diff options
Diffstat (limited to 'vendor/indexmap/src/set.rs')
| -rw-r--r-- | vendor/indexmap/src/set.rs | 1301 |
1 files changed, 0 insertions, 1301 deletions
diff --git a/vendor/indexmap/src/set.rs b/vendor/indexmap/src/set.rs deleted file mode 100644 index 1be248eb..00000000 --- a/vendor/indexmap/src/set.rs +++ /dev/null @@ -1,1301 +0,0 @@ -//! A hash set implemented using [`IndexMap`] - -mod iter; -mod mutable; -mod slice; - -#[cfg(test)] -mod tests; - -pub use self::iter::{ - Difference, Drain, Intersection, IntoIter, Iter, Splice, SymmetricDifference, Union, -}; -pub use self::mutable::MutableValues; -pub use self::slice::Slice; - -#[cfg(feature = "rayon")] -pub use crate::rayon::set as rayon; -use crate::TryReserveError; - -#[cfg(feature = "std")] -use std::collections::hash_map::RandomState; - -use crate::util::try_simplify_range; -use alloc::boxed::Box; -use alloc::vec::Vec; -use core::cmp::Ordering; -use core::fmt; -use core::hash::{BuildHasher, Hash}; -use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub}; - -use super::{Entries, Equivalent, IndexMap}; - -type Bucket<T> = super::Bucket<T, ()>; - -/// A hash set where the iteration order of the values is independent of their -/// hash values. -/// -/// The interface is closely compatible with the standard -/// [`HashSet`][std::collections::HashSet], -/// but also has additional features. -/// -/// # Order -/// -/// The values have a consistent order that is determined by the sequence of -/// insertion and removal calls on the set. The order does not depend on the -/// values or the hash function at all. Note that insertion order and value -/// are not affected if a re-insertion is attempted once an element is -/// already present. -/// -/// All iterators traverse the set *in order*. Set operation iterators like -/// [`IndexSet::union`] produce a concatenated order, as do their matching "bitwise" -/// operators. See their documentation for specifics. -/// -/// The insertion order is preserved, with **notable exceptions** like the -/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods. -/// Methods such as [`.sort_by()`][Self::sort_by] of -/// course result in a new order, depending on the sorting order. -/// -/// # Indices -/// -/// The values are indexed in a compact range without holes in the range -/// `0..self.len()`. For example, the method `.get_full` looks up the index for -/// a value, and the method `.get_index` looks up the value by index. -/// -/// # Complexity -/// -/// Internally, `IndexSet<T, S>` just holds an [`IndexMap<T, (), S>`](IndexMap). Thus the complexity -/// of the two are the same for most methods. -/// -/// # Examples -/// -/// ``` -/// use indexmap::IndexSet; -/// -/// // Collects which letters appear in a sentence. -/// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect(); -/// -/// assert!(letters.contains(&'s')); -/// assert!(letters.contains(&'t')); -/// assert!(letters.contains(&'u')); -/// assert!(!letters.contains(&'y')); -/// ``` -#[cfg(feature = "std")] -pub struct IndexSet<T, S = RandomState> { - pub(crate) map: IndexMap<T, (), S>, -} -#[cfg(not(feature = "std"))] -pub struct IndexSet<T, S> { - pub(crate) map: IndexMap<T, (), S>, -} - -impl<T, S> Clone for IndexSet<T, S> -where - T: Clone, - S: Clone, -{ - fn clone(&self) -> Self { - IndexSet { - map: self.map.clone(), - } - } - - fn clone_from(&mut self, other: &Self) { - self.map.clone_from(&other.map); - } -} - -impl<T, S> Entries for IndexSet<T, S> { - type Entry = Bucket<T>; - - #[inline] - fn into_entries(self) -> Vec<Self::Entry> { - self.map.into_entries() - } - - #[inline] - fn as_entries(&self) -> &[Self::Entry] { - self.map.as_entries() - } - - #[inline] - fn as_entries_mut(&mut self) -> &mut [Self::Entry] { - self.map.as_entries_mut() - } - - fn with_entries<F>(&mut self, f: F) - where - F: FnOnce(&mut [Self::Entry]), - { - self.map.with_entries(f); - } -} - -impl<T, S> fmt::Debug for IndexSet<T, S> -where - T: fmt::Debug, -{ - #[cfg(not(feature = "test_debug"))] - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_set().entries(self.iter()).finish() - } - - #[cfg(feature = "test_debug")] - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - // Let the inner `IndexMap` print all of its details - f.debug_struct("IndexSet").field("map", &self.map).finish() - } -} - -#[cfg(feature = "std")] -#[cfg_attr(docsrs, doc(cfg(feature = "std")))] -impl<T> IndexSet<T> { - /// Create a new set. (Does not allocate.) - pub fn new() -> Self { - IndexSet { - map: IndexMap::new(), - } - } - - /// Create a new set with capacity for `n` elements. - /// (Does not allocate if `n` is zero.) - /// - /// Computes in **O(n)** time. - pub fn with_capacity(n: usize) -> Self { - IndexSet { - map: IndexMap::with_capacity(n), - } - } -} - -impl<T, S> IndexSet<T, S> { - /// Create a new set with capacity for `n` elements. - /// (Does not allocate if `n` is zero.) - /// - /// Computes in **O(n)** time. - pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self { - IndexSet { - map: IndexMap::with_capacity_and_hasher(n, hash_builder), - } - } - - /// Create a new set with `hash_builder`. - /// - /// This function is `const`, so it - /// can be called in `static` contexts. - pub const fn with_hasher(hash_builder: S) -> Self { - IndexSet { - map: IndexMap::with_hasher(hash_builder), - } - } - - /// Return the number of elements the set can hold without reallocating. - /// - /// This number is a lower bound; the set might be able to hold more, - /// but is guaranteed to be able to hold at least this many. - /// - /// Computes in **O(1)** time. - pub fn capacity(&self) -> usize { - self.map.capacity() - } - - /// Return a reference to the set's `BuildHasher`. - pub fn hasher(&self) -> &S { - self.map.hasher() - } - - /// Return the number of elements in the set. - /// - /// Computes in **O(1)** time. - pub fn len(&self) -> usize { - self.map.len() - } - - /// Returns true if the set contains no elements. - /// - /// Computes in **O(1)** time. - pub fn is_empty(&self) -> bool { - self.map.is_empty() - } - - /// Return an iterator over the values of the set, in their order - pub fn iter(&self) -> Iter<'_, T> { - Iter::new(self.as_entries()) - } - - /// Remove all elements in the set, while preserving its capacity. - /// - /// Computes in **O(n)** time. - pub fn clear(&mut self) { - self.map.clear(); - } - - /// Shortens the set, keeping the first `len` elements and dropping the rest. - /// - /// If `len` is greater than the set's current length, this has no effect. - pub fn truncate(&mut self, len: usize) { - self.map.truncate(len); - } - - /// Clears the `IndexSet` in the given index range, returning those values - /// as a drain iterator. - /// - /// The range may be any type that implements [`RangeBounds<usize>`], - /// including all of the `std::ops::Range*` types, or even a tuple pair of - /// `Bound` start and end values. To drain the set entirely, use `RangeFull` - /// like `set.drain(..)`. - /// - /// This shifts down all entries following the drained range to fill the - /// gap, and keeps the allocated memory for reuse. - /// - /// ***Panics*** if the starting point is greater than the end point or if - /// the end point is greater than the length of the set. - #[track_caller] - pub fn drain<R>(&mut self, range: R) -> Drain<'_, T> - where - R: RangeBounds<usize>, - { - Drain::new(self.map.core.drain(range)) - } - - /// Splits the collection into two at the given index. - /// - /// Returns a newly allocated set containing the elements in the range - /// `[at, len)`. After the call, the original set will be left containing - /// the elements `[0, at)` with its previous capacity unchanged. - /// - /// ***Panics*** if `at > len`. - #[track_caller] - pub fn split_off(&mut self, at: usize) -> Self - where - S: Clone, - { - Self { - map: self.map.split_off(at), - } - } - - /// Reserve capacity for `additional` more values. - /// - /// Computes in **O(n)** time. - pub fn reserve(&mut self, additional: usize) { - self.map.reserve(additional); - } - - /// Reserve capacity for `additional` more values, without over-allocating. - /// - /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid - /// frequent re-allocations. However, the underlying data structures may still have internal - /// capacity requirements, and the allocator itself may give more space than requested, so this - /// cannot be relied upon to be precisely minimal. - /// - /// Computes in **O(n)** time. - pub fn reserve_exact(&mut self, additional: usize) { - self.map.reserve_exact(additional); - } - - /// Try to reserve capacity for `additional` more values. - /// - /// Computes in **O(n)** time. - pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { - self.map.try_reserve(additional) - } - - /// Try to reserve capacity for `additional` more values, without over-allocating. - /// - /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid - /// frequent re-allocations. However, the underlying data structures may still have internal - /// capacity requirements, and the allocator itself may give more space than requested, so this - /// cannot be relied upon to be precisely minimal. - /// - /// Computes in **O(n)** time. - pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { - self.map.try_reserve_exact(additional) - } - - /// Shrink the capacity of the set as much as possible. - /// - /// Computes in **O(n)** time. - pub fn shrink_to_fit(&mut self) { - self.map.shrink_to_fit(); - } - - /// Shrink the capacity of the set with a lower limit. - /// - /// Computes in **O(n)** time. - pub fn shrink_to(&mut self, min_capacity: usize) { - self.map.shrink_to(min_capacity); - } -} - -impl<T, S> IndexSet<T, S> -where - T: Hash + Eq, - S: BuildHasher, -{ - /// Insert the value into the set. - /// - /// If an equivalent item already exists in the set, it returns - /// `false` leaving the original value in the set and without - /// altering its insertion order. Otherwise, it inserts the new - /// item and returns `true`. - /// - /// Computes in **O(1)** time (amortized average). - pub fn insert(&mut self, value: T) -> bool { - self.map.insert(value, ()).is_none() - } - - /// Insert the value into the set, and get its index. - /// - /// If an equivalent item already exists in the set, it returns - /// the index of the existing item and `false`, leaving the - /// original value in the set and without altering its insertion - /// order. Otherwise, it inserts the new item and returns the index - /// of the inserted item and `true`. - /// - /// Computes in **O(1)** time (amortized average). - pub fn insert_full(&mut self, value: T) -> (usize, bool) { - let (index, existing) = self.map.insert_full(value, ()); - (index, existing.is_none()) - } - - /// Insert the value into the set at its ordered position among sorted values. - /// - /// This is equivalent to finding the position with - /// [`binary_search`][Self::binary_search], and if needed calling - /// [`insert_before`][Self::insert_before] for a new value. - /// - /// If the sorted item is found in the set, it returns the index of that - /// existing item and `false`, without any change. Otherwise, it inserts the - /// new item and returns its sorted index and `true`. - /// - /// If the existing items are **not** already sorted, then the insertion - /// index is unspecified (like [`slice::binary_search`]), but the value - /// is moved to or inserted at that position regardless. - /// - /// Computes in **O(n)** time (average). Instead of repeating calls to - /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert] - /// or [`extend`][Self::extend] and only call [`sort`][Self::sort] or - /// [`sort_unstable`][Self::sort_unstable] once. - pub fn insert_sorted(&mut self, value: T) -> (usize, bool) - where - T: Ord, - { - let (index, existing) = self.map.insert_sorted(value, ()); - (index, existing.is_none()) - } - - /// Insert the value into the set before the value at the given index, or at the end. - /// - /// If an equivalent item already exists in the set, it returns `false` leaving the - /// original value in the set, but moved to the new position. The returned index - /// will either be the given index or one less, depending on how the value moved. - /// (See [`shift_insert`](Self::shift_insert) for different behavior here.) - /// - /// Otherwise, it inserts the new value exactly at the given index and returns `true`. - /// - /// ***Panics*** if `index` is out of bounds. - /// Valid indices are `0..=set.len()` (inclusive). - /// - /// Computes in **O(n)** time (average). - /// - /// # Examples - /// - /// ``` - /// use indexmap::IndexSet; - /// let mut set: IndexSet<char> = ('a'..='z').collect(); - /// - /// // The new value '*' goes exactly at the given index. - /// assert_eq!(set.get_index_of(&'*'), None); - /// assert_eq!(set.insert_before(10, '*'), (10, true)); - /// assert_eq!(set.get_index_of(&'*'), Some(10)); - /// - /// // Moving the value 'a' up will shift others down, so this moves *before* 10 to index 9. - /// assert_eq!(set.insert_before(10, 'a'), (9, false)); - /// assert_eq!(set.get_index_of(&'a'), Some(9)); - /// assert_eq!(set.get_index_of(&'*'), Some(10)); - /// - /// // Moving the value 'z' down will shift others up, so this moves to exactly 10. - /// assert_eq!(set.insert_before(10, 'z'), (10, false)); - /// assert_eq!(set.get_index_of(&'z'), Some(10)); - /// assert_eq!(set.get_index_of(&'*'), Some(11)); - /// - /// // Moving or inserting before the endpoint is also valid. - /// assert_eq!(set.len(), 27); - /// assert_eq!(set.insert_before(set.len(), '*'), (26, false)); - /// assert_eq!(set.get_index_of(&'*'), Some(26)); - /// assert_eq!(set.insert_before(set.len(), '+'), (27, true)); - /// assert_eq!(set.get_index_of(&'+'), Some(27)); - /// assert_eq!(set.len(), 28); - /// ``` - #[track_caller] - pub fn insert_before(&mut self, index: usize, value: T) -> (usize, bool) { - let (index, existing) = self.map.insert_before(index, value, ()); - (index, existing.is_none()) - } - - /// Insert the value into the set at the given index. - /// - /// If an equivalent item already exists in the set, it returns `false` leaving - /// the original value in the set, but moved to the given index. - /// Note that existing values **cannot** be moved to `index == set.len()`! - /// (See [`insert_before`](Self::insert_before) for different behavior here.) - /// - /// Otherwise, it inserts the new value at the given index and returns `true`. - /// - /// ***Panics*** if `index` is out of bounds. - /// Valid indices are `0..set.len()` (exclusive) when moving an existing value, or - /// `0..=set.len()` (inclusive) when inserting a new value. - /// - /// Computes in **O(n)** time (average). - /// - /// # Examples - /// - /// ``` - /// use indexmap::IndexSet; - /// let mut set: IndexSet<char> = ('a'..='z').collect(); - /// - /// // The new value '*' goes exactly at the given index. - /// assert_eq!(set.get_index_of(&'*'), None); - /// assert_eq!(set.shift_insert(10, '*'), true); - /// assert_eq!(set.get_index_of(&'*'), Some(10)); - /// - /// // Moving the value 'a' up to 10 will shift others down, including the '*' that was at 10. - /// assert_eq!(set.shift_insert(10, 'a'), false); - /// assert_eq!(set.get_index_of(&'a'), Some(10)); - /// assert_eq!(set.get_index_of(&'*'), Some(9)); - /// - /// // Moving the value 'z' down to 9 will shift others up, including the '*' that was at 9. - /// assert_eq!(set.shift_insert(9, 'z'), false); - /// assert_eq!(set.get_index_of(&'z'), Some(9)); - /// assert_eq!(set.get_index_of(&'*'), Some(10)); - /// - /// // Existing values can move to len-1 at most, but new values can insert at the endpoint. - /// assert_eq!(set.len(), 27); - /// assert_eq!(set.shift_insert(set.len() - 1, '*'), false); - /// assert_eq!(set.get_index_of(&'*'), Some(26)); - /// assert_eq!(set.shift_insert(set.len(), '+'), true); - /// assert_eq!(set.get_index_of(&'+'), Some(27)); - /// assert_eq!(set.len(), 28); - /// ``` - /// - /// ```should_panic - /// use indexmap::IndexSet; - /// let mut set: IndexSet<char> = ('a'..='z').collect(); - /// - /// // This is an invalid index for moving an existing value! - /// set.shift_insert(set.len(), 'a'); - /// ``` - #[track_caller] - pub fn shift_insert(&mut self, index: usize, value: T) -> bool { - self.map.shift_insert(index, value, ()).is_none() - } - - /// Adds a value to the set, replacing the existing value, if any, that is - /// equal to the given one, without altering its insertion order. Returns - /// the replaced value. - /// - /// Computes in **O(1)** time (average). - pub fn replace(&mut self, value: T) -> Option<T> { - self.replace_full(value).1 - } - - /// Adds a value to the set, replacing the existing value, if any, that is - /// equal to the given one, without altering its insertion order. Returns - /// the index of the item and its replaced value. - /// - /// Computes in **O(1)** time (average). - pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) { - let hash = self.map.hash(&value); - match self.map.core.replace_full(hash, value, ()) { - (i, Some((replaced, ()))) => (i, Some(replaced)), - (i, None) => (i, None), - } - } - - /// Return an iterator over the values that are in `self` but not `other`. - /// - /// Values are produced in the same order that they appear in `self`. - pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2> - where - S2: BuildHasher, - { - Difference::new(self, other) - } - - /// Return an iterator over the values that are in `self` or `other`, - /// but not in both. - /// - /// Values from `self` are produced in their original order, followed by - /// values from `other` in their original order. - pub fn symmetric_difference<'a, S2>( - &'a self, - other: &'a IndexSet<T, S2>, - ) -> SymmetricDifference<'a, T, S, S2> - where - S2: BuildHasher, - { - SymmetricDifference::new(self, other) - } - - /// Return an iterator over the values that are in both `self` and `other`. - /// - /// Values are produced in the same order that they appear in `self`. - pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2> - where - S2: BuildHasher, - { - Intersection::new(self, other) - } - - /// Return an iterator over all values that are in `self` or `other`. - /// - /// Values from `self` are produced in their original order, followed by - /// values that are unique to `other` in their original order. - pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S> - where - S2: BuildHasher, - { - Union::new(self, other) - } - - /// Creates a splicing iterator that replaces the specified range in the set - /// with the given `replace_with` iterator and yields the removed items. - /// `replace_with` does not need to be the same length as `range`. - /// - /// The `range` is removed even if the iterator is not consumed until the - /// end. It is unspecified how many elements are removed from the set if the - /// `Splice` value is leaked. - /// - /// The input iterator `replace_with` is only consumed when the `Splice` - /// value is dropped. If a value from the iterator matches an existing entry - /// in the set (outside of `range`), then the original will be unchanged. - /// Otherwise, the new value will be inserted in the replaced `range`. - /// - /// ***Panics*** if the starting point is greater than the end point or if - /// the end point is greater than the length of the set. - /// - /// # Examples - /// - /// ``` - /// use indexmap::IndexSet; - /// - /// let mut set = IndexSet::from([0, 1, 2, 3, 4]); - /// let new = [5, 4, 3, 2, 1]; - /// let removed: Vec<_> = set.splice(2..4, new).collect(); - /// - /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted. - /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4])); - /// assert_eq!(removed, &[2, 3]); - /// ``` - #[track_caller] - pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S> - where - R: RangeBounds<usize>, - I: IntoIterator<Item = T>, - { - Splice::new(self, range, replace_with.into_iter()) - } - - /// Moves all values from `other` into `self`, leaving `other` empty. - /// - /// This is equivalent to calling [`insert`][Self::insert] for each value - /// from `other` in order, which means that values that already exist - /// in `self` are unchanged in their current position. - /// - /// See also [`union`][Self::union] to iterate the combined values by - /// reference, without modifying `self` or `other`. - /// - /// # Examples - /// - /// ``` - /// use indexmap::IndexSet; - /// - /// let mut a = IndexSet::from([3, 2, 1]); - /// let mut b = IndexSet::from([3, 4, 5]); - /// let old_capacity = b.capacity(); - /// - /// a.append(&mut b); - /// - /// assert_eq!(a.len(), 5); - /// assert_eq!(b.len(), 0); - /// assert_eq!(b.capacity(), old_capacity); - /// - /// assert!(a.iter().eq(&[3, 2, 1, 4, 5])); - /// ``` - pub fn append<S2>(&mut self, other: &mut IndexSet<T, S2>) { - self.map.append(&mut other.map); - } -} - -impl<T, S> IndexSet<T, S> -where - S: BuildHasher, -{ - /// Return `true` if an equivalent to `value` exists in the set. - /// - /// Computes in **O(1)** time (average). - pub fn contains<Q>(&self, value: &Q) -> bool - where - Q: ?Sized + Hash + Equivalent<T>, - { - self.map.contains_key(value) - } - - /// Return a reference to the value stored in the set, if it is present, - /// else `None`. - /// - /// Computes in **O(1)** time (average). - pub fn get<Q>(&self, value: &Q) -> Option<&T> - where - Q: ?Sized + Hash + Equivalent<T>, - { - self.map.get_key_value(value).map(|(x, &())| x) - } - - /// Return item index and value - pub fn get_full<Q>(&self, value: &Q) -> Option<(usize, &T)> - where - Q: ?Sized + Hash + Equivalent<T>, - { - self.map.get_full(value).map(|(i, x, &())| (i, x)) - } - - /// Return item index, if it exists in the set - /// - /// Computes in **O(1)** time (average). - pub fn get_index_of<Q>(&self, value: &Q) -> Option<usize> - where - Q: ?Sized + Hash + Equivalent<T>, - { - self.map.get_index_of(value) - } - - /// Remove the value from the set, and return `true` if it was present. - /// - /// **NOTE:** This is equivalent to [`.swap_remove(value)`][Self::swap_remove], replacing this - /// value's position with the last element, and it is deprecated in favor of calling that - /// explicitly. If you need to preserve the relative order of the values in the set, use - /// [`.shift_remove(value)`][Self::shift_remove] instead. - #[deprecated(note = "`remove` disrupts the set order -- \ - use `swap_remove` or `shift_remove` for explicit behavior.")] - pub fn remove<Q>(&mut self, value: &Q) -> bool - where - Q: ?Sized + Hash + Equivalent<T>, - { - self.swap_remove(value) - } - - /// Remove the value from the set, and return `true` if it was present. - /// - /// Like [`Vec::swap_remove`], the value is removed by swapping it with the - /// last element of the set and popping it off. **This perturbs - /// the position of what used to be the last element!** - /// - /// Return `false` if `value` was not in the set. - /// - /// Computes in **O(1)** time (average). - pub fn swap_remove<Q>(&mut self, value: &Q) -> bool - where - Q: ?Sized + Hash + Equivalent<T>, - { - self.map.swap_remove(value).is_some() - } - - /// Remove the value from the set, and return `true` if it was present. - /// - /// Like [`Vec::remove`], the value is removed by shifting all of the - /// elements that follow it, preserving their relative order. - /// **This perturbs the index of all of those elements!** - /// - /// Return `false` if `value` was not in the set. - /// - /// Computes in **O(n)** time (average). - pub fn shift_remove<Q>(&mut self, value: &Q) -> bool - where - Q: ?Sized + Hash + Equivalent<T>, - { - self.map.shift_remove(value).is_some() - } - - /// Removes and returns the value in the set, if any, that is equal to the - /// given one. - /// - /// **NOTE:** This is equivalent to [`.swap_take(value)`][Self::swap_take], replacing this - /// value's position with the last element, and it is deprecated in favor of calling that - /// explicitly. If you need to preserve the relative order of the values in the set, use - /// [`.shift_take(value)`][Self::shift_take] instead. - #[deprecated(note = "`take` disrupts the set order -- \ - use `swap_take` or `shift_take` for explicit behavior.")] - pub fn take<Q>(&mut self, value: &Q) -> Option<T> - where - Q: ?Sized + Hash + Equivalent<T>, - { - self.swap_take(value) - } - - /// Removes and returns the value in the set, if any, that is equal to the - /// given one. - /// - /// Like [`Vec::swap_remove`], the value is removed by swapping it with the - /// last element of the set and popping it off. **This perturbs - /// the position of what used to be the last element!** - /// - /// Return `None` if `value` was not in the set. - /// - /// Computes in **O(1)** time (average). - pub fn swap_take<Q>(&mut self, value: &Q) -> Option<T> - where - Q: ?Sized + Hash + Equivalent<T>, - { - self.map.swap_remove_entry(value).map(|(x, ())| x) - } - - /// Removes and returns the value in the set, if any, that is equal to the - /// given one. - /// - /// Like [`Vec::remove`], the value is removed by shifting all of the - /// elements that follow it, preserving their relative order. - /// **This perturbs the index of all of those elements!** - /// - /// Return `None` if `value` was not in the set. - /// - /// Computes in **O(n)** time (average). - pub fn shift_take<Q>(&mut self, value: &Q) -> Option<T> - where - Q: ?Sized + Hash + Equivalent<T>, - { - self.map.shift_remove_entry(value).map(|(x, ())| x) - } - - /// Remove the value from the set return it and the index it had. - /// - /// Like [`Vec::swap_remove`], the value is removed by swapping it with the - /// last element of the set and popping it off. **This perturbs - /// the position of what used to be the last element!** - /// - /// Return `None` if `value` was not in the set. - pub fn swap_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)> - where - Q: ?Sized + Hash + Equivalent<T>, - { - self.map.swap_remove_full(value).map(|(i, x, ())| (i, x)) - } - - /// Remove the value from the set return it and the index it had. - /// - /// Like [`Vec::remove`], the value is removed by shifting all of the - /// elements that follow it, preserving their relative order. - /// **This perturbs the index of all of those elements!** - /// - /// Return `None` if `value` was not in the set. - pub fn shift_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)> - where - Q: ?Sized + Hash + Equivalent<T>, - { - self.map.shift_remove_full(value).map(|(i, x, ())| (i, x)) - } -} - -impl<T, S> IndexSet<T, S> { - /// Remove the last value - /// - /// This preserves the order of the remaining elements. - /// - /// Computes in **O(1)** time (average). - #[doc(alias = "pop_last")] // like `BTreeSet` - pub fn pop(&mut self) -> Option<T> { - self.map.pop().map(|(x, ())| x) - } - - /// Scan through each value in the set and keep those where the - /// closure `keep` returns `true`. - /// - /// The elements are visited in order, and remaining elements keep their - /// order. - /// - /// Computes in **O(n)** time (average). - pub fn retain<F>(&mut self, mut keep: F) - where - F: FnMut(&T) -> bool, - { - self.map.retain(move |x, &mut ()| keep(x)) - } - - /// Sort the set’s values by their default ordering. - /// - /// This is a stable sort -- but equivalent values should not normally coexist in - /// a set at all, so [`sort_unstable`][Self::sort_unstable] is preferred - /// because it is generally faster and doesn't allocate auxiliary memory. - /// - /// See [`sort_by`](Self::sort_by) for details. - pub fn sort(&mut self) - where - T: Ord, - { - self.map.sort_keys() - } - - /// Sort the set’s values in place using the comparison function `cmp`. - /// - /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable. - pub fn sort_by<F>(&mut self, mut cmp: F) - where - F: FnMut(&T, &T) -> Ordering, - { - self.map.sort_by(move |a, _, b, _| cmp(a, b)); - } - - /// Sort the values of the set and return a by-value iterator of - /// the values with the result. - /// - /// The sort is stable. - pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T> - where - F: FnMut(&T, &T) -> Ordering, - { - let mut entries = self.into_entries(); - entries.sort_by(move |a, b| cmp(&a.key, &b.key)); - IntoIter::new(entries) - } - - /// Sort the set's values by their default ordering. - /// - /// See [`sort_unstable_by`](Self::sort_unstable_by) for details. - pub fn sort_unstable(&mut self) - where - T: Ord, - { - self.map.sort_unstable_keys() - } - - /// Sort the set's values in place using the comparison function `cmp`. - /// - /// Computes in **O(n log n)** time. The sort is unstable. - pub fn sort_unstable_by<F>(&mut self, mut cmp: F) - where - F: FnMut(&T, &T) -> Ordering, - { - self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b)) - } - - /// Sort the values of the set and return a by-value iterator of - /// the values with the result. - pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T> - where - F: FnMut(&T, &T) -> Ordering, - { - let mut entries = self.into_entries(); - entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key)); - IntoIter::new(entries) - } - - /// Sort the set’s values in place using a key extraction function. - /// - /// During sorting, the function is called at most once per entry, by using temporary storage - /// to remember the results of its evaluation. The order of calls to the function is - /// unspecified and may change between versions of `indexmap` or the standard library. - /// - /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is - /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable. - pub fn sort_by_cached_key<K, F>(&mut self, mut sort_key: F) - where - K: Ord, - F: FnMut(&T) -> K, - { - self.with_entries(move |entries| { - entries.sort_by_cached_key(move |a| sort_key(&a.key)); - }); - } - - /// Search over a sorted set for a value. - /// - /// Returns the position where that value is present, or the position where it can be inserted - /// to maintain the sort. See [`slice::binary_search`] for more details. - /// - /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up - /// using [`get_index_of`][IndexSet::get_index_of], but this can also position missing values. - pub fn binary_search(&self, x: &T) -> Result<usize, usize> - where - T: Ord, - { - self.as_slice().binary_search(x) - } - - /// Search over a sorted set with a comparator function. - /// - /// Returns the position where that value is present, or the position where it can be inserted - /// to maintain the sort. See [`slice::binary_search_by`] for more details. - /// - /// Computes in **O(log(n))** time. - #[inline] - pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> - where - F: FnMut(&'a T) -> Ordering, - { - self.as_slice().binary_search_by(f) - } - - /// Search over a sorted set with an extraction function. - /// - /// Returns the position where that value is present, or the position where it can be inserted - /// to maintain the sort. See [`slice::binary_search_by_key`] for more details. - /// - /// Computes in **O(log(n))** time. - #[inline] - pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize> - where - F: FnMut(&'a T) -> B, - B: Ord, - { - self.as_slice().binary_search_by_key(b, f) - } - - /// Returns the index of the partition point of a sorted set according to the given predicate - /// (the index of the first element of the second partition). - /// - /// See [`slice::partition_point`] for more details. - /// - /// Computes in **O(log(n))** time. - #[must_use] - pub fn partition_point<P>(&self, pred: P) -> usize - where - P: FnMut(&T) -> bool, - { - self.as_slice().partition_point(pred) - } - - /// Reverses the order of the set’s values in place. - /// - /// Computes in **O(n)** time and **O(1)** space. - pub fn reverse(&mut self) { - self.map.reverse() - } - - /// Returns a slice of all the values in the set. - /// - /// Computes in **O(1)** time. - pub fn as_slice(&self) -> &Slice<T> { - Slice::from_slice(self.as_entries()) - } - - /// Converts into a boxed slice of all the values in the set. - /// - /// Note that this will drop the inner hash table and any excess capacity. - pub fn into_boxed_slice(self) -> Box<Slice<T>> { - Slice::from_boxed(self.into_entries().into_boxed_slice()) - } - - /// Get a value by index - /// - /// Valid indices are `0 <= index < self.len()`. - /// - /// Computes in **O(1)** time. - pub fn get_index(&self, index: usize) -> Option<&T> { - self.as_entries().get(index).map(Bucket::key_ref) - } - - /// Returns a slice of values in the given range of indices. - /// - /// Valid indices are `0 <= index < self.len()`. - /// - /// Computes in **O(1)** time. - pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<T>> { - let entries = self.as_entries(); - let range = try_simplify_range(range, entries.len())?; - entries.get(range).map(Slice::from_slice) - } - - /// Get the first value - /// - /// Computes in **O(1)** time. - pub fn first(&self) -> Option<&T> { - self.as_entries().first().map(Bucket::key_ref) - } - - /// Get the last value - /// - /// Computes in **O(1)** time. - pub fn last(&self) -> Option<&T> { - self.as_entries().last().map(Bucket::key_ref) - } - - /// Remove the value by index - /// - /// Valid indices are `0 <= index < self.len()`. - /// - /// Like [`Vec::swap_remove`], the value is removed by swapping it with the - /// last element of the set and popping it off. **This perturbs - /// the position of what used to be the last element!** - /// - /// Computes in **O(1)** time (average). - pub fn swap_remove_index(&mut self, index: usize) -> Option<T> { - self.map.swap_remove_index(index).map(|(x, ())| x) - } - - /// Remove the value by index - /// - /// Valid indices are `0 <= index < self.len()`. - /// - /// Like [`Vec::remove`], the value is removed by shifting all of the - /// elements that follow it, preserving their relative order. - /// **This perturbs the index of all of those elements!** - /// - /// Computes in **O(n)** time (average). - pub fn shift_remove_index(&mut self, index: usize) -> Option<T> { - self.map.shift_remove_index(index).map(|(x, ())| x) - } - - /// Moves the position of a value from one index to another - /// by shifting all other values in-between. - /// - /// * If `from < to`, the other values will shift down while the targeted value moves up. - /// * If `from > to`, the other values will shift up while the targeted value moves down. - /// - /// ***Panics*** if `from` or `to` are out of bounds. - /// - /// Computes in **O(n)** time (average). - #[track_caller] - pub fn move_index(&mut self, from: usize, to: usize) { - self.map.move_index(from, to) - } - - /// Swaps the position of two values in the set. - /// - /// ***Panics*** if `a` or `b` are out of bounds. - /// - /// Computes in **O(1)** time (average). - #[track_caller] - pub fn swap_indices(&mut self, a: usize, b: usize) { - self.map.swap_indices(a, b) - } -} - -/// Access [`IndexSet`] values at indexed positions. -/// -/// # Examples -/// -/// ``` -/// use indexmap::IndexSet; -/// -/// let mut set = IndexSet::new(); -/// for word in "Lorem ipsum dolor sit amet".split_whitespace() { -/// set.insert(word.to_string()); -/// } -/// assert_eq!(set[0], "Lorem"); -/// assert_eq!(set[1], "ipsum"); -/// set.reverse(); -/// assert_eq!(set[0], "amet"); -/// assert_eq!(set[1], "sit"); -/// set.sort(); -/// assert_eq!(set[0], "Lorem"); -/// assert_eq!(set[1], "amet"); -/// ``` -/// -/// ```should_panic -/// use indexmap::IndexSet; -/// -/// let mut set = IndexSet::new(); -/// set.insert("foo"); -/// println!("{:?}", set[10]); // panics! -/// ``` -impl<T, S> Index<usize> for IndexSet<T, S> { - type Output = T; - - /// Returns a reference to the value at the supplied `index`. - /// - /// ***Panics*** if `index` is out of bounds. - fn index(&self, index: usize) -> &T { - self.get_index(index).unwrap_or_else(|| { - panic!( - "index out of bounds: the len is {len} but the index is {index}", - len = self.len() - ); - }) - } -} - -impl<T, S> FromIterator<T> for IndexSet<T, S> -where - T: Hash + Eq, - S: BuildHasher + Default, -{ - fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self { - let iter = iterable.into_iter().map(|x| (x, ())); - IndexSet { - map: IndexMap::from_iter(iter), - } - } -} - -#[cfg(feature = "std")] -#[cfg_attr(docsrs, doc(cfg(feature = "std")))] -impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState> -where - T: Eq + Hash, -{ - /// # Examples - /// - /// ``` - /// use indexmap::IndexSet; - /// - /// let set1 = IndexSet::from([1, 2, 3, 4]); - /// let set2: IndexSet<_> = [1, 2, 3, 4].into(); - /// assert_eq!(set1, set2); - /// ``` - fn from(arr: [T; N]) -> Self { - Self::from_iter(arr) - } -} - -impl<T, S> Extend<T> for IndexSet<T, S> -where - T: Hash + Eq, - S: BuildHasher, -{ - fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) { - let iter = iterable.into_iter().map(|x| (x, ())); - self.map.extend(iter); - } -} - -impl<'a, T, S> Extend<&'a T> for IndexSet<T, S> -where - T: Hash + Eq + Copy + 'a, - S: BuildHasher, -{ - fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) { - let iter = iterable.into_iter().copied(); - self.extend(iter); - } -} - -impl<T, S> Default for IndexSet<T, S> -where - S: Default, -{ - /// Return an empty [`IndexSet`] - fn default() -> Self { - IndexSet { - map: IndexMap::default(), - } - } -} - -impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1> -where - T: Hash + Eq, - S1: BuildHasher, - S2: BuildHasher, -{ - fn eq(&self, other: &IndexSet<T, S2>) -> bool { - self.len() == other.len() && self.is_subset(other) - } -} - -impl<T, S> Eq for IndexSet<T, S> -where - T: Eq + Hash, - S: BuildHasher, -{ -} - -impl<T, S> IndexSet<T, S> -where - T: Eq + Hash, - S: BuildHasher, -{ - /// Returns `true` if `self` has no elements in common with `other`. - pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool - where - S2: BuildHasher, - { - if self.len() <= other.len() { - self.iter().all(move |value| !other.contains(value)) - } else { - other.iter().all(move |value| !self.contains(value)) - } - } - - /// Returns `true` if all elements of `self` are contained in `other`. - pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool - where - S2: BuildHasher, - { - self.len() <= other.len() && self.iter().all(move |value| other.contains(value)) - } - - /// Returns `true` if all elements of `other` are contained in `self`. - pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool - where - S2: BuildHasher, - { - other.is_subset(self) - } -} - -impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1> -where - T: Eq + Hash + Clone, - S1: BuildHasher + Default, - S2: BuildHasher, -{ - type Output = IndexSet<T, S1>; - - /// Returns the set intersection, cloned into a new set. - /// - /// Values are collected in the same order that they appear in `self`. - fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output { - self.intersection(other).cloned().collect() - } -} - -impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1> -where - T: Eq + Hash + Clone, - S1: BuildHasher + Default, - S2: BuildHasher, -{ - type Output = IndexSet<T, S1>; - - /// Returns the set union, cloned into a new set. - /// - /// Values from `self` are collected in their original order, followed by - /// values that are unique to `other` in their original order. - fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output { - self.union(other).cloned().collect() - } -} - -impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1> -where - T: Eq + Hash + Clone, - S1: BuildHasher + Default, - S2: BuildHasher, -{ - type Output = IndexSet<T, S1>; - - /// Returns the set symmetric-difference, cloned into a new set. - /// - /// Values from `self` are collected in their original order, followed by - /// values from `other` in their original order. - fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output { - self.symmetric_difference(other).cloned().collect() - } -} - -impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1> -where - T: Eq + Hash + Clone, - S1: BuildHasher + Default, - S2: BuildHasher, -{ - type Output = IndexSet<T, S1>; - - /// Returns the set difference, cloned into a new set. - /// - /// Values are collected in the same order that they appear in `self`. - fn sub(self, other: &IndexSet<T, S2>) -> Self::Output { - self.difference(other).cloned().collect() - } -} |
