summaryrefslogtreecommitdiff
path: root/vendor/petgraph/src/graph_impl/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/petgraph/src/graph_impl/mod.rs')
-rw-r--r--vendor/petgraph/src/graph_impl/mod.rs2411
1 files changed, 0 insertions, 2411 deletions
diff --git a/vendor/petgraph/src/graph_impl/mod.rs b/vendor/petgraph/src/graph_impl/mod.rs
deleted file mode 100644
index 3a123f72..00000000
--- a/vendor/petgraph/src/graph_impl/mod.rs
+++ /dev/null
@@ -1,2411 +0,0 @@
-use std::cmp;
-use std::fmt;
-use std::hash::Hash;
-use std::iter;
-use std::marker::PhantomData;
-use std::mem::size_of;
-use std::ops::{Index, IndexMut, Range};
-use std::slice;
-
-use fixedbitset::FixedBitSet;
-
-use crate::{Directed, Direction, EdgeType, Incoming, IntoWeightedEdge, Outgoing, Undirected};
-
-use crate::iter_format::{DebugMap, IterFormatExt, NoPretty};
-
-use crate::util::enumerate;
-use crate::visit;
-
-#[cfg(feature = "serde-1")]
-mod serialization;
-
-/// The default integer type for graph indices.
-/// `u32` is the default to reduce the size of the graph's data and improve
-/// performance in the common case.
-///
-/// Used for node and edge indices in `Graph` and `StableGraph`, used
-/// for node indices in `Csr`.
-pub type DefaultIx = u32;
-
-/// Trait for the unsigned integer type used for node and edge indices.
-///
-/// # Safety
-///
-/// Marked `unsafe` because: the trait must faithfully preserve
-/// and convert index values.
-pub unsafe trait IndexType: Copy + Default + Hash + Ord + fmt::Debug + 'static {
- fn new(x: usize) -> Self;
- fn index(&self) -> usize;
- fn max() -> Self;
-}
-
-unsafe impl IndexType for usize {
- #[inline(always)]
- fn new(x: usize) -> Self {
- x
- }
- #[inline(always)]
- fn index(&self) -> Self {
- *self
- }
- #[inline(always)]
- fn max() -> Self {
- ::std::usize::MAX
- }
-}
-
-unsafe impl IndexType for u32 {
- #[inline(always)]
- fn new(x: usize) -> Self {
- x as u32
- }
- #[inline(always)]
- fn index(&self) -> usize {
- *self as usize
- }
- #[inline(always)]
- fn max() -> Self {
- ::std::u32::MAX
- }
-}
-
-unsafe impl IndexType for u16 {
- #[inline(always)]
- fn new(x: usize) -> Self {
- x as u16
- }
- #[inline(always)]
- fn index(&self) -> usize {
- *self as usize
- }
- #[inline(always)]
- fn max() -> Self {
- ::std::u16::MAX
- }
-}
-
-unsafe impl IndexType for u8 {
- #[inline(always)]
- fn new(x: usize) -> Self {
- x as u8
- }
- #[inline(always)]
- fn index(&self) -> usize {
- *self as usize
- }
- #[inline(always)]
- fn max() -> Self {
- ::std::u8::MAX
- }
-}
-
-/// Node identifier.
-#[derive(Copy, Clone, Default, PartialEq, PartialOrd, Eq, Ord, Hash)]
-pub struct NodeIndex<Ix = DefaultIx>(Ix);
-
-impl<Ix: IndexType> NodeIndex<Ix> {
- #[inline]
- pub fn new(x: usize) -> Self {
- NodeIndex(IndexType::new(x))
- }
-
- #[inline]
- pub fn index(self) -> usize {
- self.0.index()
- }
-
- #[inline]
- pub fn end() -> Self {
- NodeIndex(IndexType::max())
- }
-
- fn _into_edge(self) -> EdgeIndex<Ix> {
- EdgeIndex(self.0)
- }
-}
-
-unsafe impl<Ix: IndexType> IndexType for NodeIndex<Ix> {
- fn index(&self) -> usize {
- self.0.index()
- }
- fn new(x: usize) -> Self {
- NodeIndex::new(x)
- }
- fn max() -> Self {
- NodeIndex(<Ix as IndexType>::max())
- }
-}
-
-impl<Ix: IndexType> From<Ix> for NodeIndex<Ix> {
- fn from(ix: Ix) -> Self {
- NodeIndex(ix)
- }
-}
-
-impl<Ix: fmt::Debug> fmt::Debug for NodeIndex<Ix> {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- write!(f, "NodeIndex({:?})", self.0)
- }
-}
-
-/// Short version of `NodeIndex::new`
-pub fn node_index<Ix: IndexType>(index: usize) -> NodeIndex<Ix> {
- NodeIndex::new(index)
-}
-
-/// Short version of `EdgeIndex::new`
-pub fn edge_index<Ix: IndexType>(index: usize) -> EdgeIndex<Ix> {
- EdgeIndex::new(index)
-}
-
-/// Edge identifier.
-#[derive(Copy, Clone, Default, PartialEq, PartialOrd, Eq, Ord, Hash)]
-pub struct EdgeIndex<Ix = DefaultIx>(Ix);
-
-impl<Ix: IndexType> EdgeIndex<Ix> {
- #[inline]
- pub fn new(x: usize) -> Self {
- EdgeIndex(IndexType::new(x))
- }
-
- #[inline]
- pub fn index(self) -> usize {
- self.0.index()
- }
-
- /// An invalid `EdgeIndex` used to denote absence of an edge, for example
- /// to end an adjacency list.
- #[inline]
- pub fn end() -> Self {
- EdgeIndex(IndexType::max())
- }
-
- fn _into_node(self) -> NodeIndex<Ix> {
- NodeIndex(self.0)
- }
-}
-
-impl<Ix: IndexType> From<Ix> for EdgeIndex<Ix> {
- fn from(ix: Ix) -> Self {
- EdgeIndex(ix)
- }
-}
-
-impl<Ix: fmt::Debug> fmt::Debug for EdgeIndex<Ix> {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- write!(f, "EdgeIndex({:?})", self.0)
- }
-}
-/*
- * FIXME: Use this impl again, when we don't need to add so many bounds
-impl<Ix: IndexType> fmt::Debug for EdgeIndex<Ix>
-{
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- try!(write!(f, "EdgeIndex("));
- if *self == EdgeIndex::end() {
- try!(write!(f, "End"));
- } else {
- try!(write!(f, "{}", self.index()));
- }
- write!(f, ")")
- }
-}
-*/
-
-const DIRECTIONS: [Direction; 2] = [Outgoing, Incoming];
-
-/// The graph's node type.
-#[derive(Debug)]
-pub struct Node<N, Ix = DefaultIx> {
- /// Associated node data.
- pub weight: N,
- /// Next edge in outgoing and incoming edge lists.
- next: [EdgeIndex<Ix>; 2],
-}
-
-impl<E, Ix> Clone for Node<E, Ix>
-where
- E: Clone,
- Ix: Copy,
-{
- clone_fields!(Node, weight, next,);
-}
-
-impl<N, Ix: IndexType> Node<N, Ix> {
- /// Accessor for data structure internals: the first edge in the given direction.
- pub fn next_edge(&self, dir: Direction) -> EdgeIndex<Ix> {
- self.next[dir.index()]
- }
-}
-
-/// The graph's edge type.
-#[derive(Debug)]
-pub struct Edge<E, Ix = DefaultIx> {
- /// Associated edge data.
- pub weight: E,
- /// Next edge in outgoing and incoming edge lists.
- next: [EdgeIndex<Ix>; 2],
- /// Start and End node index
- node: [NodeIndex<Ix>; 2],
-}
-
-impl<E, Ix> Clone for Edge<E, Ix>
-where
- E: Clone,
- Ix: Copy,
-{
- clone_fields!(Edge, weight, next, node,);
-}
-
-impl<E, Ix: IndexType> Edge<E, Ix> {
- /// Accessor for data structure internals: the next edge for the given direction.
- pub fn next_edge(&self, dir: Direction) -> EdgeIndex<Ix> {
- self.next[dir.index()]
- }
-
- /// Return the source node index.
- pub fn source(&self) -> NodeIndex<Ix> {
- self.node[0]
- }
-
- /// Return the target node index.
- pub fn target(&self) -> NodeIndex<Ix> {
- self.node[1]
- }
-}
-
-/// `Graph<N, E, Ty, Ix>` is a graph datastructure using an adjacency list representation.
-///
-/// `Graph` is parameterized over:
-///
-/// - Associated data `N` for nodes and `E` for edges, called *weights*.
-/// The associated data can be of arbitrary type.
-/// - Edge type `Ty` that determines whether the graph edges are directed or undirected.
-/// - Index type `Ix`, which determines the maximum size of the graph.
-///
-/// The `Graph` is a regular Rust collection and is `Send` and `Sync` (as long
-/// as associated data `N` and `E` are).
-///
-/// The graph uses **O(|V| + |E|)** space, and allows fast node and edge insert,
-/// efficient graph search and graph algorithms.
-/// It implements **O(e')** edge lookup and edge and node removals, where **e'**
-/// is some local measure of edge count.
-/// Based on the graph datastructure used in rustc.
-///
-/// Here's an example of building a graph with directed edges, and below
-/// an illustration of how it could be rendered with graphviz (see
-/// [`Dot`](../dot/struct.Dot.html)):
-///
-/// ```
-/// use petgraph::Graph;
-///
-/// let mut deps = Graph::<&str, &str>::new();
-/// let pg = deps.add_node("petgraph");
-/// let fb = deps.add_node("fixedbitset");
-/// let qc = deps.add_node("quickcheck");
-/// let rand = deps.add_node("rand");
-/// let libc = deps.add_node("libc");
-/// deps.extend_with_edges(&[
-/// (pg, fb), (pg, qc),
-/// (qc, rand), (rand, libc), (qc, libc),
-/// ]);
-/// ```
-///
-/// ![graph-example](https://bluss.github.io/ndarray/images/graph-example.svg)
-///
-/// ### Graph Indices
-///
-/// The graph maintains indices for nodes and edges, and node and edge
-/// weights may be accessed mutably. Indices range in a compact interval, for
-/// example for *n* nodes indices are 0 to *n* - 1 inclusive.
-///
-/// `NodeIndex` and `EdgeIndex` are types that act as references to nodes and edges,
-/// but these are only stable across certain operations:
-///
-/// * **Removing nodes or edges may shift other indices.** Removing a node will
-/// force the last node to shift its index to take its place. Similarly,
-/// removing an edge shifts the index of the last edge.
-/// * Adding nodes or edges keeps indices stable.
-///
-/// The `Ix` parameter is `u32` by default. The goal is that you can ignore this parameter
-/// completely unless you need a very big graph -- then you can use `usize`.
-///
-/// * The fact that the node and edge indices in the graph each are numbered in compact
-/// intervals (from 0 to *n* - 1 for *n* nodes) simplifies some graph algorithms.
-///
-/// * You can select graph index integer type after the size of the graph. A smaller
-/// size may have better performance.
-///
-/// * Using indices allows mutation while traversing the graph, see `Dfs`,
-/// and `.neighbors(a).detach()`.
-///
-/// * You can create several graphs using the equal node indices but with
-/// differing weights or differing edges.
-///
-/// * Indices don't allow as much compile time checking as references.
-///
-pub struct Graph<N, E, Ty = Directed, Ix = DefaultIx> {
- nodes: Vec<Node<N, Ix>>,
- edges: Vec<Edge<E, Ix>>,
- ty: PhantomData<Ty>,
-}
-
-/// A `Graph` with directed edges.
-///
-/// For example, an edge from *1* to *2* is distinct from an edge from *2* to
-/// *1*.
-pub type DiGraph<N, E, Ix = DefaultIx> = Graph<N, E, Directed, Ix>;
-
-/// A `Graph` with undirected edges.
-///
-/// For example, an edge between *1* and *2* is equivalent to an edge between
-/// *2* and *1*.
-pub type UnGraph<N, E, Ix = DefaultIx> = Graph<N, E, Undirected, Ix>;
-
-/// The resulting cloned graph has the same graph indices as `self`.
-impl<N, E, Ty, Ix: IndexType> Clone for Graph<N, E, Ty, Ix>
-where
- N: Clone,
- E: Clone,
-{
- fn clone(&self) -> Self {
- Graph {
- nodes: self.nodes.clone(),
- edges: self.edges.clone(),
- ty: self.ty,
- }
- }
-
- fn clone_from(&mut self, rhs: &Self) {
- self.nodes.clone_from(&rhs.nodes);
- self.edges.clone_from(&rhs.edges);
- self.ty = rhs.ty;
- }
-}
-
-impl<N, E, Ty, Ix> fmt::Debug for Graph<N, E, Ty, Ix>
-where
- N: fmt::Debug,
- E: fmt::Debug,
- Ty: EdgeType,
- Ix: IndexType,
-{
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- let etype = if self.is_directed() {
- "Directed"
- } else {
- "Undirected"
- };
- let mut fmt_struct = f.debug_struct("Graph");
- fmt_struct.field("Ty", &etype);
- fmt_struct.field("node_count", &self.node_count());
- fmt_struct.field("edge_count", &self.edge_count());
- if self.edge_count() > 0 {
- fmt_struct.field(
- "edges",
- &self
- .edges
- .iter()
- .map(|e| NoPretty((e.source().index(), e.target().index())))
- .format(", "),
- );
- }
- // skip weights if they are ZST!
- if size_of::<N>() != 0 {
- fmt_struct.field(
- "node weights",
- &DebugMap(|| self.nodes.iter().map(|n| &n.weight).enumerate()),
- );
- }
- if size_of::<E>() != 0 {
- fmt_struct.field(
- "edge weights",
- &DebugMap(|| self.edges.iter().map(|n| &n.weight).enumerate()),
- );
- }
- fmt_struct.finish()
- }
-}
-
-enum Pair<T> {
- Both(T, T),
- One(T),
- None,
-}
-
-use std::cmp::max;
-
-/// Get mutable references at index `a` and `b`.
-fn index_twice<T>(slc: &mut [T], a: usize, b: usize) -> Pair<&mut T> {
- if max(a, b) >= slc.len() {
- Pair::None
- } else if a == b {
- Pair::One(&mut slc[max(a, b)])
- } else {
- // safe because a, b are in bounds and distinct
- unsafe {
- let ptr = slc.as_mut_ptr();
- let ar = &mut *ptr.add(a);
- let br = &mut *ptr.add(b);
- Pair::Both(ar, br)
- }
- }
-}
-
-impl<N, E> Graph<N, E, Directed> {
- /// Create a new `Graph` with directed edges.
- ///
- /// This is a convenience method. Use `Graph::with_capacity` or `Graph::default` for
- /// a constructor that is generic in all the type parameters of `Graph`.
- pub fn new() -> Self {
- Graph {
- nodes: Vec::new(),
- edges: Vec::new(),
- ty: PhantomData,
- }
- }
-}
-
-impl<N, E> Graph<N, E, Undirected> {
- /// Create a new `Graph` with undirected edges.
- ///
- /// This is a convenience method. Use `Graph::with_capacity` or `Graph::default` for
- /// a constructor that is generic in all the type parameters of `Graph`.
- pub fn new_undirected() -> Self {
- Graph {
- nodes: Vec::new(),
- edges: Vec::new(),
- ty: PhantomData,
- }
- }
-}
-
-impl<N, E, Ty, Ix> Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- /// Create a new `Graph` with estimated capacity.
- pub fn with_capacity(nodes: usize, edges: usize) -> Self {
- Graph {
- nodes: Vec::with_capacity(nodes),
- edges: Vec::with_capacity(edges),
- ty: PhantomData,
- }
- }
-
- /// Return the number of nodes (vertices) in the graph.
- ///
- /// Computes in **O(1)** time.
- pub fn node_count(&self) -> usize {
- self.nodes.len()
- }
-
- /// Return the number of edges in the graph.
- ///
- /// Computes in **O(1)** time.
- pub fn edge_count(&self) -> usize {
- self.edges.len()
- }
-
- /// Whether the graph has directed edges or not.
- #[inline]
- pub fn is_directed(&self) -> bool {
- Ty::is_directed()
- }
-
- /// Add a node (also called vertex) with associated data `weight` to the graph.
- ///
- /// Computes in **O(1)** time.
- ///
- /// Return the index of the new node.
- ///
- /// **Panics** if the Graph is at the maximum number of nodes for its index
- /// type (N/A if usize).
- pub fn add_node(&mut self, weight: N) -> NodeIndex<Ix> {
- let node = Node {
- weight,
- next: [EdgeIndex::end(), EdgeIndex::end()],
- };
- let node_idx = NodeIndex::new(self.nodes.len());
- // check for max capacity, except if we use usize
- assert!(<Ix as IndexType>::max().index() == !0 || NodeIndex::end() != node_idx);
- self.nodes.push(node);
- node_idx
- }
-
- /// Access the weight for node `a`.
- ///
- /// If node `a` doesn't exist in the graph, return `None`.
- /// Also available with indexing syntax: `&graph[a]`.
- pub fn node_weight(&self, a: NodeIndex<Ix>) -> Option<&N> {
- self.nodes.get(a.index()).map(|n| &n.weight)
- }
-
- /// Access the weight for node `a`, mutably.
- ///
- /// If node `a` doesn't exist in the graph, return `None`.
- /// Also available with indexing syntax: `&mut graph[a]`.
- pub fn node_weight_mut(&mut self, a: NodeIndex<Ix>) -> Option<&mut N> {
- self.nodes.get_mut(a.index()).map(|n| &mut n.weight)
- }
-
- /// Add an edge from `a` to `b` to the graph, with its associated
- /// data `weight`.
- ///
- /// Return the index of the new edge.
- ///
- /// Computes in **O(1)** time.
- ///
- /// **Panics** if any of the nodes don't exist.<br>
- /// **Panics** if the Graph is at the maximum number of edges for its index
- /// type (N/A if usize).
- ///
- /// **Note:** `Graph` allows adding parallel (“duplicate”) edges. If you want
- /// to avoid this, use [`.update_edge(a, b, weight)`](#method.update_edge) instead.
- pub fn add_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> EdgeIndex<Ix> {
- let edge_idx = EdgeIndex::new(self.edges.len());
- assert!(<Ix as IndexType>::max().index() == !0 || EdgeIndex::end() != edge_idx);
- let mut edge = Edge {
- weight,
- node: [a, b],
- next: [EdgeIndex::end(); 2],
- };
- match index_twice(&mut self.nodes, a.index(), b.index()) {
- Pair::None => panic!("Graph::add_edge: node indices out of bounds"),
- Pair::One(an) => {
- edge.next = an.next;
- an.next[0] = edge_idx;
- an.next[1] = edge_idx;
- }
- Pair::Both(an, bn) => {
- // a and b are different indices
- edge.next = [an.next[0], bn.next[1]];
- an.next[0] = edge_idx;
- bn.next[1] = edge_idx;
- }
- }
- self.edges.push(edge);
- edge_idx
- }
-
- /// Add or update an edge from `a` to `b`.
- /// If the edge already exists, its weight is updated.
- ///
- /// Return the index of the affected edge.
- ///
- /// Computes in **O(e')** time, where **e'** is the number of edges
- /// connected to `a` (and `b`, if the graph edges are undirected).
- ///
- /// **Panics** if any of the nodes doesn't exist.
- pub fn update_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> EdgeIndex<Ix> {
- if let Some(ix) = self.find_edge(a, b) {
- if let Some(ed) = self.edge_weight_mut(ix) {
- *ed = weight;
- return ix;
- }
- }
- self.add_edge(a, b, weight)
- }
-
- /// Access the weight for edge `e`.
- ///
- /// If edge `e` doesn't exist in the graph, return `None`.
- /// Also available with indexing syntax: `&graph[e]`.
- pub fn edge_weight(&self, e: EdgeIndex<Ix>) -> Option<&E> {
- self.edges.get(e.index()).map(|ed| &ed.weight)
- }
-
- /// Access the weight for edge `e`, mutably.
- ///
- /// If edge `e` doesn't exist in the graph, return `None`.
- /// Also available with indexing syntax: `&mut graph[e]`.
- pub fn edge_weight_mut(&mut self, e: EdgeIndex<Ix>) -> Option<&mut E> {
- self.edges.get_mut(e.index()).map(|ed| &mut ed.weight)
- }
-
- /// Access the source and target nodes for `e`.
- ///
- /// If edge `e` doesn't exist in the graph, return `None`.
- pub fn edge_endpoints(&self, e: EdgeIndex<Ix>) -> Option<(NodeIndex<Ix>, NodeIndex<Ix>)> {
- self.edges
- .get(e.index())
- .map(|ed| (ed.source(), ed.target()))
- }
-
- /// Remove `a` from the graph if it exists, and return its weight.
- /// If it doesn't exist in the graph, return `None`.
- ///
- /// Apart from `a`, this invalidates the last node index in the graph
- /// (that node will adopt the removed node index). Edge indices are
- /// invalidated as they would be following the removal of each edge
- /// with an endpoint in `a`.
- ///
- /// Computes in **O(e')** time, where **e'** is the number of affected
- /// edges, including *n* calls to `.remove_edge()` where *n* is the number
- /// of edges with an endpoint in `a`, and including the edges with an
- /// endpoint in the displaced node.
- pub fn remove_node(&mut self, a: NodeIndex<Ix>) -> Option<N> {
- self.nodes.get(a.index())?;
- for d in &DIRECTIONS {
- let k = d.index();
-
- // Remove all edges from and to this node.
- loop {
- let next = self.nodes[a.index()].next[k];
- if next == EdgeIndex::end() {
- break;
- }
- let ret = self.remove_edge(next);
- debug_assert!(ret.is_some());
- let _ = ret;
- }
- }
-
- // Use swap_remove -- only the swapped-in node is going to change
- // NodeIndex<Ix>, so we only have to walk its edges and update them.
-
- let node = self.nodes.swap_remove(a.index());
-
- // Find the edge lists of the node that had to relocate.
- // It may be that no node had to relocate, then we are done already.
- let swap_edges = match self.nodes.get(a.index()) {
- None => return Some(node.weight),
- Some(ed) => ed.next,
- };
-
- // The swapped element's old index
- let old_index = NodeIndex::new(self.nodes.len());
- let new_index = a;
-
- // Adjust the starts of the out edges, and ends of the in edges.
- for &d in &DIRECTIONS {
- let k = d.index();
- let mut edges = edges_walker_mut(&mut self.edges, swap_edges[k], d);
- while let Some(curedge) = edges.next_edge() {
- debug_assert!(curedge.node[k] == old_index);
- curedge.node[k] = new_index;
- }
- }
- Some(node.weight)
- }
-
- /// For edge `e` with endpoints `edge_node`, replace links to it,
- /// with links to `edge_next`.
- fn change_edge_links(
- &mut self,
- edge_node: [NodeIndex<Ix>; 2],
- e: EdgeIndex<Ix>,
- edge_next: [EdgeIndex<Ix>; 2],
- ) {
- for &d in &DIRECTIONS {
- let k = d.index();
- let node = match self.nodes.get_mut(edge_node[k].index()) {
- Some(r) => r,
- None => {
- debug_assert!(
- false,
- "Edge's endpoint dir={:?} index={:?} not found",
- d, edge_node[k]
- );
- return;
- }
- };
- let fst = node.next[k];
- if fst == e {
- //println!("Updating first edge 0 for node {}, set to {}", edge_node[0], edge_next[0]);
- node.next[k] = edge_next[k];
- } else {
- let mut edges = edges_walker_mut(&mut self.edges, fst, d);
- while let Some(curedge) = edges.next_edge() {
- if curedge.next[k] == e {
- curedge.next[k] = edge_next[k];
- break; // the edge can only be present once in the list.
- }
- }
- }
- }
- }
-
- /// Remove an edge and return its edge weight, or `None` if it didn't exist.
- ///
- /// Apart from `e`, this invalidates the last edge index in the graph
- /// (that edge will adopt the removed edge index).
- ///
- /// Computes in **O(e')** time, where **e'** is the size of four particular edge lists, for
- /// the vertices of `e` and the vertices of another affected edge.
- pub fn remove_edge(&mut self, e: EdgeIndex<Ix>) -> Option<E> {
- // every edge is part of two lists,
- // outgoing and incoming edges.
- // Remove it from both
- let (edge_node, edge_next) = match self.edges.get(e.index()) {
- None => return None,
- Some(x) => (x.node, x.next),
- };
- // Remove the edge from its in and out lists by replacing it with
- // a link to the next in the list.
- self.change_edge_links(edge_node, e, edge_next);
- self.remove_edge_adjust_indices(e)
- }
-
- fn remove_edge_adjust_indices(&mut self, e: EdgeIndex<Ix>) -> Option<E> {
- // swap_remove the edge -- only the removed edge
- // and the edge swapped into place are affected and need updating
- // indices.
- let edge = self.edges.swap_remove(e.index());
- let swap = match self.edges.get(e.index()) {
- // no elment needed to be swapped.
- None => return Some(edge.weight),
- Some(ed) => ed.node,
- };
- let swapped_e = EdgeIndex::new(self.edges.len());
-
- // Update the edge lists by replacing links to the old index by references to the new
- // edge index.
- self.change_edge_links(swap, swapped_e, [e, e]);
- Some(edge.weight)
- }
-
- /// Return an iterator of all nodes with an edge starting from `a`.
- ///
- /// - `Directed`: Outgoing edges from `a`.
- /// - `Undirected`: All edges from or to `a`.
- ///
- /// Produces an empty iterator if the node doesn't exist.<br>
- /// Iterator element type is `NodeIndex<Ix>`.
- ///
- /// Use [`.neighbors(a).detach()`][1] to get a neighbor walker that does
- /// not borrow from the graph.
- ///
- /// [1]: struct.Neighbors.html#method.detach
- pub fn neighbors(&self, a: NodeIndex<Ix>) -> Neighbors<E, Ix> {
- self.neighbors_directed(a, Outgoing)
- }
-
- /// Return an iterator of all neighbors that have an edge between them and
- /// `a`, in the specified direction.
- /// If the graph's edges are undirected, this is equivalent to *.neighbors(a)*.
- ///
- /// - `Directed`, `Outgoing`: All edges from `a`.
- /// - `Directed`, `Incoming`: All edges to `a`.
- /// - `Undirected`: All edges from or to `a`.
- ///
- /// Produces an empty iterator if the node doesn't exist.<br>
- /// Iterator element type is `NodeIndex<Ix>`.
- ///
- /// For a `Directed` graph, neighbors are listed in reverse order of their
- /// addition to the graph, so the most recently added edge's neighbor is
- /// listed first. The order in an `Undirected` graph is arbitrary.
- ///
- /// Use [`.neighbors_directed(a, dir).detach()`][1] to get a neighbor walker that does
- /// not borrow from the graph.
- ///
- /// [1]: struct.Neighbors.html#method.detach
- pub fn neighbors_directed(&self, a: NodeIndex<Ix>, dir: Direction) -> Neighbors<E, Ix> {
- let mut iter = self.neighbors_undirected(a);
- if self.is_directed() {
- let k = dir.index();
- iter.next[1 - k] = EdgeIndex::end();
- iter.skip_start = NodeIndex::end();
- }
- iter
- }
-
- /// Return an iterator of all neighbors that have an edge between them and
- /// `a`, in either direction.
- /// If the graph's edges are undirected, this is equivalent to *.neighbors(a)*.
- ///
- /// - `Directed` and `Undirected`: All edges from or to `a`.
- ///
- /// Produces an empty iterator if the node doesn't exist.<br>
- /// Iterator element type is `NodeIndex<Ix>`.
- ///
- /// Use [`.neighbors_undirected(a).detach()`][1] to get a neighbor walker that does
- /// not borrow from the graph.
- ///
- /// [1]: struct.Neighbors.html#method.detach
- ///
- pub fn neighbors_undirected(&self, a: NodeIndex<Ix>) -> Neighbors<E, Ix> {
- Neighbors {
- skip_start: a,
- edges: &self.edges,
- next: match self.nodes.get(a.index()) {
- None => [EdgeIndex::end(), EdgeIndex::end()],
- Some(n) => n.next,
- },
- }
- }
-
- /// Return an iterator of all edges of `a`.
- ///
- /// - `Directed`: Outgoing edges from `a`.
- /// - `Undirected`: All edges connected to `a`.
- ///
- /// Produces an empty iterator if the node doesn't exist.<br>
- /// Iterator element type is `EdgeReference<E, Ix>`.
- pub fn edges(&self, a: NodeIndex<Ix>) -> Edges<E, Ty, Ix> {
- self.edges_directed(a, Outgoing)
- }
-
- /// Return an iterator of all edges of `a`, in the specified direction.
- ///
- /// - `Directed`, `Outgoing`: All edges from `a`.
- /// - `Directed`, `Incoming`: All edges to `a`.
- /// - `Undirected`, `Outgoing`: All edges connected to `a`, with `a` being the source of each
- /// edge.
- /// - `Undirected`, `Incoming`: All edges connected to `a`, with `a` being the target of each
- /// edge.
- ///
- /// Produces an empty iterator if the node `a` doesn't exist.<br>
- /// Iterator element type is `EdgeReference<E, Ix>`.
- pub fn edges_directed(&self, a: NodeIndex<Ix>, dir: Direction) -> Edges<E, Ty, Ix> {
- Edges {
- skip_start: a,
- edges: &self.edges,
- direction: dir,
- next: match self.nodes.get(a.index()) {
- None => [EdgeIndex::end(), EdgeIndex::end()],
- Some(n) => n.next,
- },
- ty: PhantomData,
- }
- }
-
- /// Return an iterator over all the edges connecting `a` and `b`.
- ///
- /// - `Directed`: Outgoing edges from `a`.
- /// - `Undirected`: All edges connected to `a`.
- ///
- /// Iterator element type is `EdgeReference<E, Ix>`.
- pub fn edges_connecting(
- &self,
- a: NodeIndex<Ix>,
- b: NodeIndex<Ix>,
- ) -> EdgesConnecting<E, Ty, Ix> {
- EdgesConnecting {
- target_node: b,
- edges: self.edges_directed(a, Direction::Outgoing),
- ty: PhantomData,
- }
- }
-
- /// Lookup if there is an edge from `a` to `b`.
- ///
- /// Computes in **O(e')** time, where **e'** is the number of edges
- /// connected to `a` (and `b`, if the graph edges are undirected).
- pub fn contains_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool {
- self.find_edge(a, b).is_some()
- }
-
- /// Lookup an edge from `a` to `b`.
- ///
- /// Computes in **O(e')** time, where **e'** is the number of edges
- /// connected to `a` (and `b`, if the graph edges are undirected).
- pub fn find_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> Option<EdgeIndex<Ix>> {
- if !self.is_directed() {
- self.find_edge_undirected(a, b).map(|(ix, _)| ix)
- } else {
- match self.nodes.get(a.index()) {
- None => None,
- Some(node) => self.find_edge_directed_from_node(node, b),
- }
- }
- }
-
- fn find_edge_directed_from_node(
- &self,
- node: &Node<N, Ix>,
- b: NodeIndex<Ix>,
- ) -> Option<EdgeIndex<Ix>> {
- let mut edix = node.next[0];
- while let Some(edge) = self.edges.get(edix.index()) {
- if edge.node[1] == b {
- return Some(edix);
- }
- edix = edge.next[0];
- }
- None
- }
-
- /// Lookup an edge between `a` and `b`, in either direction.
- ///
- /// If the graph is undirected, then this is equivalent to `.find_edge()`.
- ///
- /// Return the edge index and its directionality, with `Outgoing` meaning
- /// from `a` to `b` and `Incoming` the reverse,
- /// or `None` if the edge does not exist.
- pub fn find_edge_undirected(
- &self,
- a: NodeIndex<Ix>,
- b: NodeIndex<Ix>,
- ) -> Option<(EdgeIndex<Ix>, Direction)> {
- match self.nodes.get(a.index()) {
- None => None,
- Some(node) => self.find_edge_undirected_from_node(node, b),
- }
- }
-
- fn find_edge_undirected_from_node(
- &self,
- node: &Node<N, Ix>,
- b: NodeIndex<Ix>,
- ) -> Option<(EdgeIndex<Ix>, Direction)> {
- for &d in &DIRECTIONS {
- let k = d.index();
- let mut edix = node.next[k];
- while let Some(edge) = self.edges.get(edix.index()) {
- if edge.node[1 - k] == b {
- return Some((edix, d));
- }
- edix = edge.next[k];
- }
- }
- None
- }
-
- /// Return an iterator over either the nodes without edges to them
- /// (`Incoming`) or from them (`Outgoing`).
- ///
- /// An *internal* node has both incoming and outgoing edges.
- /// The nodes in `.externals(Incoming)` are the source nodes and
- /// `.externals(Outgoing)` are the sinks of the graph.
- ///
- /// For a graph with undirected edges, both the sinks and the sources are
- /// just the nodes without edges.
- ///
- /// The whole iteration computes in **O(|V|)** time.
- pub fn externals(&self, dir: Direction) -> Externals<N, Ty, Ix> {
- Externals {
- iter: self.nodes.iter().enumerate(),
- dir,
- ty: PhantomData,
- }
- }
-
- /// Return an iterator over the node indices of the graph.
- ///
- /// For example, in a rare case where a graph algorithm were not applicable,
- /// the following code will iterate through all nodes to find a
- /// specific index:
- ///
- /// ```
- /// # use petgraph::Graph;
- /// # let mut g = Graph::<&str, i32>::new();
- /// # g.add_node("book");
- /// let index = g.node_indices().find(|i| g[*i] == "book").unwrap();
- /// ```
- pub fn node_indices(&self) -> NodeIndices<Ix> {
- NodeIndices {
- r: 0..self.node_count(),
- ty: PhantomData,
- }
- }
-
- /// Return an iterator yielding mutable access to all node weights.
- ///
- /// The order in which weights are yielded matches the order of their
- /// node indices.
- pub fn node_weights_mut(&mut self) -> NodeWeightsMut<N, Ix> {
- NodeWeightsMut {
- nodes: self.nodes.iter_mut(),
- }
- }
-
- /// Return an iterator yielding immutable access to all node weights.
- ///
- /// The order in which weights are yielded matches the order of their
- /// node indices.
- pub fn node_weights(&self) -> NodeWeights<N, Ix> {
- NodeWeights {
- nodes: self.nodes.iter(),
- }
- }
-
- /// Return an iterator over the edge indices of the graph
- pub fn edge_indices(&self) -> EdgeIndices<Ix> {
- EdgeIndices {
- r: 0..self.edge_count(),
- ty: PhantomData,
- }
- }
-
- /// Create an iterator over all edges, in indexed order.
- ///
- /// Iterator element type is `EdgeReference<E, Ix>`.
- pub fn edge_references(&self) -> EdgeReferences<E, Ix> {
- EdgeReferences {
- iter: self.edges.iter().enumerate(),
- }
- }
-
- /// Return an iterator yielding immutable access to all edge weights.
- ///
- /// The order in which weights are yielded matches the order of their
- /// edge indices.
- pub fn edge_weights(&self) -> EdgeWeights<E, Ix> {
- EdgeWeights {
- edges: self.edges.iter(),
- }
- }
- /// Return an iterator yielding mutable access to all edge weights.
- ///
- /// The order in which weights are yielded matches the order of their
- /// edge indices.
- pub fn edge_weights_mut(&mut self) -> EdgeWeightsMut<E, Ix> {
- EdgeWeightsMut {
- edges: self.edges.iter_mut(),
- }
- }
-
- // Remaining methods are of the more internal flavour, read-only access to
- // the data structure's internals.
-
- /// Access the internal node array.
- pub fn raw_nodes(&self) -> &[Node<N, Ix>] {
- &self.nodes
- }
-
- /// Access the internal edge array.
- pub fn raw_edges(&self) -> &[Edge<E, Ix>] {
- &self.edges
- }
-
- #[allow(clippy::type_complexity)]
- /// Convert the graph into a vector of Nodes and a vector of Edges
- pub fn into_nodes_edges(self) -> (Vec<Node<N, Ix>>, Vec<Edge<E, Ix>>) {
- (self.nodes, self.edges)
- }
-
- /// Accessor for data structure internals: the first edge in the given direction.
- pub fn first_edge(&self, a: NodeIndex<Ix>, dir: Direction) -> Option<EdgeIndex<Ix>> {
- match self.nodes.get(a.index()) {
- None => None,
- Some(node) => {
- let edix = node.next[dir.index()];
- if edix == EdgeIndex::end() {
- None
- } else {
- Some(edix)
- }
- }
- }
- }
-
- /// Accessor for data structure internals: the next edge for the given direction.
- pub fn next_edge(&self, e: EdgeIndex<Ix>, dir: Direction) -> Option<EdgeIndex<Ix>> {
- match self.edges.get(e.index()) {
- None => None,
- Some(node) => {
- let edix = node.next[dir.index()];
- if edix == EdgeIndex::end() {
- None
- } else {
- Some(edix)
- }
- }
- }
- }
-
- /// Index the `Graph` by two indices, any combination of
- /// node or edge indices is fine.
- ///
- /// **Panics** if the indices are equal or if they are out of bounds.
- ///
- /// ```
- /// use petgraph::{Graph, Incoming};
- /// use petgraph::visit::Dfs;
- ///
- /// let mut gr = Graph::new();
- /// let a = gr.add_node(0.);
- /// let b = gr.add_node(0.);
- /// let c = gr.add_node(0.);
- /// gr.add_edge(a, b, 3.);
- /// gr.add_edge(b, c, 2.);
- /// gr.add_edge(c, b, 1.);
- ///
- /// // walk the graph and sum incoming edges into the node weight
- /// let mut dfs = Dfs::new(&gr, a);
- /// while let Some(node) = dfs.next(&gr) {
- /// // use a walker -- a detached neighbors iterator
- /// let mut edges = gr.neighbors_directed(node, Incoming).detach();
- /// while let Some(edge) = edges.next_edge(&gr) {
- /// let (nw, ew) = gr.index_twice_mut(node, edge);
- /// *nw += *ew;
- /// }
- /// }
- ///
- /// // check the result
- /// assert_eq!(gr[a], 0.);
- /// assert_eq!(gr[b], 4.);
- /// assert_eq!(gr[c], 2.);
- /// ```
- pub fn index_twice_mut<T, U>(
- &mut self,
- i: T,
- j: U,
- ) -> (
- &mut <Self as Index<T>>::Output,
- &mut <Self as Index<U>>::Output,
- )
- where
- Self: IndexMut<T> + IndexMut<U>,
- T: GraphIndex,
- U: GraphIndex,
- {
- assert!(T::is_node_index() != U::is_node_index() || i.index() != j.index());
-
- // Allow two mutable indexes here -- they are nonoverlapping
- unsafe {
- let self_mut = self as *mut _;
- (
- <Self as IndexMut<T>>::index_mut(&mut *self_mut, i),
- <Self as IndexMut<U>>::index_mut(&mut *self_mut, j),
- )
- }
- }
-
- /// Reverse the direction of all edges
- pub fn reverse(&mut self) {
- // swap edge endpoints,
- // edge incoming / outgoing lists,
- // node incoming / outgoing lists
- for edge in &mut self.edges {
- edge.node.swap(0, 1);
- edge.next.swap(0, 1);
- }
- for node in &mut self.nodes {
- node.next.swap(0, 1);
- }
- }
-
- /// Remove all nodes and edges
- pub fn clear(&mut self) {
- self.nodes.clear();
- self.edges.clear();
- }
-
- /// Remove all edges
- pub fn clear_edges(&mut self) {
- self.edges.clear();
- for node in &mut self.nodes {
- node.next = [EdgeIndex::end(), EdgeIndex::end()];
- }
- }
-
- /// Return the current node and edge capacity of the graph.
- pub fn capacity(&self) -> (usize, usize) {
- (self.nodes.capacity(), self.edges.capacity())
- }
-
- /// Reserves capacity for at least `additional` more nodes to be inserted in
- /// the graph. Graph may reserve more space to avoid frequent reallocations.
- ///
- /// **Panics** if the new capacity overflows `usize`.
- pub fn reserve_nodes(&mut self, additional: usize) {
- self.nodes.reserve(additional);
- }
-
- /// Reserves capacity for at least `additional` more edges to be inserted in
- /// the graph. Graph may reserve more space to avoid frequent reallocations.
- ///
- /// **Panics** if the new capacity overflows `usize`.
- pub fn reserve_edges(&mut self, additional: usize) {
- self.edges.reserve(additional);
- }
-
- /// Reserves the minimum capacity for exactly `additional` more nodes to be
- /// inserted in the graph. Does nothing if the capacity is already
- /// sufficient.
- ///
- /// Prefer `reserve_nodes` if future insertions are expected.
- ///
- /// **Panics** if the new capacity overflows `usize`.
- pub fn reserve_exact_nodes(&mut self, additional: usize) {
- self.nodes.reserve_exact(additional);
- }
-
- /// Reserves the minimum capacity for exactly `additional` more edges to be
- /// inserted in the graph.
- /// Does nothing if the capacity is already sufficient.
- ///
- /// Prefer `reserve_edges` if future insertions are expected.
- ///
- /// **Panics** if the new capacity overflows `usize`.
- pub fn reserve_exact_edges(&mut self, additional: usize) {
- self.edges.reserve_exact(additional);
- }
-
- /// Shrinks the capacity of the underlying nodes collection as much as possible.
- pub fn shrink_to_fit_nodes(&mut self) {
- self.nodes.shrink_to_fit();
- }
-
- /// Shrinks the capacity of the underlying edges collection as much as possible.
- pub fn shrink_to_fit_edges(&mut self) {
- self.edges.shrink_to_fit();
- }
-
- /// Shrinks the capacity of the graph as much as possible.
- pub fn shrink_to_fit(&mut self) {
- self.nodes.shrink_to_fit();
- self.edges.shrink_to_fit();
- }
-
- /// Keep all nodes that return `true` from the `visit` closure,
- /// remove the others.
- ///
- /// `visit` is provided a proxy reference to the graph, so that
- /// the graph can be walked and associated data modified.
- ///
- /// The order nodes are visited is not specified.
- pub fn retain_nodes<F>(&mut self, mut visit: F)
- where
- F: FnMut(Frozen<Self>, NodeIndex<Ix>) -> bool,
- {
- for index in self.node_indices().rev() {
- if !visit(Frozen(self), index) {
- let ret = self.remove_node(index);
- debug_assert!(ret.is_some());
- let _ = ret;
- }
- }
- }
-
- /// Keep all edges that return `true` from the `visit` closure,
- /// remove the others.
- ///
- /// `visit` is provided a proxy reference to the graph, so that
- /// the graph can be walked and associated data modified.
- ///
- /// The order edges are visited is not specified.
- pub fn retain_edges<F>(&mut self, mut visit: F)
- where
- F: FnMut(Frozen<Self>, EdgeIndex<Ix>) -> bool,
- {
- for index in self.edge_indices().rev() {
- if !visit(Frozen(self), index) {
- let ret = self.remove_edge(index);
- debug_assert!(ret.is_some());
- let _ = ret;
- }
- }
- }
-
- /// Create a new `Graph` from an iterable of edges.
- ///
- /// Node weights `N` are set to default values.
- /// Edge weights `E` may either be specified in the list,
- /// or they are filled with default values.
- ///
- /// Nodes are inserted automatically to match the edges.
- ///
- /// ```
- /// use petgraph::Graph;
- ///
- /// let gr = Graph::<(), i32>::from_edges(&[
- /// (0, 1), (0, 2), (0, 3),
- /// (1, 2), (1, 3),
- /// (2, 3),
- /// ]);
- /// ```
- pub fn from_edges<I>(iterable: I) -> Self
- where
- I: IntoIterator,
- I::Item: IntoWeightedEdge<E>,
- <I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>,
- N: Default,
- {
- let mut g = Self::with_capacity(0, 0);
- g.extend_with_edges(iterable);
- g
- }
-
- /// Extend the graph from an iterable of edges.
- ///
- /// Node weights `N` are set to default values.
- /// Edge weights `E` may either be specified in the list,
- /// or they are filled with default values.
- ///
- /// Nodes are inserted automatically to match the edges.
- pub fn extend_with_edges<I>(&mut self, iterable: I)
- where
- I: IntoIterator,
- I::Item: IntoWeightedEdge<E>,
- <I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>,
- N: Default,
- {
- let iter = iterable.into_iter();
- let (low, _) = iter.size_hint();
- self.edges.reserve(low);
-
- for elt in iter {
- let (source, target, weight) = elt.into_weighted_edge();
- let (source, target) = (source.into(), target.into());
- let nx = cmp::max(source, target);
- while nx.index() >= self.node_count() {
- self.add_node(N::default());
- }
- self.add_edge(source, target, weight);
- }
- }
-
- /// Create a new `Graph` by mapping node and
- /// edge weights to new values.
- ///
- /// The resulting graph has the same structure and the same
- /// graph indices as `self`.
- pub fn map<'a, F, G, N2, E2>(
- &'a self,
- mut node_map: F,
- mut edge_map: G,
- ) -> Graph<N2, E2, Ty, Ix>
- where
- F: FnMut(NodeIndex<Ix>, &'a N) -> N2,
- G: FnMut(EdgeIndex<Ix>, &'a E) -> E2,
- {
- let mut g = Graph::with_capacity(self.node_count(), self.edge_count());
- g.nodes.extend(enumerate(&self.nodes).map(|(i, node)| Node {
- weight: node_map(NodeIndex::new(i), &node.weight),
- next: node.next,
- }));
- g.edges.extend(enumerate(&self.edges).map(|(i, edge)| Edge {
- weight: edge_map(EdgeIndex::new(i), &edge.weight),
- next: edge.next,
- node: edge.node,
- }));
- g
- }
-
- /// Create a new `Graph` by mapping nodes and edges.
- /// A node or edge may be mapped to `None` to exclude it from
- /// the resulting graph.
- ///
- /// Nodes are mapped first with the `node_map` closure, then
- /// `edge_map` is called for the edges that have not had any endpoint
- /// removed.
- ///
- /// The resulting graph has the structure of a subgraph of the original graph.
- /// If no nodes are removed, the resulting graph has compatible node
- /// indices; if neither nodes nor edges are removed, the result has
- /// the same graph indices as `self`.
- pub fn filter_map<'a, F, G, N2, E2>(
- &'a self,
- mut node_map: F,
- mut edge_map: G,
- ) -> Graph<N2, E2, Ty, Ix>
- where
- F: FnMut(NodeIndex<Ix>, &'a N) -> Option<N2>,
- G: FnMut(EdgeIndex<Ix>, &'a E) -> Option<E2>,
- {
- let mut g = Graph::with_capacity(0, 0);
- // mapping from old node index to new node index, end represents removed.
- let mut node_index_map = vec![NodeIndex::end(); self.node_count()];
- for (i, node) in enumerate(&self.nodes) {
- if let Some(nw) = node_map(NodeIndex::new(i), &node.weight) {
- node_index_map[i] = g.add_node(nw);
- }
- }
- for (i, edge) in enumerate(&self.edges) {
- // skip edge if any endpoint was removed
- let source = node_index_map[edge.source().index()];
- let target = node_index_map[edge.target().index()];
- if source != NodeIndex::end() && target != NodeIndex::end() {
- if let Some(ew) = edge_map(EdgeIndex::new(i), &edge.weight) {
- g.add_edge(source, target, ew);
- }
- }
- }
- g
- }
-
- /// Convert the graph into either undirected or directed. No edge adjustments
- /// are done, so you may want to go over the result to remove or add edges.
- ///
- /// Computes in **O(1)** time.
- pub fn into_edge_type<NewTy>(self) -> Graph<N, E, NewTy, Ix>
- where
- NewTy: EdgeType,
- {
- Graph {
- nodes: self.nodes,
- edges: self.edges,
- ty: PhantomData,
- }
- }
-
- //
- // internal methods
- //
- #[cfg(feature = "serde-1")]
- /// Fix up node and edge links after deserialization
- fn link_edges(&mut self) -> Result<(), NodeIndex<Ix>> {
- for (edge_index, edge) in enumerate(&mut self.edges) {
- let a = edge.source();
- let b = edge.target();
- let edge_idx = EdgeIndex::new(edge_index);
- match index_twice(&mut self.nodes, a.index(), b.index()) {
- Pair::None => return Err(if a > b { a } else { b }),
- Pair::One(an) => {
- edge.next = an.next;
- an.next[0] = edge_idx;
- an.next[1] = edge_idx;
- }
- Pair::Both(an, bn) => {
- // a and b are different indices
- edge.next = [an.next[0], bn.next[1]];
- an.next[0] = edge_idx;
- bn.next[1] = edge_idx;
- }
- }
- }
- Ok(())
- }
-}
-
-/// An iterator over either the nodes without edges to them or from them.
-#[derive(Debug, Clone)]
-pub struct Externals<'a, N: 'a, Ty, Ix: IndexType = DefaultIx> {
- iter: iter::Enumerate<slice::Iter<'a, Node<N, Ix>>>,
- dir: Direction,
- ty: PhantomData<Ty>,
-}
-
-impl<'a, N: 'a, Ty, Ix> Iterator for Externals<'a, N, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- type Item = NodeIndex<Ix>;
- fn next(&mut self) -> Option<NodeIndex<Ix>> {
- let k = self.dir.index();
- loop {
- match self.iter.next() {
- None => return None,
- Some((index, node)) => {
- if node.next[k] == EdgeIndex::end()
- && (Ty::is_directed() || node.next[1 - k] == EdgeIndex::end())
- {
- return Some(NodeIndex::new(index));
- } else {
- continue;
- }
- }
- }
- }
- }
- fn size_hint(&self) -> (usize, Option<usize>) {
- let (_, upper) = self.iter.size_hint();
- (0, upper)
- }
-}
-
-/// Iterator over the neighbors of a node.
-///
-/// Iterator element type is `NodeIndex<Ix>`.
-///
-/// Created with [`.neighbors()`][1], [`.neighbors_directed()`][2] or
-/// [`.neighbors_undirected()`][3].
-///
-/// [1]: struct.Graph.html#method.neighbors
-/// [2]: struct.Graph.html#method.neighbors_directed
-/// [3]: struct.Graph.html#method.neighbors_undirected
-#[derive(Debug)]
-pub struct Neighbors<'a, E: 'a, Ix: 'a = DefaultIx> {
- /// starting node to skip over
- skip_start: NodeIndex<Ix>,
- edges: &'a [Edge<E, Ix>],
- next: [EdgeIndex<Ix>; 2],
-}
-
-impl<E, Ix> Iterator for Neighbors<'_, E, Ix>
-where
- Ix: IndexType,
-{
- type Item = NodeIndex<Ix>;
-
- fn next(&mut self) -> Option<NodeIndex<Ix>> {
- // First any outgoing edges
- match self.edges.get(self.next[0].index()) {
- None => {}
- Some(edge) => {
- self.next[0] = edge.next[0];
- return Some(edge.node[1]);
- }
- }
- // Then incoming edges
- // For an "undirected" iterator (traverse both incoming
- // and outgoing edge lists), make sure we don't double
- // count selfloops by skipping them in the incoming list.
- while let Some(edge) = self.edges.get(self.next[1].index()) {
- self.next[1] = edge.next[1];
- if edge.node[0] != self.skip_start {
- return Some(edge.node[0]);
- }
- }
- None
- }
-}
-
-impl<E, Ix> Clone for Neighbors<'_, E, Ix>
-where
- Ix: IndexType,
-{
- clone_fields!(Neighbors, skip_start, edges, next,);
-}
-
-impl<E, Ix> Neighbors<'_, E, Ix>
-where
- Ix: IndexType,
-{
- /// Return a “walker” object that can be used to step through the
- /// neighbors and edges from the origin node.
- ///
- /// Note: The walker does not borrow from the graph, this is to allow mixing
- /// edge walking with mutating the graph's weights.
- pub fn detach(&self) -> WalkNeighbors<Ix> {
- WalkNeighbors {
- skip_start: self.skip_start,
- next: self.next,
- }
- }
-}
-
-struct EdgesWalkerMut<'a, E: 'a, Ix: IndexType = DefaultIx> {
- edges: &'a mut [Edge<E, Ix>],
- next: EdgeIndex<Ix>,
- dir: Direction,
-}
-
-fn edges_walker_mut<E, Ix>(
- edges: &mut [Edge<E, Ix>],
- next: EdgeIndex<Ix>,
- dir: Direction,
-) -> EdgesWalkerMut<E, Ix>
-where
- Ix: IndexType,
-{
- EdgesWalkerMut { edges, next, dir }
-}
-
-impl<E, Ix> EdgesWalkerMut<'_, E, Ix>
-where
- Ix: IndexType,
-{
- fn next_edge(&mut self) -> Option<&mut Edge<E, Ix>> {
- self.next().map(|t| t.1)
- }
-
- fn next(&mut self) -> Option<(EdgeIndex<Ix>, &mut Edge<E, Ix>)> {
- let this_index = self.next;
- let k = self.dir.index();
- match self.edges.get_mut(self.next.index()) {
- None => None,
- Some(edge) => {
- self.next = edge.next[k];
- Some((this_index, edge))
- }
- }
- }
-}
-
-impl<'a, N, E, Ty, Ix> visit::IntoEdges for &'a Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- type Edges = Edges<'a, E, Ty, Ix>;
- fn edges(self, a: Self::NodeId) -> Self::Edges {
- self.edges(a)
- }
-}
-
-impl<'a, N, E, Ty, Ix> visit::IntoEdgesDirected for &'a Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- type EdgesDirected = Edges<'a, E, Ty, Ix>;
- fn edges_directed(self, a: Self::NodeId, dir: Direction) -> Self::EdgesDirected {
- self.edges_directed(a, dir)
- }
-}
-
-/// Iterator over the edges of from or to a node
-#[derive(Debug)]
-pub struct Edges<'a, E: 'a, Ty, Ix: 'a = DefaultIx>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- /// starting node to skip over
- skip_start: NodeIndex<Ix>,
- edges: &'a [Edge<E, Ix>],
-
- /// Next edge to visit.
- next: [EdgeIndex<Ix>; 2],
-
- /// For directed graphs: the direction to iterate in
- /// For undirected graphs: the direction of edges
- direction: Direction,
- ty: PhantomData<Ty>,
-}
-
-impl<'a, E, Ty, Ix> Iterator for Edges<'a, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- type Item = EdgeReference<'a, E, Ix>;
-
- fn next(&mut self) -> Option<Self::Item> {
- // type direction | iterate over reverse
- // |
- // Directed Outgoing | outgoing no
- // Directed Incoming | incoming no
- // Undirected Outgoing | both incoming
- // Undirected Incoming | both outgoing
-
- // For iterate_over, "both" is represented as None.
- // For reverse, "no" is represented as None.
- let (iterate_over, reverse) = if Ty::is_directed() {
- (Some(self.direction), None)
- } else {
- (None, Some(self.direction.opposite()))
- };
-
- if iterate_over.unwrap_or(Outgoing) == Outgoing {
- let i = self.next[0].index();
- if let Some(Edge { node, weight, next }) = self.edges.get(i) {
- self.next[0] = next[0];
- return Some(EdgeReference {
- index: edge_index(i),
- node: if reverse == Some(Outgoing) {
- swap_pair(*node)
- } else {
- *node
- },
- weight,
- });
- }
- }
-
- if iterate_over.unwrap_or(Incoming) == Incoming {
- while let Some(Edge { node, weight, next }) = self.edges.get(self.next[1].index()) {
- let edge_index = self.next[1];
- self.next[1] = next[1];
- // In any of the "both" situations, self-loops would be iterated over twice.
- // Skip them here.
- if iterate_over.is_none() && node[0] == self.skip_start {
- continue;
- }
-
- return Some(EdgeReference {
- index: edge_index,
- node: if reverse == Some(Incoming) {
- swap_pair(*node)
- } else {
- *node
- },
- weight,
- });
- }
- }
-
- None
- }
-}
-
-/// Iterator over the multiple directed edges connecting a source node to a target node
-#[derive(Debug, Clone)]
-pub struct EdgesConnecting<'a, E: 'a, Ty, Ix: 'a = DefaultIx>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- target_node: NodeIndex<Ix>,
- edges: Edges<'a, E, Ty, Ix>,
- ty: PhantomData<Ty>,
-}
-
-impl<'a, E, Ty, Ix> Iterator for EdgesConnecting<'a, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- type Item = EdgeReference<'a, E, Ix>;
-
- fn next(&mut self) -> Option<EdgeReference<'a, E, Ix>> {
- let target_node = self.target_node;
- self.edges
- .by_ref()
- .find(|&edge| edge.node[1] == target_node)
- }
- fn size_hint(&self) -> (usize, Option<usize>) {
- let (_, upper) = self.edges.size_hint();
- (0, upper)
- }
-}
-
-fn swap_pair<T>(mut x: [T; 2]) -> [T; 2] {
- x.swap(0, 1);
- x
-}
-
-impl<E, Ty, Ix> Clone for Edges<'_, E, Ty, Ix>
-where
- Ix: IndexType,
- Ty: EdgeType,
-{
- fn clone(&self) -> Self {
- Edges {
- skip_start: self.skip_start,
- edges: self.edges,
- next: self.next,
- direction: self.direction,
- ty: self.ty,
- }
- }
-}
-
-/// Iterator yielding immutable access to all node weights.
-pub struct NodeWeights<'a, N: 'a, Ix: IndexType = DefaultIx> {
- nodes: ::std::slice::Iter<'a, Node<N, Ix>>,
-}
-impl<'a, N, Ix> Iterator for NodeWeights<'a, N, Ix>
-where
- Ix: IndexType,
-{
- type Item = &'a N;
-
- fn next(&mut self) -> Option<&'a N> {
- self.nodes.next().map(|node| &node.weight)
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- self.nodes.size_hint()
- }
-}
-/// Iterator yielding mutable access to all node weights.
-#[derive(Debug)]
-pub struct NodeWeightsMut<'a, N: 'a, Ix: IndexType = DefaultIx> {
- nodes: ::std::slice::IterMut<'a, Node<N, Ix>>, // TODO: change type to something that implements Clone?
-}
-
-impl<'a, N, Ix> Iterator for NodeWeightsMut<'a, N, Ix>
-where
- Ix: IndexType,
-{
- type Item = &'a mut N;
-
- fn next(&mut self) -> Option<&'a mut N> {
- self.nodes.next().map(|node| &mut node.weight)
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- self.nodes.size_hint()
- }
-}
-
-/// Iterator yielding immutable access to all edge weights.
-pub struct EdgeWeights<'a, E: 'a, Ix: IndexType = DefaultIx> {
- edges: ::std::slice::Iter<'a, Edge<E, Ix>>,
-}
-
-impl<'a, E, Ix> Iterator for EdgeWeights<'a, E, Ix>
-where
- Ix: IndexType,
-{
- type Item = &'a E;
-
- fn next(&mut self) -> Option<&'a E> {
- self.edges.next().map(|edge| &edge.weight)
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- self.edges.size_hint()
- }
-}
-
-/// Iterator yielding mutable access to all edge weights.
-#[derive(Debug)]
-pub struct EdgeWeightsMut<'a, E: 'a, Ix: IndexType = DefaultIx> {
- edges: ::std::slice::IterMut<'a, Edge<E, Ix>>, // TODO: change type to something that implements Clone?
-}
-
-impl<'a, E, Ix> Iterator for EdgeWeightsMut<'a, E, Ix>
-where
- Ix: IndexType,
-{
- type Item = &'a mut E;
-
- fn next(&mut self) -> Option<&'a mut E> {
- self.edges.next().map(|edge| &mut edge.weight)
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- self.edges.size_hint()
- }
-}
-
-/// Index the `Graph` by `NodeIndex` to access node weights.
-///
-/// **Panics** if the node doesn't exist.
-impl<N, E, Ty, Ix> Index<NodeIndex<Ix>> for Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- type Output = N;
- fn index(&self, index: NodeIndex<Ix>) -> &N {
- &self.nodes[index.index()].weight
- }
-}
-
-/// Index the `Graph` by `NodeIndex` to access node weights.
-///
-/// **Panics** if the node doesn't exist.
-impl<N, E, Ty, Ix> IndexMut<NodeIndex<Ix>> for Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- fn index_mut(&mut self, index: NodeIndex<Ix>) -> &mut N {
- &mut self.nodes[index.index()].weight
- }
-}
-
-/// Index the `Graph` by `EdgeIndex` to access edge weights.
-///
-/// **Panics** if the edge doesn't exist.
-impl<N, E, Ty, Ix> Index<EdgeIndex<Ix>> for Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- type Output = E;
- fn index(&self, index: EdgeIndex<Ix>) -> &E {
- &self.edges[index.index()].weight
- }
-}
-
-/// Index the `Graph` by `EdgeIndex` to access edge weights.
-///
-/// **Panics** if the edge doesn't exist.
-impl<N, E, Ty, Ix> IndexMut<EdgeIndex<Ix>> for Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- fn index_mut(&mut self, index: EdgeIndex<Ix>) -> &mut E {
- &mut self.edges[index.index()].weight
- }
-}
-
-/// Create a new empty `Graph`.
-impl<N, E, Ty, Ix> Default for Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- fn default() -> Self {
- Self::with_capacity(0, 0)
- }
-}
-
-/// A `GraphIndex` is a node or edge index.
-pub trait GraphIndex: Copy {
- #[doc(hidden)]
- fn index(&self) -> usize;
- #[doc(hidden)]
- fn is_node_index() -> bool;
-}
-
-impl<Ix: IndexType> GraphIndex for NodeIndex<Ix> {
- #[inline]
- #[doc(hidden)]
- fn index(&self) -> usize {
- NodeIndex::index(*self)
- }
- #[inline]
- #[doc(hidden)]
- fn is_node_index() -> bool {
- true
- }
-}
-
-impl<Ix: IndexType> GraphIndex for EdgeIndex<Ix> {
- #[inline]
- #[doc(hidden)]
- fn index(&self) -> usize {
- EdgeIndex::index(*self)
- }
- #[inline]
- #[doc(hidden)]
- fn is_node_index() -> bool {
- false
- }
-}
-
-/// A “walker” object that can be used to step through the edge list of a node.
-///
-/// Created with [`.detach()`](struct.Neighbors.html#method.detach).
-///
-/// The walker does not borrow from the graph, so it lets you step through
-/// neighbors or incident edges while also mutating graph weights, as
-/// in the following example:
-///
-/// ```
-/// use petgraph::{Graph, Incoming};
-/// use petgraph::visit::Dfs;
-///
-/// let mut gr = Graph::new();
-/// let a = gr.add_node(0.);
-/// let b = gr.add_node(0.);
-/// let c = gr.add_node(0.);
-/// gr.add_edge(a, b, 3.);
-/// gr.add_edge(b, c, 2.);
-/// gr.add_edge(c, b, 1.);
-///
-/// // step through the graph and sum incoming edges into the node weight
-/// let mut dfs = Dfs::new(&gr, a);
-/// while let Some(node) = dfs.next(&gr) {
-/// // use a detached neighbors walker
-/// let mut edges = gr.neighbors_directed(node, Incoming).detach();
-/// while let Some(edge) = edges.next_edge(&gr) {
-/// gr[node] += gr[edge];
-/// }
-/// }
-///
-/// // check the result
-/// assert_eq!(gr[a], 0.);
-/// assert_eq!(gr[b], 4.);
-/// assert_eq!(gr[c], 2.);
-/// ```
-pub struct WalkNeighbors<Ix> {
- skip_start: NodeIndex<Ix>,
- next: [EdgeIndex<Ix>; 2],
-}
-
-impl<Ix> Clone for WalkNeighbors<Ix>
-where
- Ix: IndexType,
-{
- fn clone(&self) -> Self {
- WalkNeighbors {
- skip_start: self.skip_start,
- next: self.next,
- }
- }
-}
-
-impl<Ix: IndexType> WalkNeighbors<Ix> {
- /// Step to the next edge and its endpoint node in the walk for graph `g`.
- ///
- /// The next node indices are always the others than the starting point
- /// where the `WalkNeighbors` value was created.
- /// For an `Outgoing` walk, the target nodes,
- /// for an `Incoming` walk, the source nodes of the edge.
- pub fn next<N, E, Ty: EdgeType>(
- &mut self,
- g: &Graph<N, E, Ty, Ix>,
- ) -> Option<(EdgeIndex<Ix>, NodeIndex<Ix>)> {
- // First any outgoing edges
- match g.edges.get(self.next[0].index()) {
- None => {}
- Some(edge) => {
- let ed = self.next[0];
- self.next[0] = edge.next[0];
- return Some((ed, edge.node[1]));
- }
- }
- // Then incoming edges
- // For an "undirected" iterator (traverse both incoming
- // and outgoing edge lists), make sure we don't double
- // count selfloops by skipping them in the incoming list.
- while let Some(edge) = g.edges.get(self.next[1].index()) {
- let ed = self.next[1];
- self.next[1] = edge.next[1];
- if edge.node[0] != self.skip_start {
- return Some((ed, edge.node[0]));
- }
- }
- None
- }
-
- pub fn next_node<N, E, Ty: EdgeType>(
- &mut self,
- g: &Graph<N, E, Ty, Ix>,
- ) -> Option<NodeIndex<Ix>> {
- self.next(g).map(|t| t.1)
- }
-
- pub fn next_edge<N, E, Ty: EdgeType>(
- &mut self,
- g: &Graph<N, E, Ty, Ix>,
- ) -> Option<EdgeIndex<Ix>> {
- self.next(g).map(|t| t.0)
- }
-}
-
-/// Iterator over the node indices of a graph.
-#[derive(Clone, Debug)]
-pub struct NodeIndices<Ix = DefaultIx> {
- r: Range<usize>,
- ty: PhantomData<fn() -> Ix>,
-}
-
-impl<Ix: IndexType> Iterator for NodeIndices<Ix> {
- type Item = NodeIndex<Ix>;
-
- fn next(&mut self) -> Option<Self::Item> {
- self.r.next().map(node_index)
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- self.r.size_hint()
- }
-}
-
-impl<Ix: IndexType> DoubleEndedIterator for NodeIndices<Ix> {
- fn next_back(&mut self) -> Option<Self::Item> {
- self.r.next_back().map(node_index)
- }
-}
-
-impl<Ix: IndexType> ExactSizeIterator for NodeIndices<Ix> {}
-
-/// Iterator over the edge indices of a graph.
-#[derive(Clone, Debug)]
-pub struct EdgeIndices<Ix = DefaultIx> {
- r: Range<usize>,
- ty: PhantomData<fn() -> Ix>,
-}
-
-impl<Ix: IndexType> Iterator for EdgeIndices<Ix> {
- type Item = EdgeIndex<Ix>;
-
- fn next(&mut self) -> Option<Self::Item> {
- self.r.next().map(edge_index)
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- self.r.size_hint()
- }
-}
-
-impl<Ix: IndexType> DoubleEndedIterator for EdgeIndices<Ix> {
- fn next_back(&mut self) -> Option<Self::Item> {
- self.r.next_back().map(edge_index)
- }
-}
-
-impl<Ix: IndexType> ExactSizeIterator for EdgeIndices<Ix> {}
-
-/// Reference to a `Graph` edge.
-#[derive(Debug)]
-pub struct EdgeReference<'a, E: 'a, Ix = DefaultIx> {
- index: EdgeIndex<Ix>,
- node: [NodeIndex<Ix>; 2],
- weight: &'a E,
-}
-
-impl<E, Ix: IndexType> Clone for EdgeReference<'_, E, Ix> {
- fn clone(&self) -> Self {
- *self
- }
-}
-
-impl<E, Ix: IndexType> Copy for EdgeReference<'_, E, Ix> {}
-
-impl<E, Ix: IndexType> PartialEq for EdgeReference<'_, E, Ix>
-where
- E: PartialEq,
-{
- fn eq(&self, rhs: &Self) -> bool {
- self.index == rhs.index && self.weight == rhs.weight
- }
-}
-
-impl<N, E, Ty, Ix> visit::GraphBase for Graph<N, E, Ty, Ix>
-where
- Ix: IndexType,
-{
- type NodeId = NodeIndex<Ix>;
- type EdgeId = EdgeIndex<Ix>;
-}
-
-impl<N, E, Ty, Ix> visit::Visitable for Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- type Map = FixedBitSet;
- fn visit_map(&self) -> FixedBitSet {
- FixedBitSet::with_capacity(self.node_count())
- }
-
- fn reset_map(&self, map: &mut Self::Map) {
- map.clear();
- map.grow(self.node_count());
- }
-}
-
-impl<N, E, Ty, Ix> visit::GraphProp for Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- type EdgeType = Ty;
-}
-
-impl<'a, N, E: 'a, Ty, Ix> visit::IntoNodeIdentifiers for &'a Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- type NodeIdentifiers = NodeIndices<Ix>;
- fn node_identifiers(self) -> NodeIndices<Ix> {
- Graph::node_indices(self)
- }
-}
-
-impl<N, E, Ty, Ix> visit::NodeCount for Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- fn node_count(&self) -> usize {
- self.node_count()
- }
-}
-
-impl<N, E, Ty, Ix> visit::NodeIndexable for Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- #[inline]
- fn node_bound(&self) -> usize {
- self.node_count()
- }
- #[inline]
- fn to_index(&self, ix: NodeIndex<Ix>) -> usize {
- ix.index()
- }
- #[inline]
- fn from_index(&self, ix: usize) -> Self::NodeId {
- NodeIndex::new(ix)
- }
-}
-
-impl<N, E, Ty, Ix> visit::NodeCompactIndexable for Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
-}
-
-impl<'a, N, E: 'a, Ty, Ix> visit::IntoNeighbors for &'a Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- type Neighbors = Neighbors<'a, E, Ix>;
- fn neighbors(self, n: NodeIndex<Ix>) -> Neighbors<'a, E, Ix> {
- Graph::neighbors(self, n)
- }
-}
-
-impl<'a, N, E: 'a, Ty, Ix> visit::IntoNeighborsDirected for &'a Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- type NeighborsDirected = Neighbors<'a, E, Ix>;
- fn neighbors_directed(self, n: NodeIndex<Ix>, d: Direction) -> Neighbors<'a, E, Ix> {
- Graph::neighbors_directed(self, n, d)
- }
-}
-
-impl<'a, N: 'a, E: 'a, Ty, Ix> visit::IntoEdgeReferences for &'a Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- type EdgeRef = EdgeReference<'a, E, Ix>;
- type EdgeReferences = EdgeReferences<'a, E, Ix>;
- fn edge_references(self) -> Self::EdgeReferences {
- (*self).edge_references()
- }
-}
-
-impl<N, E, Ty, Ix> visit::EdgeCount for Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- #[inline]
- fn edge_count(&self) -> usize {
- self.edge_count()
- }
-}
-
-impl<'a, N, E, Ty, Ix> visit::IntoNodeReferences for &'a Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- type NodeRef = (NodeIndex<Ix>, &'a N);
- type NodeReferences = NodeReferences<'a, N, Ix>;
- fn node_references(self) -> Self::NodeReferences {
- NodeReferences {
- iter: self.nodes.iter().enumerate(),
- }
- }
-}
-
-/// Iterator over all nodes of a graph.
-#[derive(Debug, Clone)]
-pub struct NodeReferences<'a, N: 'a, Ix: IndexType = DefaultIx> {
- iter: iter::Enumerate<slice::Iter<'a, Node<N, Ix>>>,
-}
-
-impl<'a, N, Ix> Iterator for NodeReferences<'a, N, Ix>
-where
- Ix: IndexType,
-{
- type Item = (NodeIndex<Ix>, &'a N);
-
- fn next(&mut self) -> Option<Self::Item> {
- self.iter
- .next()
- .map(|(i, node)| (node_index(i), &node.weight))
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- self.iter.size_hint()
- }
-}
-
-impl<N, Ix> DoubleEndedIterator for NodeReferences<'_, N, Ix>
-where
- Ix: IndexType,
-{
- fn next_back(&mut self) -> Option<Self::Item> {
- self.iter
- .next_back()
- .map(|(i, node)| (node_index(i), &node.weight))
- }
-}
-
-impl<N, Ix> ExactSizeIterator for NodeReferences<'_, N, Ix> where Ix: IndexType {}
-
-impl<'a, Ix, E> EdgeReference<'a, E, Ix>
-where
- Ix: IndexType,
-{
- /// Access the edge’s weight.
- ///
- /// **NOTE** that this method offers a longer lifetime
- /// than the trait (unfortunately they don't match yet).
- pub fn weight(&self) -> &'a E {
- self.weight
- }
-}
-
-impl<Ix, E> visit::EdgeRef for EdgeReference<'_, E, Ix>
-where
- Ix: IndexType,
-{
- type NodeId = NodeIndex<Ix>;
- type EdgeId = EdgeIndex<Ix>;
- type Weight = E;
-
- fn source(&self) -> Self::NodeId {
- self.node[0]
- }
- fn target(&self) -> Self::NodeId {
- self.node[1]
- }
- fn weight(&self) -> &E {
- self.weight
- }
- fn id(&self) -> Self::EdgeId {
- self.index
- }
-}
-
-/// Iterator over all edges of a graph.
-#[derive(Debug, Clone)]
-pub struct EdgeReferences<'a, E: 'a, Ix: IndexType = DefaultIx> {
- iter: iter::Enumerate<slice::Iter<'a, Edge<E, Ix>>>,
-}
-
-impl<'a, E, Ix> Iterator for EdgeReferences<'a, E, Ix>
-where
- Ix: IndexType,
-{
- type Item = EdgeReference<'a, E, Ix>;
-
- fn next(&mut self) -> Option<Self::Item> {
- self.iter.next().map(|(i, edge)| EdgeReference {
- index: edge_index(i),
- node: edge.node,
- weight: &edge.weight,
- })
- }
-
- fn size_hint(&self) -> (usize, Option<usize>) {
- self.iter.size_hint()
- }
-}
-
-impl<E, Ix> DoubleEndedIterator for EdgeReferences<'_, E, Ix>
-where
- Ix: IndexType,
-{
- fn next_back(&mut self) -> Option<Self::Item> {
- self.iter.next_back().map(|(i, edge)| EdgeReference {
- index: edge_index(i),
- node: edge.node,
- weight: &edge.weight,
- })
- }
-}
-
-impl<E, Ix> ExactSizeIterator for EdgeReferences<'_, E, Ix> where Ix: IndexType {}
-
-impl<N, E, Ty, Ix> visit::EdgeIndexable for Graph<N, E, Ty, Ix>
-where
- Ty: EdgeType,
- Ix: IndexType,
-{
- fn edge_bound(&self) -> usize {
- self.edge_count()
- }
-
- fn to_index(&self, ix: EdgeIndex<Ix>) -> usize {
- ix.index()
- }
-
- fn from_index(&self, ix: usize) -> Self::EdgeId {
- EdgeIndex::new(ix)
- }
-}
-
-mod frozen;
-#[cfg(feature = "stable_graph")]
-pub mod stable_graph;
-
-/// `Frozen` is a graph wrapper.
-///
-/// The `Frozen` only allows shared access (read-only) to the
-/// underlying graph `G`, but it allows mutable access to its
-/// node and edge weights.
-///
-/// This is used to ensure immutability of the graph's structure
-/// while permitting weights to be both read and written.
-///
-/// See indexing implementations and the traits `Data` and `DataMap`
-/// for read-write access to the graph's weights.
-pub struct Frozen<'a, G: 'a>(&'a mut G);