdgeIndex<Ix>; 2], + + /// For directed graphs: the direction to iterate in + /// For undirected graphs: the direction of edges + direction: Direction, + ty: PhantomData<Ty>, +} + +impl<'a, E, Ty, Ix> Iterator for Edges<'a, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + type Item = EdgeReference<'a, E, Ix>; + + fn next(&mut self) -> Option<Self::Item> { + // type direction | iterate over reverse + // | + // Directed Outgoing | outgoing no + // Directed Incoming | incoming no + // Undirected Outgoing | both incoming + // Undirected Incoming | both outgoing + + // For iterate_over, "both" is represented as None. + // For reverse, "no" is represented as None. + let (iterate_over, reverse) = if Ty::is_directed() { + (Some(self.direction), None) + } else { + (None, Some(self.direction.opposite())) + }; + + if iterate_over.unwrap_or(Outgoing) == Outgoing { + let i = self.next[0].index(); + if let Some(Edge { + node, + weight: Some(weight), + next, + }) = self.edges.get(i) + { + self.next[0] = next[0]; + return Some(EdgeReference { + index: edge_index(i), + node: if reverse == Some(Outgoing) { + swap_pair(*node) + } else { + *node + }, + weight, + }); + } + } + + if iterate_over.unwrap_or(Incoming) == Incoming { + while let Some(Edge { node, weight, next }) = self.edges.get(self.next[1].index()) { + debug_assert!(weight.is_some()); + let edge_index = self.next[1]; + self.next[1] = next[1]; + // In any of the "both" situations, self-loops would be iterated over twice. + // Skip them here. + if iterate_over.is_none() && node[0] == self.skip_start { + continue; + } + + return Some(EdgeReference { + index: edge_index, + node: if reverse == Some(Incoming) { + swap_pair(*node) + } else { + *node + }, + weight: weight.as_ref().unwrap(), + }); + } + } + + None + } +} + +/// Iterator over the multiple directed edges connecting a source node to a target node +#[derive(Debug, Clone)] +pub struct EdgesConnecting<'a, E: 'a, Ty, Ix: 'a = DefaultIx> +where + Ty: EdgeType, + Ix: IndexType, +{ + target_node: NodeIndex<Ix>, + edges: Edges<'a, E, Ty, Ix>, + ty: PhantomData<Ty>, +} + +impl<'a, E, Ty, Ix> Iterator for EdgesConnecting<'a, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + type Item = EdgeReference<'a, E, Ix>; + + fn next(&mut self) -> Option<EdgeReference<'a, E, Ix>> { + let target_node = self.target_node; + self.edges + .by_ref() + .find(|&edge| edge.node[1] == target_node) + } + fn size_hint(&self) -> (usize, Option<usize>) { + let (_, upper) = self.edges.size_hint(); + (0, upper) + } +} + +fn swap_pair<T>(mut x: [T; 2]) -> [T; 2] { + x.swap(0, 1); + x +} + +/// Iterator over all edges of a graph. +#[derive(Debug, Clone)] +pub struct EdgeReferences<'a, E: 'a, Ix: 'a = DefaultIx> { + iter: iter::Enumerate<slice::Iter<'a, Edge<Option<E>, Ix>>>, +} + +impl<'a, E, Ix> Iterator for EdgeReferences<'a, E, Ix> +where + Ix: IndexType, +{ + type Item = EdgeReference<'a, E, Ix>; + + fn next(&mut self) -> Option<Self::Item> { + self.iter.ex_find_map(|(i, edge)| { + edge.weight.as_ref().map(move |weight| EdgeReference { + index: edge_index(i), + node: edge.node, + weight, + }) + }) + } +} + +impl<E, Ix> DoubleEndedIterator for EdgeReferences<'_, E, Ix> +where + Ix: IndexType, +{ + fn next_back(&mut self) -> Option<Self::Item> { + self.iter.ex_rfind_map(|(i, edge)| { + edge.weight.as_ref().map(move |weight| EdgeReference { + index: edge_index(i), + node: edge.node, + weight, + }) + }) + } +} + +/// An iterator over either the nodes without edges to them or from them. +#[derive(Debug, Clone)] +pub struct Externals<'a, N: 'a, Ty, Ix: IndexType = DefaultIx> { + iter: iter::Enumerate<slice::Iter<'a, Node<Option<N>, Ix>>>, + dir: Direction, + ty: PhantomData<Ty>, +} + +impl<'a, N: 'a, Ty, Ix> Iterator for Externals<'a, N, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + type Item = NodeIndex<Ix>; + fn next(&mut self) -> Option<NodeIndex<Ix>> { + let k = self.dir.index(); + loop { + match self.iter.next() { + None => return None, + Some((index, node)) => { + if node.weight.is_some() + && node.next[k] == EdgeIndex::end() + && (Ty::is_directed() || node.next[1 - k] == EdgeIndex::end()) + { + return Some(NodeIndex::new(index)); + } else { + continue; + } + } + } + } + } + fn size_hint(&self) -> (usize, Option<usize>) { + let (_, upper) = self.iter.size_hint(); + (0, upper) + } +} + +/// Iterator over the neighbors of a node. +/// +/// Iterator element type is `NodeIndex`. +#[derive(Debug, Clone)] +pub struct Neighbors<'a, E: 'a, Ix: 'a = DefaultIx> { + /// starting node to skip over + skip_start: NodeIndex<Ix>, + edges: &'a [Edge<Option<E>, Ix>], + next: [EdgeIndex<Ix>; 2], +} + +impl<E, Ix> Neighbors<'_, E, Ix> +where + Ix: IndexType, +{ + /// Return a “walker” object that can be used to step through the + /// neighbors and edges from the origin node. + /// + /// Note: The walker does not borrow from the graph, this is to allow mixing + /// edge walking with mutating the graph's weights. + pub fn detach(&self) -> WalkNeighbors<Ix> { + WalkNeighbors { + inner: super::WalkNeighbors { + skip_start: self.skip_start, + next: self.next, + }, + } + } +} + +impl<E, Ix> Iterator for Neighbors<'_, E, Ix> +where + Ix: IndexType, +{ + type Item = NodeIndex<Ix>; + + fn next(&mut self) -> Option<NodeIndex<Ix>> { + // First any outgoing edges + match self.edges.get(self.next[0].index()) { + None => {} + Some(edge) => { + debug_assert!(edge.weight.is_some()); + self.next[0] = edge.next[0]; + return Some(edge.node[1]); + } + } + // Then incoming edges + // For an "undirected" iterator (traverse both incoming + // and outgoing edge lists), make sure we don't double + // count selfloops by skipping them in the incoming list. + while let Some(edge) = self.edges.get(self.next[1].index()) { + debug_assert!(edge.weight.is_some()); + self.next[1] = edge.next[1]; + if edge.node[0] != self.skip_start { + return Some(edge.node[0]); + } + } + None + } +} + +/// A “walker” object that can be used to step through the edge list of a node. +/// +/// See [*.detach()*](struct.Neighbors.html#method.detach) for more information. +/// +/// The walker does not borrow from the graph, so it lets you step through +/// neighbors or incident edges while also mutating graph weights, as +/// in the following example: +/// +/// ``` +/// use petgraph::visit::Dfs; +/// use petgraph::Incoming; +/// use petgraph::stable_graph::StableGraph; +/// +/// let mut gr = StableGraph::new(); +/// let a = gr.add_node(0.); +/// let b = gr.add_node(0.); +/// let c = gr.add_node(0.); +/// gr.add_edge(a, b, 3.); +/// gr.add_edge(b, c, 2.); +/// gr.add_edge(c, b, 1.); +/// +/// // step through the graph and sum incoming edges into the node weight +/// let mut dfs = Dfs::new(&gr, a); +/// while let Some(node) = dfs.next(&gr) { +/// // use a detached neighbors walker +/// let mut edges = gr.neighbors_directed(node, Incoming).detach(); +/// while let Some(edge) = edges.next_edge(&gr) { +/// gr[node] += gr[edge]; +/// } +/// } +/// +/// // check the result +/// assert_eq!(gr[a], 0.); +/// assert_eq!(gr[b], 4.); +/// assert_eq!(gr[c], 2.); +/// ``` +pub struct WalkNeighbors<Ix> { + inner: super::WalkNeighbors<Ix>, +} + +impl<Ix: IndexType> Clone for WalkNeighbors<Ix> { + clone_fields!(WalkNeighbors, inner); +} + +impl<Ix: IndexType> WalkNeighbors<Ix> { + /// Step to the next edge and its endpoint node in the walk for graph `g`. + /// + /// The next node indices are always the others than the starting point + /// where the `WalkNeighbors` value was created. + /// For an `Outgoing` walk, the target nodes, + /// for an `Incoming` walk, the source nodes of the edge. + pub fn next<N, E, Ty: EdgeType>( + &mut self, + g: &StableGraph<N, E, Ty, Ix>, + ) -> Option<(EdgeIndex<Ix>, NodeIndex<Ix>)> { + self.inner.next(&g.g) + } + + pub fn next_node<N, E, Ty: EdgeType>( + &mut self, + g: &StableGraph<N, E, Ty, Ix>, + ) -> Option<NodeIndex<Ix>> { + self.next(g).map(|t| t.1) + } + + pub fn next_edge<N, E, Ty: EdgeType>( + &mut self, + g: &StableGraph<N, E, Ty, Ix>, + ) -> Option<EdgeIndex<Ix>> { + self.next(g).map(|t| t.0) + } +} + +/// Iterator over the node indices of a graph. +#[derive(Debug, Clone)] +pub struct NodeIndices<'a, N: 'a, Ix: 'a = DefaultIx> { + iter: iter::Enumerate<slice::Iter<'a, Node<Option<N>, Ix>>>, +} + +impl<N, Ix: IndexType> Iterator for NodeIndices<'_, N, Ix> { + type Item = NodeIndex<Ix>; + + fn next(&mut self) -> Option<Self::Item> { + self.iter.ex_find_map(|(i, node)| { + if node.weight.is_some() { + Some(node_index(i)) + } else { + None + } + }) + } + fn size_hint(&self) -> (usize, Option<usize>) { + let (_, upper) = self.iter.size_hint(); + (0, upper) + } +} + +impl<N, Ix: IndexType> DoubleEndedIterator for NodeIndices<'_, N, Ix> { + fn next_back(&mut self) -> Option<Self::Item> { + self.iter.ex_rfind_map(|(i, node)| { + if node.weight.is_some() { + Some(node_index(i)) + } else { + None + } + }) + } +} + +/// Iterator over the edge indices of a graph. +#[derive(Debug, Clone)] +pub struct EdgeIndices<'a, E: 'a, Ix: 'a = DefaultIx> { + iter: iter::Enumerate<slice::Iter<'a, Edge<Option<E>, Ix>>>, +} + +impl<E, Ix: IndexType> Iterator for EdgeIndices<'_, E, Ix> { + type Item = EdgeIndex<Ix>; + + fn next(&mut self) -> Option<Self::Item> { + self.iter.ex_find_map(|(i, node)| { + if node.weight.is_some() { + Some(edge_index(i)) + } else { + None + } + }) + } + fn size_hint(&self) -> (usize, Option<usize>) { + let (_, upper) = self.iter.size_hint(); + (0, upper) + } +} + +impl<E, Ix: IndexType> DoubleEndedIterator for EdgeIndices<'_, E, Ix> { + fn next_back(&mut self) -> Option<Self::Item> { + self.iter.ex_rfind_map(|(i, node)| { + if node.weight.is_some() { + Some(edge_index(i)) + } else { + None + } + }) + } +} + +impl<N, E, Ty, Ix> visit::GraphBase for StableGraph<N, E, Ty, Ix> +where + Ix: IndexType, +{ + type NodeId = NodeIndex<Ix>; + type EdgeId = EdgeIndex<Ix>; +} + +impl<N, E, Ty, Ix> visit::Visitable for StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + type Map = FixedBitSet; + fn visit_map(&self) -> FixedBitSet { + FixedBitSet::with_capacity(self.node_bound()) + } + fn reset_map(&self, map: &mut Self::Map) { + map.clear(); + map.grow(self.node_bound()); + } +} + +impl<N, E, Ty, Ix> visit::Data for StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + type NodeWeight = N; + type EdgeWeight = E; +} + +impl<N, E, Ty, Ix> visit::GraphProp for StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + type EdgeType = Ty; +} + +impl<'a, N, E: 'a, Ty, Ix> visit::IntoNodeIdentifiers for &'a StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + type NodeIdentifiers = NodeIndices<'a, N, Ix>; + fn node_identifiers(self) -> Self::NodeIdentifiers { + StableGraph::node_indices(self) + } +} + +impl<N, E, Ty, Ix> visit::NodeCount for StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + fn node_count(&self) -> usize { + self.node_count() + } +} + +impl<'a, N, E, Ty, Ix> visit::IntoNodeReferences for &'a StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + type NodeRef = (NodeIndex<Ix>, &'a N); + type NodeReferences = NodeReferences<'a, N, Ix>; + fn node_references(self) -> Self::NodeReferences { + NodeReferences { + iter: enumerate(self.raw_nodes()), + } + } +} + +impl<N, E, Ty, Ix> visit::NodeIndexable for StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + /// Return an upper bound of the node indices in the graph + fn node_bound(&self) -> usize { + self.node_indices().next_back().map_or(0, |i| i.index() + 1) + } + fn to_index(&self, ix: NodeIndex<Ix>) -> usize { + ix.index() + } + fn from_index(&self, ix: usize) -> Self::NodeId { + NodeIndex::new(ix) + } +} + +impl<'a, N, E: 'a, Ty, Ix> visit::IntoNeighbors for &'a StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + type Neighbors = Neighbors<'a, E, Ix>; + fn neighbors(self, n: Self::NodeId) -> Self::Neighbors { + (*self).neighbors(n) + } +} + +impl<'a, N, E: 'a, Ty, Ix> visit::IntoNeighborsDirected for &'a StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + type NeighborsDirected = Neighbors<'a, E, Ix>; + fn neighbors_directed(self, n: NodeIndex<Ix>, d: Direction) -> Self::NeighborsDirected { + StableGraph::neighbors_directed(self, n, d) + } +} + +impl<'a, N, E, Ty, Ix> visit::IntoEdges for &'a StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + type Edges = Edges<'a, E, Ty, Ix>; + fn edges(self, a: Self::NodeId) -> Self::Edges { + self.edges(a) + } +} + +impl<Ix, E> visit::EdgeRef for EdgeReference<'_, E, Ix> +where + Ix: IndexType, +{ + type NodeId = NodeIndex<Ix>; + type EdgeId = EdgeIndex<Ix>; + type Weight = E; + + fn source(&self) -> Self::NodeId { + self.node[0] + } + fn target(&self) -> Self::NodeId { + self.node[1] + } + fn weight(&self) -> &E { + self.weight + } + fn id(&self) -> Self::EdgeId { + self.index + } +} + +impl<N, E, Ty, Ix> visit::EdgeIndexable for StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + fn edge_bound(&self) -> usize { + self.edge_references() + .next_back() + .map_or(0, |edge| edge.id().index() + 1) + } + + fn to_index(&self, ix: EdgeIndex<Ix>) -> usize { + ix.index() + } + + fn from_index(&self, ix: usize) -> Self::EdgeId { + EdgeIndex::new(ix) + } +} + +impl<'a, N, E, Ty, Ix> visit::IntoEdgesDirected for &'a StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + type EdgesDirected = Edges<'a, E, Ty, Ix>; + fn edges_directed(self, a: Self::NodeId, dir: Direction) -> Self::EdgesDirected { + self.edges_directed(a, dir) + } +} + +impl<'a, N: 'a, E: 'a, Ty, Ix> visit::IntoEdgeReferences for &'a StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + type EdgeRef = EdgeReference<'a, E, Ix>; + type EdgeReferences = EdgeReferences<'a, E, Ix>; + + /// Create an iterator over all edges in the graph, in indexed order. + /// + /// Iterator element type is `EdgeReference<E, Ix>`. + fn edge_references(self) -> Self::EdgeReferences { + EdgeReferences { + iter: self.g.edges.iter().enumerate(), + } + } +} + +impl<N, E, Ty, Ix> visit::EdgeCount for StableGraph<N, E, Ty, Ix> +where + Ty: EdgeType, + Ix: IndexType, +{ + #[inline] + fn edge_count(&self) -> usize { + self.edge_count() + } +} + +#[test] +fn stable_graph() { + let mut gr = StableGraph::<_, _>::with_capacity(0, 0); + let a = gr.add_node(0); + let b = gr.add_node(1); + let c = gr.add_node(2); + let _ed = gr.add_edge(a, b, 1); + println!("{:?}", gr); + gr.remove_node(b); + println!("{:?}", gr); + let d = gr.add_node(3); + println!("{:?}", gr); + gr.check_free_lists(); + gr.remove_node(a); + gr.check_free_lists(); + gr.remove_node(c); + gr.check_free_lists(); + println!("{:?}", gr); + gr.add_edge(d, d, 2); + println!("{:?}", gr); + + let e = gr.add_node(4); + gr.add_edge(d, e, 3); + println!("{:?}", gr); + for neigh in gr.neighbors(d) { + println!("edge {:?} -> {:?}", d, neigh); + } + gr.check_free_lists(); +} + +#[test] +fn dfs() { + use crate::visit::Dfs; + + let mut gr = StableGraph::<_, _>::with_capacity(0, 0); + let a = gr.add_node("a"); + let b = gr.add_node("b"); + let c = gr.add_node("c"); + let d = gr.add_node("d"); + gr.add_edge(a, b, 1); + gr.add_edge(a, c, 2); + gr.add_edge(b, c, 3); + gr.add_edge(b, d, 4); + gr.add_edge(c, d, 5); + gr.add_edge(d, b, 6); + gr.add_edge(c, b, 7); + println!("{:?}", gr); + + let mut dfs = Dfs::new(&gr, a); + while let Some(next) = dfs.next(&gr) { + println!("dfs visit => {:?}, weight={:?}", next, &gr[next]); + } +} + +#[test] +fn test_retain_nodes() { + let mut gr = StableGraph::<_, _>::with_capacity(6, 6); + let a = gr.add_node("a"); + let f = gr.add_node("f"); + let b = gr.add_node("b"); + let c = gr.add_node("c"); + let d = gr.add_node("d"); + let e = gr.add_node("e"); + gr.add_edge(a, b, 1); + gr.add_edge(a, c, 2); + gr.add_edge(b, c, 3); + gr.add_edge(b, d, 4); + gr.add_edge(c, d, 5); + gr.add_edge(d, b, 6); + gr.add_edge(c, b, 7); + gr.add_edge(d, e, 8); + gr.remove_node(f); + + assert_eq!(gr.node_count(), 5); + assert_eq!(gr.edge_count(), 8); + gr.retain_nodes(|frozen_gr, ix| frozen_gr[ix] >= "c"); + assert_eq!(gr.node_count(), 3); + assert_eq!(gr.edge_count(), 2); + + gr.check_free_lists(); +} + +#[test] +fn extend_with_edges() { + let mut gr = StableGraph::<_, _>::default(); + let a = gr.add_node("a"); + let b = gr.add_node("b"); + let c = gr.add_node("c"); + let _d = gr.add_node("d"); + gr.remove_node(a); + gr.remove_node(b); + gr.remove_node(c); + + gr.extend_with_edges(vec![(0, 1, ())]); + assert_eq!(gr.node_count(), 3); + assert_eq!(gr.edge_count(), 1); + gr.check_free_lists(); + + gr.extend_with_edges(vec![(5, 1, ())]); + assert_eq!(gr.node_count(), 4); + assert_eq!(gr.edge_count(), 2); + gr.check_free_lists(); +} + +#[test] +fn test_reverse() { + let mut gr = StableGraph::<_, _>::default(); + let a = gr.add_node("a"); + let b = gr.add_node("b"); + + gr.add_edge(a, b, 0); + + let mut reversed_gr = gr.clone(); + reversed_gr.reverse(); + + for i in gr.node_indices() { + itertools::assert_equal(gr.edges_directed(i, Incoming), reversed_gr.edges(i)); + } +} |
