summaryrefslogtreecommitdiff
path: root/vendor/itertools/src/combinations.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/itertools/src/combinations.rs')
-rw-r--r--vendor/itertools/src/combinations.rs308
1 files changed, 308 insertions, 0 deletions
diff --git a/vendor/itertools/src/combinations.rs b/vendor/itertools/src/combinations.rs
new file mode 100644
index 00000000..54a02755
--- /dev/null
+++ b/vendor/itertools/src/combinations.rs
@@ -0,0 +1,308 @@
+use core::array;
+use core::borrow::BorrowMut;
+use std::fmt;
+use std::iter::FusedIterator;
+
+use super::lazy_buffer::LazyBuffer;
+use alloc::vec::Vec;
+
+use crate::adaptors::checked_binomial;
+
+/// Iterator for `Vec` valued combinations returned by [`.combinations()`](crate::Itertools::combinations)
+pub type Combinations<I> = CombinationsGeneric<I, Vec<usize>>;
+/// Iterator for const generic combinations returned by [`.array_combinations()`](crate::Itertools::array_combinations)
+pub type ArrayCombinations<I, const K: usize> = CombinationsGeneric<I, [usize; K]>;
+
+/// Create a new `Combinations` from a clonable iterator.
+pub fn combinations<I: Iterator>(iter: I, k: usize) -> Combinations<I>
+where
+ I::Item: Clone,
+{
+ Combinations::new(iter, (0..k).collect())
+}
+
+/// Create a new `ArrayCombinations` from a clonable iterator.
+pub fn array_combinations<I: Iterator, const K: usize>(iter: I) -> ArrayCombinations<I, K>
+where
+ I::Item: Clone,
+{
+ ArrayCombinations::new(iter, array::from_fn(|i| i))
+}
+
+/// An iterator to iterate through all the `k`-length combinations in an iterator.
+///
+/// See [`.combinations()`](crate::Itertools::combinations) and [`.array_combinations()`](crate::Itertools::array_combinations) for more information.
+#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
+pub struct CombinationsGeneric<I: Iterator, Idx> {
+ indices: Idx,
+ pool: LazyBuffer<I>,
+ first: bool,
+}
+
+/// A type holding indices of elements in a pool or buffer of items from an inner iterator
+/// and used to pick out different combinations in a generic way.
+pub trait PoolIndex<T>: BorrowMut<[usize]> {
+ type Item;
+
+ fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Self::Item
+ where
+ T: Clone;
+
+ fn len(&self) -> usize {
+ self.borrow().len()
+ }
+}
+
+impl<T> PoolIndex<T> for Vec<usize> {
+ type Item = Vec<T>;
+
+ fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Vec<T>
+ where
+ T: Clone,
+ {
+ pool.get_at(self)
+ }
+}
+
+impl<T, const K: usize> PoolIndex<T> for [usize; K] {
+ type Item = [T; K];
+
+ fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> [T; K]
+ where
+ T: Clone,
+ {
+ pool.get_array(*self)
+ }
+}
+
+impl<I, Idx> Clone for CombinationsGeneric<I, Idx>
+where
+ I: Iterator + Clone,
+ I::Item: Clone,
+ Idx: Clone,
+{
+ clone_fields!(indices, pool, first);
+}
+
+impl<I, Idx> fmt::Debug for CombinationsGeneric<I, Idx>
+where
+ I: Iterator + fmt::Debug,
+ I::Item: fmt::Debug,
+ Idx: fmt::Debug,
+{
+ debug_fmt_fields!(Combinations, indices, pool, first);
+}
+
+impl<I: Iterator, Idx: PoolIndex<I::Item>> CombinationsGeneric<I, Idx> {
+ /// Constructor with arguments the inner iterator and the initial state for the indices.
+ fn new(iter: I, indices: Idx) -> Self {
+ Self {
+ indices,
+ pool: LazyBuffer::new(iter),
+ first: true,
+ }
+ }
+
+ /// Returns the length of a combination produced by this iterator.
+ #[inline]
+ pub fn k(&self) -> usize {
+ self.indices.len()
+ }
+
+ /// Returns the (current) length of the pool from which combination elements are
+ /// selected. This value can change between invocations of [`next`](Combinations::next).
+ #[inline]
+ pub fn n(&self) -> usize {
+ self.pool.len()
+ }
+
+ /// Returns a reference to the source pool.
+ #[inline]
+ pub(crate) fn src(&self) -> &LazyBuffer<I> {
+ &self.pool
+ }
+
+ /// Return the length of the inner iterator and the count of remaining combinations.
+ pub(crate) fn n_and_count(self) -> (usize, usize) {
+ let Self {
+ indices,
+ pool,
+ first,
+ } = self;
+ let n = pool.count();
+ (n, remaining_for(n, first, indices.borrow()).unwrap())
+ }
+
+ /// Initialises the iterator by filling a buffer with elements from the
+ /// iterator. Returns true if there are no combinations, false otherwise.
+ fn init(&mut self) -> bool {
+ self.pool.prefill(self.k());
+ let done = self.k() > self.n();
+ if !done {
+ self.first = false;
+ }
+
+ done
+ }
+
+ /// Increments indices representing the combination to advance to the next
+ /// (in lexicographic order by increasing sequence) combination. For example
+ /// if we have n=4 & k=2 then `[0, 1] -> [0, 2] -> [0, 3] -> [1, 2] -> ...`
+ ///
+ /// Returns true if we've run out of combinations, false otherwise.
+ fn increment_indices(&mut self) -> bool {
+ // Borrow once instead of noise each time it's indexed
+ let indices = self.indices.borrow_mut();
+
+ if indices.is_empty() {
+ return true; // Done
+ }
+ // Scan from the end, looking for an index to increment
+ let mut i: usize = indices.len() - 1;
+
+ // Check if we need to consume more from the iterator
+ if indices[i] == self.pool.len() - 1 {
+ self.pool.get_next(); // may change pool size
+ }
+
+ while indices[i] == i + self.pool.len() - indices.len() {
+ if i > 0 {
+ i -= 1;
+ } else {
+ // Reached the last combination
+ return true;
+ }
+ }
+
+ // Increment index, and reset the ones to its right
+ indices[i] += 1;
+ for j in i + 1..indices.len() {
+ indices[j] = indices[j - 1] + 1;
+ }
+ // If we've made it this far, we haven't run out of combos
+ false
+ }
+
+ /// Returns the n-th item or the number of successful steps.
+ pub(crate) fn try_nth(&mut self, n: usize) -> Result<<Self as Iterator>::Item, usize>
+ where
+ I: Iterator,
+ I::Item: Clone,
+ {
+ let done = if self.first {
+ self.init()
+ } else {
+ self.increment_indices()
+ };
+ if done {
+ return Err(0);
+ }
+ for i in 0..n {
+ if self.increment_indices() {
+ return Err(i + 1);
+ }
+ }
+ Ok(self.indices.extract_item(&self.pool))
+ }
+}
+
+impl<I, Idx> Iterator for CombinationsGeneric<I, Idx>
+where
+ I: Iterator,
+ I::Item: Clone,
+ Idx: PoolIndex<I::Item>,
+{
+ type Item = Idx::Item;
+ fn next(&mut self) -> Option<Self::Item> {
+ let done = if self.first {
+ self.init()
+ } else {
+ self.increment_indices()
+ };
+
+ if done {
+ return None;
+ }
+
+ Some(self.indices.extract_item(&self.pool))
+ }
+
+ fn nth(&mut self, n: usize) -> Option<Self::Item> {
+ self.try_nth(n).ok()
+ }
+
+ fn size_hint(&self) -> (usize, Option<usize>) {
+ let (mut low, mut upp) = self.pool.size_hint();
+ low = remaining_for(low, self.first, self.indices.borrow()).unwrap_or(usize::MAX);
+ upp = upp.and_then(|upp| remaining_for(upp, self.first, self.indices.borrow()));
+ (low, upp)
+ }
+
+ #[inline]
+ fn count(self) -> usize {
+ self.n_and_count().1
+ }
+}
+
+impl<I, Idx> FusedIterator for CombinationsGeneric<I, Idx>
+where
+ I: Iterator,
+ I::Item: Clone,
+ Idx: PoolIndex<I::Item>,
+{
+}
+
+impl<I: Iterator> Combinations<I> {
+ /// Resets this `Combinations` back to an initial state for combinations of length
+ /// `k` over the same pool data source. If `k` is larger than the current length
+ /// of the data pool an attempt is made to prefill the pool so that it holds `k`
+ /// elements.
+ pub(crate) fn reset(&mut self, k: usize) {
+ self.first = true;
+
+ if k < self.indices.len() {
+ self.indices.truncate(k);
+ for i in 0..k {
+ self.indices[i] = i;
+ }
+ } else {
+ for i in 0..self.indices.len() {
+ self.indices[i] = i;
+ }
+ self.indices.extend(self.indices.len()..k);
+ self.pool.prefill(k);
+ }
+ }
+}
+
+/// For a given size `n`, return the count of remaining combinations or None if it would overflow.
+fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> {
+ let k = indices.len();
+ if n < k {
+ Some(0)
+ } else if first {
+ checked_binomial(n, k)
+ } else {
+ // https://en.wikipedia.org/wiki/Combinatorial_number_system
+ // http://www.site.uottawa.ca/~lucia/courses/5165-09/GenCombObj.pdf
+
+ // The combinations generated after the current one can be counted by counting as follows:
+ // - The subsequent combinations that differ in indices[0]:
+ // If subsequent combinations differ in indices[0], then their value for indices[0]
+ // must be at least 1 greater than the current indices[0].
+ // As indices is strictly monotonically sorted, this means we can effectively choose k values
+ // from (n - 1 - indices[0]), leading to binomial(n - 1 - indices[0], k) possibilities.
+ // - The subsequent combinations with same indices[0], but differing indices[1]:
+ // Here we can choose k - 1 values from (n - 1 - indices[1]) values,
+ // leading to binomial(n - 1 - indices[1], k - 1) possibilities.
+ // - (...)
+ // - The subsequent combinations with same indices[0..=i], but differing indices[i]:
+ // Here we can choose k - i values from (n - 1 - indices[i]) values: binomial(n - 1 - indices[i], k - i).
+ // Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients.
+
+ // Below, `n0` resembles indices[i].
+ indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| {
+ sum.checked_add(checked_binomial(n - 1 - *n0, k - i)?)
+ })
+ }
+}