summaryrefslogtreecommitdiff
path: root/vendor/itertools/src/combinations_with_replacement.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/itertools/src/combinations_with_replacement.rs')
-rw-r--r--vendor/itertools/src/combinations_with_replacement.rs188
1 files changed, 188 insertions, 0 deletions
diff --git a/vendor/itertools/src/combinations_with_replacement.rs b/vendor/itertools/src/combinations_with_replacement.rs
new file mode 100644
index 00000000..c17e7525
--- /dev/null
+++ b/vendor/itertools/src/combinations_with_replacement.rs
@@ -0,0 +1,188 @@
+use alloc::boxed::Box;
+use alloc::vec::Vec;
+use std::fmt;
+use std::iter::FusedIterator;
+
+use super::lazy_buffer::LazyBuffer;
+use crate::adaptors::checked_binomial;
+
+/// An iterator to iterate through all the `n`-length combinations in an iterator, with replacement.
+///
+/// See [`.combinations_with_replacement()`](crate::Itertools::combinations_with_replacement)
+/// for more information.
+#[derive(Clone)]
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct CombinationsWithReplacement<I>
+where
+ I: Iterator,
+ I::Item: Clone,
+{
+ indices: Box<[usize]>,
+ pool: LazyBuffer<I>,
+ first: bool,
+}
+
+impl<I> fmt::Debug for CombinationsWithReplacement<I>
+where
+ I: Iterator + fmt::Debug,
+ I::Item: fmt::Debug + Clone,
+{
+ debug_fmt_fields!(CombinationsWithReplacement, indices, pool, first);
+}
+
+/// Create a new `CombinationsWithReplacement` from a clonable iterator.
+pub fn combinations_with_replacement<I>(iter: I, k: usize) -> CombinationsWithReplacement<I>
+where
+ I: Iterator,
+ I::Item: Clone,
+{
+ let indices = alloc::vec![0; k].into_boxed_slice();
+ let pool: LazyBuffer<I> = LazyBuffer::new(iter);
+
+ CombinationsWithReplacement {
+ indices,
+ pool,
+ first: true,
+ }
+}
+
+impl<I> CombinationsWithReplacement<I>
+where
+ I: Iterator,
+ I::Item: Clone,
+{
+ /// Increments indices representing the combination to advance to the next
+ /// (in lexicographic order by increasing sequence) combination.
+ ///
+ /// Returns true if we've run out of combinations, false otherwise.
+ fn increment_indices(&mut self) -> bool {
+ // Check if we need to consume more from the iterator
+ // This will run while we increment our first index digit
+ self.pool.get_next();
+
+ // Work out where we need to update our indices
+ let mut increment = None;
+ for (i, indices_int) in self.indices.iter().enumerate().rev() {
+ if *indices_int < self.pool.len() - 1 {
+ increment = Some((i, indices_int + 1));
+ break;
+ }
+ }
+ match increment {
+ // If we can update the indices further
+ Some((increment_from, increment_value)) => {
+ // We need to update the rightmost non-max value
+ // and all those to the right
+ self.indices[increment_from..].fill(increment_value);
+ false
+ }
+ // Otherwise, we're done
+ None => true,
+ }
+ }
+}
+
+impl<I> Iterator for CombinationsWithReplacement<I>
+where
+ I: Iterator,
+ I::Item: Clone,
+{
+ type Item = Vec<I::Item>;
+
+ fn next(&mut self) -> Option<Self::Item> {
+ if self.first {
+ // In empty edge cases, stop iterating immediately
+ if !(self.indices.is_empty() || self.pool.get_next()) {
+ return None;
+ }
+ self.first = false;
+ } else if self.increment_indices() {
+ return None;
+ }
+ Some(self.pool.get_at(&self.indices))
+ }
+
+ fn nth(&mut self, n: usize) -> Option<Self::Item> {
+ if self.first {
+ // In empty edge cases, stop iterating immediately
+ if !(self.indices.is_empty() || self.pool.get_next()) {
+ return None;
+ }
+ self.first = false;
+ } else if self.increment_indices() {
+ return None;
+ }
+ for _ in 0..n {
+ if self.increment_indices() {
+ return None;
+ }
+ }
+ Some(self.pool.get_at(&self.indices))
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let (mut low, mut upp) = self.pool.size_hint();
+ low = remaining_for(low, self.first, &self.indices).unwrap_or(usize::MAX);
+ upp = upp.and_then(|upp| remaining_for(upp, self.first, &self.indices));
+ (low, upp)
+ }
+
+ fn count(self) -> usize {
+ let Self {
+ indices,
+ pool,
+ first,
+ } = self;
+ let n = pool.count();
+ remaining_for(n, first, &indices).unwrap()
+ }
+}
+
+impl<I> FusedIterator for CombinationsWithReplacement<I>
+where
+ I: Iterator,
+ I::Item: Clone,
+{
+}
+
+/// For a given size `n`, return the count of remaining combinations with replacement or None if it would overflow.
+fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> {
+ // With a "stars and bars" representation, choose k values with replacement from n values is
+ // like choosing k out of k + n − 1 positions (hence binomial(k + n - 1, k) possibilities)
+ // to place k stars and therefore n - 1 bars.
+ // Example (n=4, k=6): ***|*||** represents [0,0,0,1,3,3].
+ let count = |n: usize, k: usize| {
+ let positions = if n == 0 {
+ k.saturating_sub(1)
+ } else {
+ (n - 1).checked_add(k)?
+ };
+ checked_binomial(positions, k)
+ };
+ let k = indices.len();
+ if first {
+ count(n, k)
+ } else {
+ // The algorithm is similar to the one for combinations *without replacement*,
+ // except we choose values *with replacement* and indices are *non-strictly* monotonically sorted.
+
+ // The combinations generated after the current one can be counted by counting as follows:
+ // - The subsequent combinations that differ in indices[0]:
+ // If subsequent combinations differ in indices[0], then their value for indices[0]
+ // must be at least 1 greater than the current indices[0].
+ // As indices is monotonically sorted, this means we can effectively choose k values with
+ // replacement from (n - 1 - indices[0]), leading to count(n - 1 - indices[0], k) possibilities.
+ // - The subsequent combinations with same indices[0], but differing indices[1]:
+ // Here we can choose k - 1 values with replacement from (n - 1 - indices[1]) values,
+ // leading to count(n - 1 - indices[1], k - 1) possibilities.
+ // - (...)
+ // - The subsequent combinations with same indices[0..=i], but differing indices[i]:
+ // Here we can choose k - i values with replacement from (n - 1 - indices[i]) values: count(n - 1 - indices[i], k - i).
+ // Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients.
+
+ // Below, `n0` resembles indices[i].
+ indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| {
+ sum.checked_add(count(n - 1 - *n0, k - i)?)
+ })
+ }
+}