diff options
Diffstat (limited to 'vendor/ipnet/src/ipnet.rs')
| -rw-r--r-- | vendor/ipnet/src/ipnet.rs | 2001 |
1 files changed, 0 insertions, 2001 deletions
diff --git a/vendor/ipnet/src/ipnet.rs b/vendor/ipnet/src/ipnet.rs deleted file mode 100644 index cecb138a..00000000 --- a/vendor/ipnet/src/ipnet.rs +++ /dev/null @@ -1,2001 +0,0 @@ -use alloc::vec::Vec; -use core::cmp::{min, max}; -use core::cmp::Ordering::{Less, Equal}; -use core::convert::From; -use core::fmt; -use core::iter::FusedIterator; -use core::option::Option::{Some, None}; -#[cfg(not(feature = "std"))] -use core::error::Error; -#[cfg(feature = "std")] -use std::error::Error; -#[cfg(not(feature = "std"))] -use core::net::{IpAddr, Ipv4Addr, Ipv6Addr}; -#[cfg(feature = "std")] -use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; - -use crate::ipext::{IpAdd, IpSub, IpStep, IpAddrRange, Ipv4AddrRange, Ipv6AddrRange}; -use crate::mask::{ip_mask_to_prefix, ipv4_mask_to_prefix, ipv6_mask_to_prefix}; - -/// An IP network address, either IPv4 or IPv6. -/// -/// This enum can contain either an [`Ipv4Net`] or an [`Ipv6Net`]. A -/// [`From`] implementation is provided to convert these into an -/// `IpNet`. -/// -/// # Textual representation -/// -/// `IpNet` provides a [`FromStr`] implementation for parsing network -/// addresses represented in CIDR notation. See [IETF RFC 4632] for the -/// CIDR notation. -/// -/// [`Ipv4Net`]: struct.Ipv4Net.html -/// [`Ipv6Net`]: struct.Ipv6Net.html -/// [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html -/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html -/// [IETF RFC 4632]: https://tools.ietf.org/html/rfc4632 -/// -/// # Examples -/// -/// ``` -/// use std::net::IpAddr; -/// use ipnet::IpNet; -/// -/// let net: IpNet = "10.1.1.0/24".parse().unwrap(); -/// assert_eq!(Ok(net.network()), "10.1.1.0".parse()); -/// -/// let net: IpNet = "fd00::/32".parse().unwrap(); -/// assert_eq!(Ok(net.network()), "fd00::".parse()); -/// ``` -#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)] -pub enum IpNet { - V4(Ipv4Net), - V6(Ipv6Net), -} - -/// An IPv4 network address. -/// -/// See [`IpNet`] for a type encompassing both IPv4 and IPv6 network -/// addresses. -/// -/// # Textual representation -/// -/// `Ipv4Net` provides a [`FromStr`] implementation for parsing network -/// addresses represented in CIDR notation. See [IETF RFC 4632] for the -/// CIDR notation. -/// -/// [`IpNet`]: enum.IpNet.html -/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html -/// [IETF RFC 4632]: https://tools.ietf.org/html/rfc4632 -/// -/// # Examples -/// -/// ``` -/// # #[cfg(feature = "std")] -/// # use std::net::Ipv6Addr; -/// # #[cfg(not(feature = "std"))] -/// # use core::net::Ipv6Addr; -/// use ipnet::Ipv4Net; -/// -/// let net: Ipv4Net = "10.1.1.0/24".parse().unwrap(); -/// assert_eq!(Ok(net.network()), "10.1.1.0".parse()); -/// ``` -#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)] -pub struct Ipv4Net { - addr: Ipv4Addr, - prefix_len: u8, -} - -/// An IPv6 network address. -/// -/// See [`IpNet`] for a type encompassing both IPv4 and IPv6 network -/// addresses. -/// -/// # Textual representation -/// -/// `Ipv6Net` provides a [`FromStr`] implementation for parsing network -/// addresses represented in CIDR notation. See [IETF RFC 4632] for the -/// CIDR notation. -/// -/// [`IpNet`]: enum.IpNet.html -/// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html -/// [IETF RFC 4632]: https://tools.ietf.org/html/rfc4632 -/// -/// # Examples -/// -/// ``` -/// use std::net::Ipv6Addr; -/// use ipnet::Ipv6Net; -/// -/// let net: Ipv6Net = "fd00::/32".parse().unwrap(); -/// assert_eq!(Ok(net.network()), "fd00::".parse()); -/// ``` -#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)] -pub struct Ipv6Net { - addr: Ipv6Addr, - prefix_len: u8, -} - -/// An error which can be returned when the prefix length is invalid. -/// -/// Valid prefix lengths are 0 to 32 for IPv4 and 0 to 128 for IPv6. -#[derive(Debug, Clone, PartialEq, Eq)] -pub struct PrefixLenError; - -impl fmt::Display for PrefixLenError { - fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { - fmt.write_str("invalid IP prefix length") - } -} - -impl Error for PrefixLenError {} - -impl IpNet { - /// Creates a new IP network address from an `IpAddr` and prefix - /// length. - /// - /// # Examples - /// - /// ``` - /// use std::net::Ipv6Addr; - /// use ipnet::{IpNet, PrefixLenError}; - /// - /// let net = IpNet::new(Ipv6Addr::LOCALHOST.into(), 48); - /// assert!(net.is_ok()); - /// - /// let bad_prefix_len = IpNet::new(Ipv6Addr::LOCALHOST.into(), 129); - /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); - /// ``` - pub fn new(ip: IpAddr, prefix_len: u8) -> Result<IpNet, PrefixLenError> { - Ok(match ip { - IpAddr::V4(a) => Ipv4Net::new(a, prefix_len)?.into(), - IpAddr::V6(a) => Ipv6Net::new(a, prefix_len)?.into(), - }) - } - - /// Creates a new IP network address from an `IpAddr` and prefix - /// length. If called from a const context it will verify prefix length - /// at compile time. Otherwise it will panic at runtime if prefix length - /// is incorrect for a given IpAddr type. - /// - /// # Examples - /// - /// ``` - /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; - /// use ipnet::{IpNet}; - /// - /// // This code is verified at compile time: - /// const NET: IpNet = IpNet::new_assert(IpAddr::V4(Ipv4Addr::new(10, 1, 1, 0)), 24); - /// assert_eq!(NET.prefix_len(), 24); - /// - /// // This code is verified at runtime: - /// let net = IpNet::new_assert(Ipv6Addr::LOCALHOST.into(), 24); - /// assert_eq!(net.prefix_len(), 24); - /// - /// // This code does not compile: - /// // const BAD_PREFIX_LEN: IpNet = IpNet::new_assert(IpAddr::V4(Ipv4Addr::new(10, 1, 1, 0)), 33); - /// - /// // This code panics at runtime: - /// // let bad_prefix_len = IpNet::new_assert(Ipv6Addr::LOCALHOST.into(), 129); - /// ``` - pub const fn new_assert(ip: IpAddr, prefix_len: u8) -> IpNet { - match ip { - IpAddr::V4(a) => IpNet::V4(Ipv4Net::new_assert(a, prefix_len)), - IpAddr::V6(a) => IpNet::V6(Ipv6Net::new_assert(a, prefix_len)), - } - } - - /// Creates a new IP network address from an `IpAddr` and netmask. - /// - /// # Examples - /// - /// ``` - /// use std::net::Ipv6Addr; - /// use ipnet::{IpNet, PrefixLenError}; - /// - /// let net = IpNet::with_netmask(Ipv6Addr::LOCALHOST.into(), Ipv6Addr::from(0xffff_ffff_ffff_0000_0000_0000_0000_0000).into()); - /// assert!(net.is_ok()); - /// - /// let bad_prefix_len = IpNet::with_netmask(Ipv6Addr::LOCALHOST.into(), Ipv6Addr::from(0xffff_ffff_ffff_0000_0001_0000_0000_0000).into()); - /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); - /// ``` - pub fn with_netmask(ip: IpAddr, netmask: IpAddr) -> Result<IpNet, PrefixLenError> { - let prefix = ip_mask_to_prefix(netmask)?; - Self::new(ip, prefix) - } - - /// Returns a copy of the network with the address truncated to the - /// prefix length. - /// - /// # Examples - /// - /// ``` - /// # use ipnet::IpNet; - /// # - /// assert_eq!( - /// "192.168.12.34/16".parse::<IpNet>().unwrap().trunc(), - /// "192.168.0.0/16".parse().unwrap() - /// ); - /// - /// assert_eq!( - /// "fd00::1:2:3:4/16".parse::<IpNet>().unwrap().trunc(), - /// "fd00::/16".parse().unwrap() - /// ); - /// ``` - pub fn trunc(&self) -> IpNet { - match *self { - IpNet::V4(ref a) => IpNet::V4(a.trunc()), - IpNet::V6(ref a) => IpNet::V6(a.trunc()), - } - } - - /// Returns the address. - pub fn addr(&self) -> IpAddr { - match *self { - IpNet::V4(ref a) => IpAddr::V4(a.addr), - IpNet::V6(ref a) => IpAddr::V6(a.addr), - } - } - - /// Returns the prefix length. - pub fn prefix_len(&self) -> u8 { - match *self { - IpNet::V4(ref a) => a.prefix_len(), - IpNet::V6(ref a) => a.prefix_len(), - } - } - - /// Returns the maximum valid prefix length. - pub fn max_prefix_len(&self) -> u8 { - match *self { - IpNet::V4(ref a) => a.max_prefix_len(), - IpNet::V6(ref a) => a.max_prefix_len(), - } - } - - /// Returns the network mask. - /// - /// # Examples - /// - /// ``` - /// # use std::net::IpAddr; - /// # use ipnet::IpNet; - /// # - /// let net: IpNet = "10.1.0.0/20".parse().unwrap(); - /// assert_eq!(Ok(net.netmask()), "255.255.240.0".parse()); - /// - /// let net: IpNet = "fd00::/24".parse().unwrap(); - /// assert_eq!(Ok(net.netmask()), "ffff:ff00::".parse()); - /// ``` - pub fn netmask(&self) -> IpAddr { - match *self { - IpNet::V4(ref a) => IpAddr::V4(a.netmask()), - IpNet::V6(ref a) => IpAddr::V6(a.netmask()), - } - } - - /// Returns the host mask. - /// - /// # Examples - /// - /// ``` - /// # use std::net::IpAddr; - /// # use ipnet::IpNet; - /// # - /// let net: IpNet = "10.1.0.0/20".parse().unwrap(); - /// assert_eq!(Ok(net.hostmask()), "0.0.15.255".parse()); - /// - /// let net: IpNet = "fd00::/24".parse().unwrap(); - /// assert_eq!(Ok(net.hostmask()), "::ff:ffff:ffff:ffff:ffff:ffff:ffff".parse()); - /// ``` - pub fn hostmask(&self) -> IpAddr { - match *self { - IpNet::V4(ref a) => IpAddr::V4(a.hostmask()), - IpNet::V6(ref a) => IpAddr::V6(a.hostmask()), - } - } - - /// Returns the network address. - /// - /// # Examples - /// - /// ``` - /// # use std::net::IpAddr; - /// # use ipnet::IpNet; - /// # - /// let net: IpNet = "172.16.123.123/16".parse().unwrap(); - /// assert_eq!(Ok(net.network()), "172.16.0.0".parse()); - /// - /// let net: IpNet = "fd00:1234:5678::/24".parse().unwrap(); - /// assert_eq!(Ok(net.network()), "fd00:1200::".parse()); - /// ``` - pub fn network(&self) -> IpAddr { - match *self { - IpNet::V4(ref a) => IpAddr::V4(a.network()), - IpNet::V6(ref a) => IpAddr::V6(a.network()), - } - } - - /// Returns the broadcast address. - /// - /// # Examples - /// - /// ``` - /// # use std::net::IpAddr; - /// # use ipnet::IpNet; - /// # - /// let net: IpNet = "172.16.0.0/22".parse().unwrap(); - /// assert_eq!(Ok(net.broadcast()), "172.16.3.255".parse()); - /// - /// let net: IpNet = "fd00:1234:5678::/24".parse().unwrap(); - /// assert_eq!(Ok(net.broadcast()), "fd00:12ff:ffff:ffff:ffff:ffff:ffff:ffff".parse()); - /// ``` - pub fn broadcast(&self) -> IpAddr { - match *self { - IpNet::V4(ref a) => IpAddr::V4(a.broadcast()), - IpNet::V6(ref a) => IpAddr::V6(a.broadcast()), - } - } - - /// Returns the `IpNet` that contains this one. - /// - /// # Examples - /// - /// ``` - /// # use ipnet::IpNet; - /// # - /// let n1: IpNet = "172.16.1.0/24".parse().unwrap(); - /// let n2: IpNet = "172.16.0.0/23".parse().unwrap(); - /// let n3: IpNet = "172.16.0.0/0".parse().unwrap(); - /// - /// assert_eq!(n1.supernet().unwrap(), n2); - /// assert_eq!(n3.supernet(), None); - /// - /// let n1: IpNet = "fd00:ff00::/24".parse().unwrap(); - /// let n2: IpNet = "fd00:fe00::/23".parse().unwrap(); - /// let n3: IpNet = "fd00:fe00::/0".parse().unwrap(); - /// - /// assert_eq!(n1.supernet().unwrap(), n2); - /// assert_eq!(n3.supernet(), None); - /// ``` - pub fn supernet(&self) -> Option<IpNet> { - match *self { - IpNet::V4(ref a) => a.supernet().map(IpNet::V4), - IpNet::V6(ref a) => a.supernet().map(IpNet::V6), - } - } - - /// Returns `true` if this network and the given network are - /// children of the same supernet. - /// - /// # Examples - /// - /// ``` - /// # use ipnet::IpNet; - /// # - /// let n4_1: IpNet = "10.1.0.0/24".parse().unwrap(); - /// let n4_2: IpNet = "10.1.1.0/24".parse().unwrap(); - /// let n4_3: IpNet = "10.1.2.0/24".parse().unwrap(); - /// let n6_1: IpNet = "fd00::/18".parse().unwrap(); - /// let n6_2: IpNet = "fd00:4000::/18".parse().unwrap(); - /// let n6_3: IpNet = "fd00:8000::/18".parse().unwrap(); - /// - /// assert!( n4_1.is_sibling(&n4_2)); - /// assert!(!n4_2.is_sibling(&n4_3)); - /// assert!( n6_1.is_sibling(&n6_2)); - /// assert!(!n6_2.is_sibling(&n6_3)); - /// assert!(!n4_1.is_sibling(&n6_2)); - /// ``` - pub fn is_sibling(&self, other: &IpNet) -> bool { - match (*self, *other) { - (IpNet::V4(ref a), IpNet::V4(ref b)) => a.is_sibling(b), - (IpNet::V6(ref a), IpNet::V6(ref b)) => a.is_sibling(b), - _ => false, - } - } - - /// Return an `Iterator` over the host addresses in this network. - /// - /// # Examples - /// - /// ``` - /// # use std::net::IpAddr; - /// # use ipnet::IpNet; - /// # - /// let net: IpNet = "10.0.0.0/30".parse().unwrap(); - /// assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![ - /// "10.0.0.1".parse::<IpAddr>().unwrap(), - /// "10.0.0.2".parse().unwrap(), - /// ]); - /// - /// let net: IpNet = "10.0.0.0/31".parse().unwrap(); - /// assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![ - /// "10.0.0.0".parse::<IpAddr>().unwrap(), - /// "10.0.0.1".parse().unwrap(), - /// ]); - /// - /// let net: IpNet = "fd00::/126".parse().unwrap(); - /// assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![ - /// "fd00::".parse::<IpAddr>().unwrap(), - /// "fd00::1".parse().unwrap(), - /// "fd00::2".parse().unwrap(), - /// "fd00::3".parse().unwrap(), - /// ]); - /// ``` - pub fn hosts(&self) -> IpAddrRange { - match *self { - IpNet::V4(ref a) => IpAddrRange::V4(a.hosts()), - IpNet::V6(ref a) => IpAddrRange::V6(a.hosts()), - } - } - - /// Returns an `Iterator` over the subnets of this network with the - /// given prefix length. - /// - /// # Examples - /// - /// ``` - /// # use ipnet::{IpNet, PrefixLenError}; - /// # - /// let net: IpNet = "10.0.0.0/24".parse().unwrap(); - /// assert_eq!(net.subnets(26).unwrap().collect::<Vec<IpNet>>(), vec![ - /// "10.0.0.0/26".parse::<IpNet>().unwrap(), - /// "10.0.0.64/26".parse().unwrap(), - /// "10.0.0.128/26".parse().unwrap(), - /// "10.0.0.192/26".parse().unwrap(), - /// ]); - /// - /// let net: IpNet = "fd00::/16".parse().unwrap(); - /// assert_eq!(net.subnets(18).unwrap().collect::<Vec<IpNet>>(), vec![ - /// "fd00::/18".parse::<IpNet>().unwrap(), - /// "fd00:4000::/18".parse().unwrap(), - /// "fd00:8000::/18".parse().unwrap(), - /// "fd00:c000::/18".parse().unwrap(), - /// ]); - /// - /// let net: IpNet = "10.0.0.0/24".parse().unwrap(); - /// assert_eq!(net.subnets(23), Err(PrefixLenError)); - /// - /// let net: IpNet = "10.0.0.0/24".parse().unwrap(); - /// assert_eq!(net.subnets(33), Err(PrefixLenError)); - /// - /// let net: IpNet = "fd00::/16".parse().unwrap(); - /// assert_eq!(net.subnets(15), Err(PrefixLenError)); - /// - /// let net: IpNet = "fd00::/16".parse().unwrap(); - /// assert_eq!(net.subnets(129), Err(PrefixLenError)); - /// ``` - pub fn subnets(&self, new_prefix_len: u8) -> Result<IpSubnets, PrefixLenError> { - match *self { - IpNet::V4(ref a) => a.subnets(new_prefix_len).map(IpSubnets::V4), - IpNet::V6(ref a) => a.subnets(new_prefix_len).map(IpSubnets::V6), - } - } - - /// Test if a network address contains either another network - /// address or an IP address. - /// - /// # Examples - /// - /// ``` - /// # use std::net::IpAddr; - /// # use ipnet::IpNet; - /// # - /// let net4: IpNet = "192.168.0.0/24".parse().unwrap(); - /// let net4_yes: IpNet = "192.168.0.0/25".parse().unwrap(); - /// let net4_no: IpNet = "192.168.0.0/23".parse().unwrap(); - /// let ip4_yes: IpAddr = "192.168.0.1".parse().unwrap(); - /// let ip4_no: IpAddr = "192.168.1.0".parse().unwrap(); - /// - /// assert!(net4.contains(&net4)); - /// assert!(net4.contains(&net4_yes)); - /// assert!(!net4.contains(&net4_no)); - /// assert!(net4.contains(&ip4_yes)); - /// assert!(!net4.contains(&ip4_no)); - /// - /// - /// let net6: IpNet = "fd00::/16".parse().unwrap(); - /// let net6_yes: IpNet = "fd00::/17".parse().unwrap(); - /// let net6_no: IpNet = "fd00::/15".parse().unwrap(); - /// let ip6_yes: IpAddr = "fd00::1".parse().unwrap(); - /// let ip6_no: IpAddr = "fd01::".parse().unwrap(); - /// - /// assert!(net6.contains(&net6)); - /// assert!(net6.contains(&net6_yes)); - /// assert!(!net6.contains(&net6_no)); - /// assert!(net6.contains(&ip6_yes)); - /// assert!(!net6.contains(&ip6_no)); - /// - /// assert!(!net4.contains(&net6)); - /// assert!(!net6.contains(&net4)); - /// assert!(!net4.contains(&ip6_no)); - /// assert!(!net6.contains(&ip4_no)); - /// ``` - pub fn contains<T>(&self, other: T) -> bool where Self: Contains<T> { - Contains::contains(self, other) - } - - /// Aggregate a `Vec` of `IpNet`s and return the result as a new - /// `Vec`. - /// - /// # Examples - /// - /// ``` - /// # use ipnet::IpNet; - /// # - /// let nets = vec![ - /// "10.0.0.0/24".parse::<IpNet>().unwrap(), - /// "10.0.1.0/24".parse().unwrap(), - /// "10.0.2.0/24".parse().unwrap(), - /// "fd00::/18".parse().unwrap(), - /// "fd00:4000::/18".parse().unwrap(), - /// "fd00:8000::/18".parse().unwrap(), - /// ]; - /// - /// assert_eq!(IpNet::aggregate(&nets), vec![ - /// "10.0.0.0/23".parse::<IpNet>().unwrap(), - /// "10.0.2.0/24".parse().unwrap(), - /// "fd00::/17".parse().unwrap(), - /// "fd00:8000::/18".parse().unwrap(), - /// ]); - /// ``` - pub fn aggregate(networks: &Vec<IpNet>) -> Vec<IpNet> { - // It's 2.5x faster to split the input up and run them using the - // specific IPv4 and IPV6 implementations. merge_intervals() and - // the comparisons are much faster running over integers. - let mut ipv4nets: Vec<Ipv4Net> = Vec::new(); - let mut ipv6nets: Vec<Ipv6Net> = Vec::new(); - - for n in networks { - match *n { - IpNet::V4(x) => ipv4nets.push(x), - IpNet::V6(x) => ipv6nets.push(x), - } - } - - let mut res: Vec<IpNet> = Vec::new(); - let ipv4aggs = Ipv4Net::aggregate(&ipv4nets); - let ipv6aggs = Ipv6Net::aggregate(&ipv6nets); - res.extend::<Vec<IpNet>>(ipv4aggs.into_iter().map(IpNet::V4).collect::<Vec<IpNet>>()); - res.extend::<Vec<IpNet>>(ipv6aggs.into_iter().map(IpNet::V6).collect::<Vec<IpNet>>()); - res - } -} - -impl Default for IpNet { - fn default() -> Self { - Self::V4(Ipv4Net::default()) - } -} - -impl fmt::Debug for IpNet { - fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { - fmt::Display::fmt(self, fmt) - } -} - -impl fmt::Display for IpNet { - fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { - match *self { - IpNet::V4(ref a) => a.fmt(fmt), - IpNet::V6(ref a) => a.fmt(fmt), - } - } -} - -impl From<Ipv4Net> for IpNet { - fn from(net: Ipv4Net) -> IpNet { - IpNet::V4(net) - } -} - -impl From<Ipv6Net> for IpNet { - fn from(net: Ipv6Net) -> IpNet { - IpNet::V6(net) - } -} - -impl From<IpAddr> for IpNet { - fn from(addr: IpAddr) -> IpNet { - match addr { - IpAddr::V4(a) => IpNet::V4(a.into()), - IpAddr::V6(a) => IpNet::V6(a.into()), - } - } -} - -impl Ipv4Net { - /// Creates a new IPv4 network address from an `Ipv4Addr` and prefix - /// length. - /// - /// # Examples - /// - /// ``` - /// use std::net::Ipv4Addr; - /// use ipnet::{Ipv4Net, PrefixLenError}; - /// - /// let net = Ipv4Net::new(Ipv4Addr::new(10, 1, 1, 0), 24); - /// assert!(net.is_ok()); - /// - /// let bad_prefix_len = Ipv4Net::new(Ipv4Addr::new(10, 1, 1, 0), 33); - /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); - /// ``` - #[inline] - pub const fn new(ip: Ipv4Addr, prefix_len: u8) -> Result<Ipv4Net, PrefixLenError> { - if prefix_len > 32 { - return Err(PrefixLenError); - } - Ok(Ipv4Net { addr: ip, prefix_len: prefix_len }) - } - - /// Creates a new IPv4 network address from an `Ipv4Addr` and prefix - /// length. If called from a const context it will verify prefix length - /// at compile time. Otherwise it will panic at runtime if prefix length - /// is not less then or equal to 32. - /// - /// # Examples - /// - /// ``` - /// use std::net::Ipv4Addr; - /// use ipnet::{Ipv4Net}; - /// - /// // This code is verified at compile time: - /// const NET: Ipv4Net = Ipv4Net::new_assert(Ipv4Addr::new(10, 1, 1, 0), 24); - /// assert_eq!(NET.prefix_len(), 24); - /// - /// // This code is verified at runtime: - /// let net = Ipv4Net::new_assert(Ipv4Addr::new(10, 1, 1, 0), 24); - /// assert_eq!(NET.prefix_len(), 24); - /// - /// // This code does not compile: - /// // const BAD_PREFIX_LEN: Ipv4Net = Ipv4Net::new_assert(Ipv4Addr::new(10, 1, 1, 0), 33); - /// - /// // This code panics at runtime: - /// // let bad_prefix_len = Ipv4Net::new_assert(Ipv4Addr::new(10, 1, 1, 0), 33); - /// ``` - #[inline] - pub const fn new_assert(ip: Ipv4Addr, prefix_len: u8) -> Ipv4Net { - assert!(prefix_len <= 32, "PREFIX_LEN must be less then or equal to 32 for Ipv4Net"); - Ipv4Net { addr: ip, prefix_len: prefix_len } - } - - /// Creates a new IPv4 network address from an `Ipv4Addr` and netmask. - /// - /// # Examples - /// - /// ``` - /// use std::net::Ipv4Addr; - /// use ipnet::{Ipv4Net, PrefixLenError}; - /// - /// let net = Ipv4Net::with_netmask(Ipv4Addr::new(10, 1, 1, 0), Ipv4Addr::new(255, 255, 255, 0)); - /// assert!(net.is_ok()); - /// - /// let bad_prefix_len = Ipv4Net::with_netmask(Ipv4Addr::new(10, 1, 1, 0), Ipv4Addr::new(255, 255, 0, 1)); - /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); - /// ``` - pub fn with_netmask(ip: Ipv4Addr, netmask: Ipv4Addr) -> Result<Ipv4Net, PrefixLenError> { - let prefix = ipv4_mask_to_prefix(netmask)?; - Self::new(ip, prefix) - } - - /// Returns a copy of the network with the address truncated to the - /// prefix length. - /// - /// # Examples - /// - /// ``` - /// # use ipnet::Ipv4Net; - /// # - /// assert_eq!( - /// "192.168.12.34/16".parse::<Ipv4Net>().unwrap().trunc(), - /// "192.168.0.0/16".parse().unwrap() - /// ); - /// ``` - pub fn trunc(&self) -> Ipv4Net { - Ipv4Net::new(self.network(), self.prefix_len).unwrap() - } - - /// Returns the address. - #[inline] - pub const fn addr(&self) -> Ipv4Addr { - self.addr - } - - /// Returns the prefix length. - #[inline] - pub const fn prefix_len(&self) -> u8 { - self.prefix_len - } - - /// Returns the maximum valid prefix length. - #[inline] - pub const fn max_prefix_len(&self) -> u8 { - 32 - } - - /// Returns the network mask. - /// - /// # Examples - /// - /// ``` - /// # use std::net::Ipv4Addr; - /// # use ipnet::Ipv4Net; - /// # - /// let net: Ipv4Net = "10.1.0.0/20".parse().unwrap(); - /// assert_eq!(Ok(net.netmask()), "255.255.240.0".parse()); - /// ``` - pub fn netmask(&self) -> Ipv4Addr { - Ipv4Addr::from(self.netmask_u32()) - } - - fn netmask_u32(&self) -> u32 { - u32::max_value().checked_shl(32 - self.prefix_len as u32).unwrap_or(0) - } - - /// Returns the host mask. - /// - /// # Examples - /// - /// ``` - /// # use std::net::Ipv4Addr; - /// # use ipnet::Ipv4Net; - /// # - /// let net: Ipv4Net = "10.1.0.0/20".parse().unwrap(); - /// assert_eq!(Ok(net.hostmask()), "0.0.15.255".parse()); - /// ``` - pub fn hostmask(&self) -> Ipv4Addr { - Ipv4Addr::from(self.hostmask_u32()) - } - - fn hostmask_u32(&self) -> u32 { - u32::max_value().checked_shr(self.prefix_len as u32).unwrap_or(0) - } - - /// Returns the network address. - /// - /// # Examples - /// - /// ``` - /// # use std::net::Ipv4Addr; - /// # use ipnet::Ipv4Net; - /// # - /// let net: Ipv4Net = "172.16.123.123/16".parse().unwrap(); - /// assert_eq!(Ok(net.network()), "172.16.0.0".parse()); - /// ``` - pub fn network(&self) -> Ipv4Addr { - Ipv4Addr::from(u32::from(self.addr) & self.netmask_u32()) - } - - /// Returns the broadcast address. - /// - /// # Examples - /// - /// ``` - /// # use std::net::Ipv4Addr; - /// # use ipnet::Ipv4Net; - /// # - /// let net: Ipv4Net = "172.16.0.0/22".parse().unwrap(); - /// assert_eq!(Ok(net.broadcast()), "172.16.3.255".parse()); - /// ``` - pub fn broadcast(&self) -> Ipv4Addr { - Ipv4Addr::from(u32::from(self.addr) | self.hostmask_u32()) - } - - /// Returns the `Ipv4Net` that contains this one. - /// - /// # Examples - /// - /// ``` - /// # use ipnet::Ipv4Net; - /// # - /// let n1: Ipv4Net = "172.16.1.0/24".parse().unwrap(); - /// let n2: Ipv4Net = "172.16.0.0/23".parse().unwrap(); - /// let n3: Ipv4Net = "172.16.0.0/0".parse().unwrap(); - /// - /// assert_eq!(n1.supernet().unwrap(), n2); - /// assert_eq!(n3.supernet(), None); - /// ``` - pub fn supernet(&self) -> Option<Ipv4Net> { - Ipv4Net::new(self.addr, self.prefix_len.wrapping_sub(1)).map(|n| n.trunc()).ok() - } - - /// Returns `true` if this network and the given network are - /// children of the same supernet. - /// - /// # Examples - /// - /// ``` - /// # use ipnet::Ipv4Net; - /// # - /// let n1: Ipv4Net = "10.1.0.0/24".parse().unwrap(); - /// let n2: Ipv4Net = "10.1.1.0/24".parse().unwrap(); - /// let n3: Ipv4Net = "10.1.2.0/24".parse().unwrap(); - /// - /// assert!(n1.is_sibling(&n2)); - /// assert!(!n2.is_sibling(&n3)); - /// ``` - pub fn is_sibling(&self, other: &Ipv4Net) -> bool { - self.prefix_len > 0 && - self.prefix_len == other.prefix_len && - self.supernet().unwrap().contains(other) - } - - /// Return an `Iterator` over the host addresses in this network. - /// - /// If the prefix length is less than 31 both the network address - /// and broadcast address are excluded. These are only valid host - /// addresses when the prefix length is 31. - /// - /// # Examples - /// - /// ``` - /// # use std::net::Ipv4Addr; - /// # use ipnet::Ipv4Net; - /// # - /// let net: Ipv4Net = "10.0.0.0/30".parse().unwrap(); - /// assert_eq!(net.hosts().collect::<Vec<Ipv4Addr>>(), vec![ - /// "10.0.0.1".parse::<Ipv4Addr>().unwrap(), - /// "10.0.0.2".parse().unwrap(), - /// ]); - /// - /// let net: Ipv4Net = "10.0.0.0/31".parse().unwrap(); - /// assert_eq!(net.hosts().collect::<Vec<Ipv4Addr>>(), vec![ - /// "10.0.0.0".parse::<Ipv4Addr>().unwrap(), - /// "10.0.0.1".parse().unwrap(), - /// ]); - /// ``` - pub fn hosts(&self) -> Ipv4AddrRange { - let mut start = self.network(); - let mut end = self.broadcast(); - - if self.prefix_len < 31 { - start = start.saturating_add(1); - end = end.saturating_sub(1); - } - - Ipv4AddrRange::new(start, end) - } - - /// Returns an `Iterator` over the subnets of this network with the - /// given prefix length. - /// - /// # Examples - /// - /// ``` - /// # use ipnet::{Ipv4Net, PrefixLenError}; - /// # - /// let net: Ipv4Net = "10.0.0.0/24".parse().unwrap(); - /// assert_eq!(net.subnets(26).unwrap().collect::<Vec<Ipv4Net>>(), vec![ - /// "10.0.0.0/26".parse::<Ipv4Net>().unwrap(), - /// "10.0.0.64/26".parse().unwrap(), - /// "10.0.0.128/26".parse().unwrap(), - /// "10.0.0.192/26".parse().unwrap(), - /// ]); - /// - /// let net: Ipv4Net = "10.0.0.0/30".parse().unwrap(); - /// assert_eq!(net.subnets(32).unwrap().collect::<Vec<Ipv4Net>>(), vec![ - /// "10.0.0.0/32".parse::<Ipv4Net>().unwrap(), - /// "10.0.0.1/32".parse().unwrap(), - /// "10.0.0.2/32".parse().unwrap(), - /// "10.0.0.3/32".parse().unwrap(), - /// ]); - /// - /// let net: Ipv4Net = "10.0.0.0/24".parse().unwrap(); - /// assert_eq!(net.subnets(23), Err(PrefixLenError)); - /// - /// let net: Ipv4Net = "10.0.0.0/24".parse().unwrap(); - /// assert_eq!(net.subnets(33), Err(PrefixLenError)); - /// ``` - pub fn subnets(&self, new_prefix_len: u8) -> Result<Ipv4Subnets, PrefixLenError> { - if self.prefix_len > new_prefix_len || new_prefix_len > 32 { - return Err(PrefixLenError); - } - - Ok(Ipv4Subnets::new( - self.network(), - self.broadcast(), - new_prefix_len, - )) - } - - /// Test if a network address contains either another network - /// address or an IP address. - /// - /// # Examples - /// - /// ``` - /// # use std::net::Ipv4Addr; - /// # use ipnet::Ipv4Net; - /// # - /// let net: Ipv4Net = "192.168.0.0/24".parse().unwrap(); - /// let net_yes: Ipv4Net = "192.168.0.0/25".parse().unwrap(); - /// let net_no: Ipv4Net = "192.168.0.0/23".parse().unwrap(); - /// let ip_yes: Ipv4Addr = "192.168.0.1".parse().unwrap(); - /// let ip_no: Ipv4Addr = "192.168.1.0".parse().unwrap(); - /// - /// assert!(net.contains(&net)); - /// assert!(net.contains(&net_yes)); - /// assert!(!net.contains(&net_no)); - /// assert!(net.contains(&ip_yes)); - /// assert!(!net.contains(&ip_no)); - /// ``` - pub fn contains<T>(&self, other: T) -> bool where Self: Contains<T> { - Contains::contains(self, other) - } - - // It is significantly faster to work on u32 than Ipv4Addr. - fn interval(&self) -> (u32, u32) { - ( - u32::from(self.network()), - u32::from(self.broadcast()).saturating_add(1), - ) - } - - /// Aggregate a `Vec` of `Ipv4Net`s and return the result as a new - /// `Vec`. - /// - /// # Examples - /// - /// ``` - /// # use ipnet::Ipv4Net; - /// # - /// let nets = vec![ - /// "10.0.0.0/24".parse::<Ipv4Net>().unwrap(), - /// "10.0.1.0/24".parse().unwrap(), - /// "10.0.2.0/24".parse().unwrap(), - /// ]; - /// - /// assert_eq!(Ipv4Net::aggregate(&nets), vec![ - /// "10.0.0.0/23".parse::<Ipv4Net>().unwrap(), - /// "10.0.2.0/24".parse().unwrap(), - /// ]); - pub fn aggregate(networks: &Vec<Ipv4Net>) -> Vec<Ipv4Net> { - let mut intervals: Vec<(_, _)> = networks.iter().map(|n| n.interval()).collect(); - intervals = merge_intervals(intervals); - let mut res: Vec<Ipv4Net> = Vec::new(); - - for (start, mut end) in intervals { - if end != core::u32::MAX { - end = end.saturating_sub(1) - } - let iter = Ipv4Subnets::new(start.into(), end.into(), 0); - res.extend(iter); - } - res - } -} - -impl Default for Ipv4Net { - fn default() -> Self { - Self { - addr: Ipv4Addr::from(0), - prefix_len: 0, - } - } -} - -impl fmt::Debug for Ipv4Net { - fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { - fmt::Display::fmt(self, fmt) - } -} - -impl fmt::Display for Ipv4Net { - fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { - write!(fmt, "{}/{}", self.addr, self.prefix_len) - } -} - -impl From<Ipv4Addr> for Ipv4Net { - fn from(addr: Ipv4Addr) -> Ipv4Net { - Ipv4Net { addr, prefix_len: 32 } - } -} - -impl Ipv6Net { - /// Creates a new IPv6 network address from an `Ipv6Addr` and prefix - /// length. - /// - /// # Examples - /// - /// ``` - /// use std::net::Ipv6Addr; - /// use ipnet::{Ipv6Net, PrefixLenError}; - /// - /// let net = Ipv6Net::new(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 24); - /// assert!(net.is_ok()); - /// - /// let bad_prefix_len = Ipv6Net::new(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 129); - /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); - /// ``` - #[inline] - pub const fn new(ip: Ipv6Addr, prefix_len: u8) -> Result<Ipv6Net, PrefixLenError> { - if prefix_len > 128 { - return Err(PrefixLenError); - } - Ok(Ipv6Net { addr: ip, prefix_len: prefix_len }) - } - - /// Creates a new IPv6 network address from an `Ipv6Addr` and prefix - /// length. If called from a const context it will verify prefix length - /// at compile time. Otherwise it will panic at runtime if prefix length - /// is not less then or equal to 128. - /// - /// # Examples - /// - /// ``` - /// use std::net::Ipv6Addr; - /// use ipnet::{Ipv6Net}; - /// - /// // This code is verified at compile time: - /// const NET: Ipv6Net = Ipv6Net::new_assert(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 24); - /// assert_eq!(NET.prefix_len(), 24); - /// - /// // This code is verified at runtime: - /// let net = Ipv6Net::new_assert(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 24); - /// assert_eq!(net.prefix_len(), 24); - /// - /// // This code does not compile: - /// // const BAD_PREFIX_LEN: Ipv6Net = Ipv6Net::new_assert(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 129); - /// - /// // This code panics at runtime: - /// // let bad_prefix_len = Ipv6Addr::new_assert(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 129); - /// ``` - #[inline] - pub const fn new_assert(ip: Ipv6Addr, prefix_len: u8) -> Ipv6Net { - assert!(prefix_len <= 128, "PREFIX_LEN must be less then or equal to 128 for Ipv6Net"); - Ipv6Net { addr: ip, prefix_len: prefix_len } - } - - /// Creates a new IPv6 network address from an `Ipv6Addr` and netmask. - /// - /// # Examples - /// - /// ``` - /// use std::net::Ipv6Addr; - /// use ipnet::{Ipv6Net, PrefixLenError}; - /// - /// let net = Ipv6Net::with_netmask(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), Ipv6Addr::from(0xffff_ff00_0000_0000_0000_0000_0000_0000)); - /// assert!(net.is_ok()); - /// - /// let bad_prefix_len = Ipv6Net::with_netmask(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), Ipv6Addr::from(0xffff_ff00_0000_0000_0001_0000_0000_0000)); - /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); - /// ``` - pub fn with_netmask(ip: Ipv6Addr, netmask: Ipv6Addr) -> Result<Ipv6Net, PrefixLenError> { - let prefix = ipv6_mask_to_prefix(netmask)?; - Self::new(ip, prefix) - } - - /// Returns a copy of the network with the address truncated to the - /// prefix length. - /// - /// # Examples - /// - /// ``` - /// # use ipnet::Ipv6Net; - /// # - /// assert_eq!( - /// "fd00::1:2:3:4/16".parse::<Ipv6Net>().unwrap().trunc(), - /// "fd00::/16".parse().unwrap() - /// ); - /// ``` - pub fn trunc(&self) -> Ipv6Net { - Ipv6Net::new(self.network(), self.prefix_len).unwrap() - } - - /// Returns the address. - #[inline] - pub const fn addr(&self) -> Ipv6Addr { - self.addr - } - - /// Returns the prefix length. - #[inline] - pub const fn prefix_len(&self) -> u8 { - self.prefix_len - } - - /// Returns the maximum valid prefix length. - #[inline] - pub const fn max_prefix_len(&self) -> u8 { - 128 - } - - /// Returns the network mask. - /// - /// # Examples - /// - /// ``` - /// # use std::net::Ipv6Addr; - /// # use ipnet::Ipv6Net; - /// # - /// let net: Ipv6Net = "fd00::/24".parse().unwrap(); - /// assert_eq!(Ok(net.netmask()), "ffff:ff00::".parse()); - /// ``` - pub fn netmask(&self) -> Ipv6Addr { - self.netmask_u128().into() - } - - fn netmask_u128(&self) -> u128 { - u128::max_value().checked_shl((128 - self.prefix_len) as u32).unwrap_or(u128::min_value()) - } - - /// Returns the host mask. - /// - /// # Examples - /// - /// ``` - /// # use std::net::Ipv6Addr; - /// # use ipnet::Ipv6Net; - /// # - /// let net: Ipv6Net = "fd00::/24".parse().unwrap(); - /// assert_eq!(Ok(net.hostmask()), "::ff:ffff:ffff:ffff:ffff:ffff:ffff".parse()); - /// ``` - pub fn hostmask(&self) -> Ipv6Addr { - self.hostmask_u128().into() - } - - fn hostmask_u128(&self) -> u128 { - u128::max_value().checked_shr(self.prefix_len as u32).unwrap_or(u128::min_value()) - } - - /// Returns the network address. - /// - /// # Examples - /// - /// ``` - /// # use std::net::Ipv6Addr; - /// # use ipnet::Ipv6Net; - /// # - /// let net: Ipv6Net = "fd00:1234:5678::/24".parse().unwrap(); - /// assert_eq!(Ok(net.network()), "fd00:1200::".parse()); - /// ``` - pub fn network(&self) -> Ipv6Addr { - (u128::from(self.addr) & self.netmask_u128()).into() - } - - /// Returns the last address. - /// - /// Technically there is no such thing as a broadcast address for - /// IPv6. The name is used for consistency with colloquial usage. - /// - /// # Examples - /// - /// ``` - /// # use std::net::Ipv6Addr; - /// # use ipnet::Ipv6Net; - /// # - /// let net: Ipv6Net = "fd00:1234:5678::/24".parse().unwrap(); - /// assert_eq!(Ok(net.broadcast()), "fd00:12ff:ffff:ffff:ffff:ffff:ffff:ffff".parse()); - /// ``` - pub fn broadcast(&self) -> Ipv6Addr { - (u128::from(self.addr) | self.hostmask_u128()).into() - } - - /// Returns the `Ipv6Net` that contains this one. - /// - /// # Examples - /// - /// ``` - /// # use std::str::FromStr; - /// # use ipnet::Ipv6Net; - /// # - /// let n1: Ipv6Net = "fd00:ff00::/24".parse().unwrap(); - /// let n2: Ipv6Net = "fd00:fe00::/23".parse().unwrap(); - /// let n3: Ipv6Net = "fd00:fe00::/0".parse().unwrap(); - /// - /// assert_eq!(n1.supernet().unwrap(), n2); - /// assert_eq!(n3.supernet(), None); - /// ``` - pub fn supernet(&self) -> Option<Ipv6Net> { - Ipv6Net::new(self.addr, self.prefix_len.wrapping_sub(1)).map(|n| n.trunc()).ok() - } - - /// Returns `true` if this network and the given network are - /// children of the same supernet. - /// - /// # Examples - /// - /// ``` - /// # use ipnet::Ipv6Net; - /// # - /// let n1: Ipv6Net = "fd00::/18".parse().unwrap(); - /// let n2: Ipv6Net = "fd00:4000::/18".parse().unwrap(); - /// let n3: Ipv6Net = "fd00:8000::/18".parse().unwrap(); - /// - /// assert!(n1.is_sibling(&n2)); - /// assert!(!n2.is_sibling(&n3)); - /// ``` - pub fn is_sibling(&self, other: &Ipv6Net) -> bool { - self.prefix_len > 0 && - self.prefix_len == other.prefix_len && - self.supernet().unwrap().contains(other) - } - - /// Return an `Iterator` over the host addresses in this network. - /// - /// # Examples - /// - /// ``` - /// # use std::net::Ipv6Addr; - /// # use ipnet::Ipv6Net; - /// # - /// let net: Ipv6Net = "fd00::/126".parse().unwrap(); - /// assert_eq!(net.hosts().collect::<Vec<Ipv6Addr>>(), vec![ - /// "fd00::".parse::<Ipv6Addr>().unwrap(), - /// "fd00::1".parse().unwrap(), - /// "fd00::2".parse().unwrap(), - /// "fd00::3".parse().unwrap(), - /// ]); - /// ``` - pub fn hosts(&self) -> Ipv6AddrRange { - Ipv6AddrRange::new(self.network(), self.broadcast()) - } - - /// Returns an `Iterator` over the subnets of this network with the - /// given prefix length. - /// - /// # Examples - /// - /// ``` - /// # use ipnet::{Ipv6Net, PrefixLenError}; - /// # - /// let net: Ipv6Net = "fd00::/16".parse().unwrap(); - /// assert_eq!(net.subnets(18).unwrap().collect::<Vec<Ipv6Net>>(), vec![ - /// "fd00::/18".parse::<Ipv6Net>().unwrap(), - /// "fd00:4000::/18".parse().unwrap(), - /// "fd00:8000::/18".parse().unwrap(), - /// "fd00:c000::/18".parse().unwrap(), - /// ]); - /// - /// let net: Ipv6Net = "fd00::/126".parse().unwrap(); - /// assert_eq!(net.subnets(128).unwrap().collect::<Vec<Ipv6Net>>(), vec![ - /// "fd00::/128".parse::<Ipv6Net>().unwrap(), - /// "fd00::1/128".parse().unwrap(), - /// "fd00::2/128".parse().unwrap(), - /// "fd00::3/128".parse().unwrap(), - /// ]); - /// - /// let net: Ipv6Net = "fd00::/16".parse().unwrap(); - /// assert_eq!(net.subnets(15), Err(PrefixLenError)); - /// - /// let net: Ipv6Net = "fd00::/16".parse().unwrap(); - /// assert_eq!(net.subnets(129), Err(PrefixLenError)); - /// ``` - pub fn subnets(&self, new_prefix_len: u8) -> Result<Ipv6Subnets, PrefixLenError> { - if self.prefix_len > new_prefix_len || new_prefix_len > 128 { - return Err(PrefixLenError); - } - - Ok(Ipv6Subnets::new( - self.network(), - self.broadcast(), - new_prefix_len, - )) - } - - /// Test if a network address contains either another network - /// address or an IP address. - /// - /// # Examples - /// - /// ``` - /// # use std::net::Ipv6Addr; - /// # use ipnet::Ipv6Net; - /// # - /// let net: Ipv6Net = "fd00::/16".parse().unwrap(); - /// let net_yes: Ipv6Net = "fd00::/17".parse().unwrap(); - /// let net_no: Ipv6Net = "fd00::/15".parse().unwrap(); - /// let ip_yes: Ipv6Addr = "fd00::1".parse().unwrap(); - /// let ip_no: Ipv6Addr = "fd01::".parse().unwrap(); - /// - /// assert!(net.contains(&net)); - /// assert!(net.contains(&net_yes)); - /// assert!(!net.contains(&net_no)); - /// assert!(net.contains(&ip_yes)); - /// assert!(!net.contains(&ip_no)); - /// ``` - pub fn contains<T>(&self, other: T) -> bool where Self: Contains<T> { - Contains::contains(self, other) - } - - // It is significantly faster to work on u128 that Ipv6Addr. - fn interval(&self) -> (u128, u128) { - ( - u128::from(self.network()), - u128::from(self.broadcast()).saturating_add(1), - ) - } - - /// Aggregate a `Vec` of `Ipv6Net`s and return the result as a new - /// `Vec`. - /// - /// # Examples - /// - /// ``` - /// # use ipnet::Ipv6Net; - /// # - /// let nets = vec![ - /// "fd00::/18".parse::<Ipv6Net>().unwrap(), - /// "fd00:4000::/18".parse().unwrap(), - /// "fd00:8000::/18".parse().unwrap(), - /// ]; - /// assert_eq!(Ipv6Net::aggregate(&nets), vec![ - /// "fd00::/17".parse::<Ipv6Net>().unwrap(), - /// "fd00:8000::/18".parse().unwrap(), - /// ]); - /// ``` - pub fn aggregate(networks: &Vec<Ipv6Net>) -> Vec<Ipv6Net> { - let mut intervals: Vec<(_, _)> = networks.iter().map(|n| n.interval()).collect(); - intervals = merge_intervals(intervals); - let mut res: Vec<Ipv6Net> = Vec::new(); - - for (start, mut end) in intervals { - if end != core::u128::MAX { - end = end.saturating_sub(1) - } - let iter = Ipv6Subnets::new(start.into(), end.into(), 0); - res.extend(iter); - } - res - } -} - -impl Default for Ipv6Net { - fn default() -> Self { - Self { - addr: Ipv6Addr::from(0), - prefix_len: 0, - } - } -} - -impl fmt::Debug for Ipv6Net { - fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { - fmt::Display::fmt(self, fmt) - } -} - -impl fmt::Display for Ipv6Net { - fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { - write!(fmt, "{}/{}", self.addr, self.prefix_len) - } -} - -impl From<Ipv6Addr> for Ipv6Net { - fn from(addr: Ipv6Addr) -> Ipv6Net { - Ipv6Net { addr, prefix_len: 128 } - } -} - -/// Provides a method to test if a network address contains either -/// another network address or an IP address. -/// -/// # Examples -/// -/// ``` -/// # use std::net::IpAddr; -/// # use ipnet::IpNet; -/// # -/// let n4_1: IpNet = "10.1.1.0/24".parse().unwrap(); -/// let n4_2: IpNet = "10.1.1.0/26".parse().unwrap(); -/// let n4_3: IpNet = "10.1.2.0/26".parse().unwrap(); -/// let ip4_1: IpAddr = "10.1.1.1".parse().unwrap(); -/// let ip4_2: IpAddr = "10.1.2.1".parse().unwrap(); -/// -/// let n6_1: IpNet = "fd00::/16".parse().unwrap(); -/// let n6_2: IpNet = "fd00::/17".parse().unwrap(); -/// let n6_3: IpNet = "fd01::/17".parse().unwrap(); -/// let ip6_1: IpAddr = "fd00::1".parse().unwrap(); -/// let ip6_2: IpAddr = "fd01::1".parse().unwrap(); -/// -/// assert!(n4_1.contains(&n4_2)); -/// assert!(!n4_1.contains(&n4_3)); -/// assert!(n4_1.contains(&ip4_1)); -/// assert!(!n4_1.contains(&ip4_2)); -/// -/// assert!(n6_1.contains(&n6_2)); -/// assert!(!n6_1.contains(&n6_3)); -/// assert!(n6_1.contains(&ip6_1)); -/// assert!(!n6_1.contains(&ip6_2)); -/// -/// assert!(!n4_1.contains(&n6_1) && !n6_1.contains(&n4_1)); -/// assert!(!n4_1.contains(&ip6_1) && !n6_1.contains(&ip4_1)); -/// ``` -pub trait Contains<T> { - fn contains(&self, other: T) -> bool; -} - -impl<'a> Contains<&'a IpNet> for IpNet { - fn contains(&self, other: &IpNet) -> bool { - match (*self, *other) { - (IpNet::V4(ref a), IpNet::V4(ref b)) => a.contains(b), - (IpNet::V6(ref a), IpNet::V6(ref b)) => a.contains(b), - _ => false, - } - } -} - -impl<'a> Contains<&'a IpAddr> for IpNet { - fn contains(&self, other: &IpAddr) -> bool { - match (*self, *other) { - (IpNet::V4(ref a), IpAddr::V4(ref b)) => a.contains(b), - (IpNet::V6(ref a), IpAddr::V6(ref b)) => a.contains(b), - _ => false, - } - } -} - -impl<'a> Contains<&'a Ipv4Net> for Ipv4Net { - fn contains(&self, other: &'a Ipv4Net) -> bool { - self.network() <= other.network() && other.broadcast() <= self.broadcast() - } -} - -impl<'a> Contains<&'a Ipv4Addr> for Ipv4Net { - fn contains(&self, other: &'a Ipv4Addr) -> bool { - self.network() <= *other && *other <= self.broadcast() - } -} - -impl<'a> Contains<&'a Ipv6Net> for Ipv6Net { - fn contains(&self, other: &'a Ipv6Net) -> bool { - self.network() <= other.network() && other.broadcast() <= self.broadcast() - } -} - -impl<'a> Contains<&'a Ipv6Addr> for Ipv6Net { - fn contains(&self, other: &'a Ipv6Addr) -> bool { - self.network() <= *other && *other <= self.broadcast() - } -} - -/// An `Iterator` that generates IP network addresses, either IPv4 or -/// IPv6. -/// -/// Generates the subnets between the provided `start` and `end` IP -/// addresses inclusive of `end`. Each iteration generates the next -/// network address of the largest valid size it can, while using a -/// prefix length not less than `min_prefix_len`. -/// -/// # Examples -/// -/// ``` -/// # use std::net::{Ipv4Addr, Ipv6Addr}; -/// # use std::str::FromStr; -/// # use ipnet::{IpNet, IpSubnets, Ipv4Subnets, Ipv6Subnets}; -/// let subnets = IpSubnets::from(Ipv4Subnets::new( -/// "10.0.0.0".parse().unwrap(), -/// "10.0.0.239".parse().unwrap(), -/// 26, -/// )); -/// -/// assert_eq!(subnets.collect::<Vec<IpNet>>(), vec![ -/// "10.0.0.0/26".parse().unwrap(), -/// "10.0.0.64/26".parse().unwrap(), -/// "10.0.0.128/26".parse().unwrap(), -/// "10.0.0.192/27".parse().unwrap(), -/// "10.0.0.224/28".parse().unwrap(), -/// ]); -/// -/// let subnets = IpSubnets::from(Ipv6Subnets::new( -/// "fd00::".parse().unwrap(), -/// "fd00:ef:ffff:ffff:ffff:ffff:ffff:ffff".parse().unwrap(), -/// 26, -/// )); -/// -/// assert_eq!(subnets.collect::<Vec<IpNet>>(), vec![ -/// "fd00::/26".parse().unwrap(), -/// "fd00:40::/26".parse().unwrap(), -/// "fd00:80::/26".parse().unwrap(), -/// "fd00:c0::/27".parse().unwrap(), -/// "fd00:e0::/28".parse().unwrap(), -/// ]); -/// ``` -#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] -pub enum IpSubnets { - V4(Ipv4Subnets), - V6(Ipv6Subnets), -} - -/// An `Iterator` that generates IPv4 network addresses. -/// -/// Generates the subnets between the provided `start` and `end` IP -/// addresses inclusive of `end`. Each iteration generates the next -/// network address of the largest valid size it can, while using a -/// prefix length not less than `min_prefix_len`. -/// -/// # Examples -/// -/// ``` -/// # use std::net::Ipv4Addr; -/// # use std::str::FromStr; -/// # use ipnet::{Ipv4Net, Ipv4Subnets}; -/// let subnets = Ipv4Subnets::new( -/// "10.0.0.0".parse().unwrap(), -/// "10.0.0.239".parse().unwrap(), -/// 26, -/// ); -/// -/// assert_eq!(subnets.collect::<Vec<Ipv4Net>>(), vec![ -/// "10.0.0.0/26".parse().unwrap(), -/// "10.0.0.64/26".parse().unwrap(), -/// "10.0.0.128/26".parse().unwrap(), -/// "10.0.0.192/27".parse().unwrap(), -/// "10.0.0.224/28".parse().unwrap(), -/// ]); -/// ``` -#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] -pub struct Ipv4Subnets { - start: Ipv4Addr, - end: Ipv4Addr, // end is inclusive - min_prefix_len: u8, -} - -/// An `Iterator` that generates IPv6 network addresses. -/// -/// Generates the subnets between the provided `start` and `end` IP -/// addresses inclusive of `end`. Each iteration generates the next -/// network address of the largest valid size it can, while using a -/// prefix length not less than `min_prefix_len`. -/// -/// # Examples -/// -/// ``` -/// # use std::net::Ipv6Addr; -/// # use std::str::FromStr; -/// # use ipnet::{Ipv6Net, Ipv6Subnets}; -/// let subnets = Ipv6Subnets::new( -/// "fd00::".parse().unwrap(), -/// "fd00:ef:ffff:ffff:ffff:ffff:ffff:ffff".parse().unwrap(), -/// 26, -/// ); -/// -/// assert_eq!(subnets.collect::<Vec<Ipv6Net>>(), vec![ -/// "fd00::/26".parse().unwrap(), -/// "fd00:40::/26".parse().unwrap(), -/// "fd00:80::/26".parse().unwrap(), -/// "fd00:c0::/27".parse().unwrap(), -/// "fd00:e0::/28".parse().unwrap(), -/// ]); -/// ``` -#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] -pub struct Ipv6Subnets { - start: Ipv6Addr, - end: Ipv6Addr, // end is inclusive - min_prefix_len: u8, -} - -impl Ipv4Subnets { - pub fn new(start: Ipv4Addr, end: Ipv4Addr, min_prefix_len: u8) -> Self { - Ipv4Subnets { - start: start, - end: end, - min_prefix_len: min_prefix_len, - } - } -} - -impl Ipv6Subnets { - pub fn new(start: Ipv6Addr, end: Ipv6Addr, min_prefix_len: u8) -> Self { - Ipv6Subnets { - start: start, - end: end, - min_prefix_len: min_prefix_len, - } - } -} - -impl From<Ipv4Subnets> for IpSubnets { - fn from(i: Ipv4Subnets) -> IpSubnets { - IpSubnets::V4(i) - } -} - -impl From<Ipv6Subnets> for IpSubnets { - fn from(i: Ipv6Subnets) -> IpSubnets { - IpSubnets::V6(i) - } -} - -impl Iterator for IpSubnets { - type Item = IpNet; - - fn next(&mut self) -> Option<Self::Item> { - match *self { - IpSubnets::V4(ref mut a) => a.next().map(IpNet::V4), - IpSubnets::V6(ref mut a) => a.next().map(IpNet::V6), - } - } -} - -fn next_ipv4_subnet(start: Ipv4Addr, end: Ipv4Addr, min_prefix_len: u8) -> Ipv4Net { - let range = end.saturating_sub(start).saturating_add(1); - if range == core::u32::MAX && min_prefix_len == 0 { - Ipv4Net::new(start, min_prefix_len).unwrap() - } - else { - let range_bits = 32u32.saturating_sub(range.leading_zeros()).saturating_sub(1); - let start_tz = u32::from(start).trailing_zeros(); - let new_prefix_len = 32 - min(range_bits, start_tz); - let next_prefix_len = max(new_prefix_len as u8, min_prefix_len); - Ipv4Net::new(start, next_prefix_len).unwrap() - } -} - -fn next_ipv6_subnet(start: Ipv6Addr, end: Ipv6Addr, min_prefix_len: u8) -> Ipv6Net { - let range = end.saturating_sub(start).saturating_add(1); - if range == core::u128::MAX && min_prefix_len == 0 { - Ipv6Net::new(start, min_prefix_len).unwrap() - } - else { - let range = end.saturating_sub(start).saturating_add(1); - let range_bits = 128u32.saturating_sub(range.leading_zeros()).saturating_sub(1); - let start_tz = u128::from(start).trailing_zeros(); - let new_prefix_len = 128 - min(range_bits, start_tz); - let next_prefix_len = max(new_prefix_len as u8, min_prefix_len); - Ipv6Net::new(start, next_prefix_len).unwrap() - } -} - -impl Iterator for Ipv4Subnets { - type Item = Ipv4Net; - - fn next(&mut self) -> Option<Self::Item> { - match self.start.partial_cmp(&self.end) { - Some(Less) => { - let next = next_ipv4_subnet(self.start, self.end, self.min_prefix_len); - self.start = next.broadcast().saturating_add(1); - - // Stop the iterator if we saturated self.start. This - // check worsens performance slightly but overall this - // approach of operating on Ipv4Addr types is faster - // than what we were doing before using Ipv4Net. - if self.start == next.broadcast() { - self.end.replace_zero(); - } - Some(next) - }, - Some(Equal) => { - let next = next_ipv4_subnet(self.start, self.end, self.min_prefix_len); - self.start = next.broadcast().saturating_add(1); - self.end.replace_zero(); - Some(next) - }, - _ => None, - } - } -} - -impl Iterator for Ipv6Subnets { - type Item = Ipv6Net; - - fn next(&mut self) -> Option<Self::Item> { - match self.start.partial_cmp(&self.end) { - Some(Less) => { - let next = next_ipv6_subnet(self.start, self.end, self.min_prefix_len); - self.start = next.broadcast().saturating_add(1); - - // Stop the iterator if we saturated self.start. This - // check worsens performance slightly but overall this - // approach of operating on Ipv6Addr types is faster - // than what we were doing before using Ipv6Net. - if self.start == next.broadcast() { - self.end.replace_zero(); - } - Some(next) - }, - Some(Equal) => { - let next = next_ipv6_subnet(self.start, self.end, self.min_prefix_len); - self.start = next.broadcast().saturating_add(1); - self.end.replace_zero(); - Some(next) - }, - _ => None, - } - } -} - -impl FusedIterator for IpSubnets {} -impl FusedIterator for Ipv4Subnets {} -impl FusedIterator for Ipv6Subnets {} - -// Generic function for merging a vector of intervals. -fn merge_intervals<T: Copy + Ord>(mut intervals: Vec<(T, T)>) -> Vec<(T, T)> { - if intervals.len() == 0 { - return intervals; - } - - intervals.sort(); - let mut res: Vec<(T, T)> = Vec::new(); - let (mut start, mut end) = intervals[0]; - - let mut i = 1; - let len = intervals.len(); - while i < len { - let (next_start, next_end) = intervals[i]; - if end >= next_start { - start = min(start, next_start); - end = max(end, next_end); - } - else { - res.push((start, end)); - start = next_start; - end = next_end; - } - i += 1; - } - - res.push((start, end)); - res -} - -#[cfg(test)] -mod tests { - use super::*; - - macro_rules! make_ipnet_vec { - ($($x:expr),*) => ( vec![$($x.parse::<IpNet>().unwrap(),)*] ); - ($($x:expr,)*) => ( make_ipnet_vec![$($x),*] ); - } - - #[test] - fn test_make_ipnet_vec() { - assert_eq!( - make_ipnet_vec![ - "10.1.1.1/32", "10.2.2.2/24", "10.3.3.3/16", - "fd00::1/128", "fd00::2/127", "fd00::3/126", - ], - vec![ - "10.1.1.1/32".parse().unwrap(), - "10.2.2.2/24".parse().unwrap(), - "10.3.3.3/16".parse().unwrap(), - "fd00::1/128".parse().unwrap(), - "fd00::2/127".parse().unwrap(), - "fd00::3/126".parse().unwrap(), - ] - ); - } - - #[test] - fn test_merge_intervals() { - let v = vec![ - (0, 1), (1, 2), (2, 3), - (11, 12), (13, 14), (10, 15), (11, 13), - (20, 25), (24, 29), - ]; - - let v_ok = vec![ - (0, 3), - (10, 15), - (20, 29), - ]; - - let vv = vec![ - ([0, 1], [0, 2]), ([0, 2], [0, 3]), ([0, 0], [0, 1]), - ([10, 15], [11, 0]), ([10, 0], [10, 16]), - ]; - - let vv_ok = vec![ - ([0, 0], [0, 3]), - ([10, 0], [11, 0]), - ]; - - assert_eq!(merge_intervals(v), v_ok); - assert_eq!(merge_intervals(vv), vv_ok); - } - - macro_rules! make_ipv4_subnets_test { - ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr),*) => ( - #[test] - fn $name() { - let subnets = IpSubnets::from(Ipv4Subnets::new( - $start.parse().unwrap(), - $end.parse().unwrap(), - $min_prefix_len, - )); - let results = make_ipnet_vec![$($x),*]; - assert_eq!(subnets.collect::<Vec<IpNet>>(), results); - } - ); - ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr,)*) => ( - make_ipv4_subnets_test!($name, $start, $end, $min_prefix_len, $($x),*); - ); - } - - macro_rules! make_ipv6_subnets_test { - ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr),*) => ( - #[test] - fn $name() { - let subnets = IpSubnets::from(Ipv6Subnets::new( - $start.parse().unwrap(), - $end.parse().unwrap(), - $min_prefix_len, - )); - let results = make_ipnet_vec![$($x),*]; - assert_eq!(subnets.collect::<Vec<IpNet>>(), results); - } - ); - ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr,)*) => ( - make_ipv6_subnets_test!($name, $start, $end, $min_prefix_len, $($x),*); - ); - } - - make_ipv4_subnets_test!( - test_ipv4_subnets_zero_zero, - "0.0.0.0", "0.0.0.0", 0, - "0.0.0.0/32", - ); - - make_ipv4_subnets_test!( - test_ipv4_subnets_zero_max, - "0.0.0.0", "255.255.255.255", 0, - "0.0.0.0/0", - ); - - make_ipv4_subnets_test!( - test_ipv4_subnets_max_max, - "255.255.255.255", "255.255.255.255", 0, - "255.255.255.255/32", - ); - - make_ipv4_subnets_test!( - test_ipv4_subnets_none, - "0.0.0.1", "0.0.0.0", 0, - ); - - make_ipv4_subnets_test!( - test_ipv4_subnets_one, - "0.0.0.0", "0.0.0.1", 0, - "0.0.0.0/31", - ); - - make_ipv4_subnets_test!( - test_ipv4_subnets_two, - "0.0.0.0", "0.0.0.2", 0, - "0.0.0.0/31", - "0.0.0.2/32", - ); - - make_ipv4_subnets_test!( - test_ipv4_subnets_taper, - "0.0.0.0", "0.0.0.10", 30, - "0.0.0.0/30", - "0.0.0.4/30", - "0.0.0.8/31", - "0.0.0.10/32", - ); - - make_ipv6_subnets_test!( - test_ipv6_subnets_zero_zero, - "::", "::", 0, - "::/128", - ); - - make_ipv6_subnets_test!( - test_ipv6_subnets_zero_max, - "::", "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", 0, - "::/0", - ); - - make_ipv6_subnets_test!( - test_ipv6_subnets_max_max, - "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff", 0, - "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/128", - ); - - make_ipv6_subnets_test!( - test_ipv6_subnets_none, - "::1", "::", 0, - ); - - make_ipv6_subnets_test!( - test_ipv6_subnets_one, - "::", "::1", 0, - "::/127", - ); - - make_ipv6_subnets_test!( - test_ipv6_subnets_two, - "::", "::2", 0, - "::/127", - "::2/128", - ); - - make_ipv6_subnets_test!( - test_ipv6_subnets_taper, - "::", "::a", 126, - "::/126", - "::4/126", - "::8/127", - "::a/128", - ); - - #[test] - fn test_aggregate() { - let ip_nets = make_ipnet_vec![ - "10.0.0.0/24", "10.0.1.0/24", "10.0.1.1/24", "10.0.1.2/24", - "10.0.2.0/24", - "10.1.0.0/24", "10.1.1.0/24", - "192.168.0.0/24", "192.168.1.0/24", "192.168.2.0/24", "192.168.3.0/24", - "fd00::/32", "fd00:1::/32", - "fd00:2::/32", - ]; - - let ip_aggs = make_ipnet_vec![ - "10.0.0.0/23", - "10.0.2.0/24", - "10.1.0.0/23", - "192.168.0.0/22", - "fd00::/31", - "fd00:2::/32", - ]; - - let ipv4_nets: Vec<Ipv4Net> = ip_nets.iter().filter_map(|p| if let IpNet::V4(x) = *p { Some(x) } else { None }).collect(); - let ipv4_aggs: Vec<Ipv4Net> = ip_aggs.iter().filter_map(|p| if let IpNet::V4(x) = *p { Some(x) } else { None }).collect(); - let ipv6_nets: Vec<Ipv6Net> = ip_nets.iter().filter_map(|p| if let IpNet::V6(x) = *p { Some(x) } else { None }).collect(); - let ipv6_aggs: Vec<Ipv6Net> = ip_aggs.iter().filter_map(|p| if let IpNet::V6(x) = *p { Some(x) } else { None }).collect(); - - assert_eq!(IpNet::aggregate(&ip_nets), ip_aggs); - assert_eq!(Ipv4Net::aggregate(&ipv4_nets), ipv4_aggs); - assert_eq!(Ipv6Net::aggregate(&ipv6_nets), ipv6_aggs); - } - - #[test] - fn test_aggregate_issue44() { - let nets: Vec<Ipv4Net> = vec!["128.0.0.0/1".parse().unwrap()]; - assert_eq!(Ipv4Net::aggregate(&nets), nets); - - let nets: Vec<Ipv4Net> = vec!["0.0.0.0/1".parse().unwrap(), "128.0.0.0/1".parse().unwrap()]; - assert_eq!(Ipv4Net::aggregate(&nets), vec!["0.0.0.0/0".parse().unwrap()]); - - let nets: Vec<Ipv6Net> = vec!["8000::/1".parse().unwrap()]; - assert_eq!(Ipv6Net::aggregate(&nets), nets); - - let nets: Vec<Ipv6Net> = vec!["::/1".parse().unwrap(), "8000::/1".parse().unwrap()]; - assert_eq!(Ipv6Net::aggregate(&nets), vec!["::/0".parse().unwrap()]); - } - - #[test] - fn ipnet_default() { - let ipnet: IpNet = "0.0.0.0/0".parse().unwrap(); - assert_eq!(ipnet, IpNet::default()); - } - - #[test] - fn ipv4net_default() { - let ipnet: Ipv4Net = "0.0.0.0/0".parse().unwrap(); - assert_eq!(ipnet, Ipv4Net::default()); - } - - #[test] - fn ipv6net_default() { - let ipnet: Ipv6Net = "::/0".parse().unwrap(); - assert_eq!(ipnet, Ipv6Net::default()); - } - - #[test] - fn new_assert() { - const _: Ipv4Net = Ipv4Net::new_assert(Ipv4Addr::new(0, 0, 0, 0), 0); - const _: Ipv4Net = Ipv4Net::new_assert(Ipv4Addr::new(0, 0, 0, 0), 32); - const _: Ipv6Net = Ipv6Net::new_assert(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0), 0); - const _: Ipv6Net = Ipv6Net::new_assert(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0), 128); - - let _ = Ipv4Net::new_assert(Ipv4Addr::new(0, 0, 0, 0), 0); - let _ = Ipv4Net::new_assert(Ipv4Addr::new(0, 0, 0, 0), 32); - let _ = Ipv6Net::new_assert(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0), 0); - let _ = Ipv6Net::new_assert(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0), 128); - } - - #[test] - #[should_panic] - fn ipv4net_new_assert_panics() { - let _ = Ipv4Net::new_assert(Ipv4Addr::new(0, 0, 0, 0), 33); - } - - #[test] - #[should_panic] - fn ipv6net_new_assert_panics() { - let _ = Ipv6Net::new_assert(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0), 129); - } -} |
