summaryrefslogtreecommitdiff
path: root/vendor/indexmap/src/set.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/indexmap/src/set.rs')
-rw-r--r--vendor/indexmap/src/set.rs1301
1 files changed, 0 insertions, 1301 deletions
diff --git a/vendor/indexmap/src/set.rs b/vendor/indexmap/src/set.rs
deleted file mode 100644
index 1be248eb..00000000
--- a/vendor/indexmap/src/set.rs
+++ /dev/null
@@ -1,1301 +0,0 @@
-//! A hash set implemented using [`IndexMap`]
-
-mod iter;
-mod mutable;
-mod slice;
-
-#[cfg(test)]
-mod tests;
-
-pub use self::iter::{
- Difference, Drain, Intersection, IntoIter, Iter, Splice, SymmetricDifference, Union,
-};
-pub use self::mutable::MutableValues;
-pub use self::slice::Slice;
-
-#[cfg(feature = "rayon")]
-pub use crate::rayon::set as rayon;
-use crate::TryReserveError;
-
-#[cfg(feature = "std")]
-use std::collections::hash_map::RandomState;
-
-use crate::util::try_simplify_range;
-use alloc::boxed::Box;
-use alloc::vec::Vec;
-use core::cmp::Ordering;
-use core::fmt;
-use core::hash::{BuildHasher, Hash};
-use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub};
-
-use super::{Entries, Equivalent, IndexMap};
-
-type Bucket<T> = super::Bucket<T, ()>;
-
-/// A hash set where the iteration order of the values is independent of their
-/// hash values.
-///
-/// The interface is closely compatible with the standard
-/// [`HashSet`][std::collections::HashSet],
-/// but also has additional features.
-///
-/// # Order
-///
-/// The values have a consistent order that is determined by the sequence of
-/// insertion and removal calls on the set. The order does not depend on the
-/// values or the hash function at all. Note that insertion order and value
-/// are not affected if a re-insertion is attempted once an element is
-/// already present.
-///
-/// All iterators traverse the set *in order*. Set operation iterators like
-/// [`IndexSet::union`] produce a concatenated order, as do their matching "bitwise"
-/// operators. See their documentation for specifics.
-///
-/// The insertion order is preserved, with **notable exceptions** like the
-/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
-/// Methods such as [`.sort_by()`][Self::sort_by] of
-/// course result in a new order, depending on the sorting order.
-///
-/// # Indices
-///
-/// The values are indexed in a compact range without holes in the range
-/// `0..self.len()`. For example, the method `.get_full` looks up the index for
-/// a value, and the method `.get_index` looks up the value by index.
-///
-/// # Complexity
-///
-/// Internally, `IndexSet<T, S>` just holds an [`IndexMap<T, (), S>`](IndexMap). Thus the complexity
-/// of the two are the same for most methods.
-///
-/// # Examples
-///
-/// ```
-/// use indexmap::IndexSet;
-///
-/// // Collects which letters appear in a sentence.
-/// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect();
-///
-/// assert!(letters.contains(&'s'));
-/// assert!(letters.contains(&'t'));
-/// assert!(letters.contains(&'u'));
-/// assert!(!letters.contains(&'y'));
-/// ```
-#[cfg(feature = "std")]
-pub struct IndexSet<T, S = RandomState> {
- pub(crate) map: IndexMap<T, (), S>,
-}
-#[cfg(not(feature = "std"))]
-pub struct IndexSet<T, S> {
- pub(crate) map: IndexMap<T, (), S>,
-}
-
-impl<T, S> Clone for IndexSet<T, S>
-where
- T: Clone,
- S: Clone,
-{
- fn clone(&self) -> Self {
- IndexSet {
- map: self.map.clone(),
- }
- }
-
- fn clone_from(&mut self, other: &Self) {
- self.map.clone_from(&other.map);
- }
-}
-
-impl<T, S> Entries for IndexSet<T, S> {
- type Entry = Bucket<T>;
-
- #[inline]
- fn into_entries(self) -> Vec<Self::Entry> {
- self.map.into_entries()
- }
-
- #[inline]
- fn as_entries(&self) -> &[Self::Entry] {
- self.map.as_entries()
- }
-
- #[inline]
- fn as_entries_mut(&mut self) -> &mut [Self::Entry] {
- self.map.as_entries_mut()
- }
-
- fn with_entries<F>(&mut self, f: F)
- where
- F: FnOnce(&mut [Self::Entry]),
- {
- self.map.with_entries(f);
- }
-}
-
-impl<T, S> fmt::Debug for IndexSet<T, S>
-where
- T: fmt::Debug,
-{
- #[cfg(not(feature = "test_debug"))]
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- f.debug_set().entries(self.iter()).finish()
- }
-
- #[cfg(feature = "test_debug")]
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- // Let the inner `IndexMap` print all of its details
- f.debug_struct("IndexSet").field("map", &self.map).finish()
- }
-}
-
-#[cfg(feature = "std")]
-#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
-impl<T> IndexSet<T> {
- /// Create a new set. (Does not allocate.)
- pub fn new() -> Self {
- IndexSet {
- map: IndexMap::new(),
- }
- }
-
- /// Create a new set with capacity for `n` elements.
- /// (Does not allocate if `n` is zero.)
- ///
- /// Computes in **O(n)** time.
- pub fn with_capacity(n: usize) -> Self {
- IndexSet {
- map: IndexMap::with_capacity(n),
- }
- }
-}
-
-impl<T, S> IndexSet<T, S> {
- /// Create a new set with capacity for `n` elements.
- /// (Does not allocate if `n` is zero.)
- ///
- /// Computes in **O(n)** time.
- pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
- IndexSet {
- map: IndexMap::with_capacity_and_hasher(n, hash_builder),
- }
- }
-
- /// Create a new set with `hash_builder`.
- ///
- /// This function is `const`, so it
- /// can be called in `static` contexts.
- pub const fn with_hasher(hash_builder: S) -> Self {
- IndexSet {
- map: IndexMap::with_hasher(hash_builder),
- }
- }
-
- /// Return the number of elements the set can hold without reallocating.
- ///
- /// This number is a lower bound; the set might be able to hold more,
- /// but is guaranteed to be able to hold at least this many.
- ///
- /// Computes in **O(1)** time.
- pub fn capacity(&self) -> usize {
- self.map.capacity()
- }
-
- /// Return a reference to the set's `BuildHasher`.
- pub fn hasher(&self) -> &S {
- self.map.hasher()
- }
-
- /// Return the number of elements in the set.
- ///
- /// Computes in **O(1)** time.
- pub fn len(&self) -> usize {
- self.map.len()
- }
-
- /// Returns true if the set contains no elements.
- ///
- /// Computes in **O(1)** time.
- pub fn is_empty(&self) -> bool {
- self.map.is_empty()
- }
-
- /// Return an iterator over the values of the set, in their order
- pub fn iter(&self) -> Iter<'_, T> {
- Iter::new(self.as_entries())
- }
-
- /// Remove all elements in the set, while preserving its capacity.
- ///
- /// Computes in **O(n)** time.
- pub fn clear(&mut self) {
- self.map.clear();
- }
-
- /// Shortens the set, keeping the first `len` elements and dropping the rest.
- ///
- /// If `len` is greater than the set's current length, this has no effect.
- pub fn truncate(&mut self, len: usize) {
- self.map.truncate(len);
- }
-
- /// Clears the `IndexSet` in the given index range, returning those values
- /// as a drain iterator.
- ///
- /// The range may be any type that implements [`RangeBounds<usize>`],
- /// including all of the `std::ops::Range*` types, or even a tuple pair of
- /// `Bound` start and end values. To drain the set entirely, use `RangeFull`
- /// like `set.drain(..)`.
- ///
- /// This shifts down all entries following the drained range to fill the
- /// gap, and keeps the allocated memory for reuse.
- ///
- /// ***Panics*** if the starting point is greater than the end point or if
- /// the end point is greater than the length of the set.
- #[track_caller]
- pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
- where
- R: RangeBounds<usize>,
- {
- Drain::new(self.map.core.drain(range))
- }
-
- /// Splits the collection into two at the given index.
- ///
- /// Returns a newly allocated set containing the elements in the range
- /// `[at, len)`. After the call, the original set will be left containing
- /// the elements `[0, at)` with its previous capacity unchanged.
- ///
- /// ***Panics*** if `at > len`.
- #[track_caller]
- pub fn split_off(&mut self, at: usize) -> Self
- where
- S: Clone,
- {
- Self {
- map: self.map.split_off(at),
- }
- }
-
- /// Reserve capacity for `additional` more values.
- ///
- /// Computes in **O(n)** time.
- pub fn reserve(&mut self, additional: usize) {
- self.map.reserve(additional);
- }
-
- /// Reserve capacity for `additional` more values, without over-allocating.
- ///
- /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
- /// frequent re-allocations. However, the underlying data structures may still have internal
- /// capacity requirements, and the allocator itself may give more space than requested, so this
- /// cannot be relied upon to be precisely minimal.
- ///
- /// Computes in **O(n)** time.
- pub fn reserve_exact(&mut self, additional: usize) {
- self.map.reserve_exact(additional);
- }
-
- /// Try to reserve capacity for `additional` more values.
- ///
- /// Computes in **O(n)** time.
- pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
- self.map.try_reserve(additional)
- }
-
- /// Try to reserve capacity for `additional` more values, without over-allocating.
- ///
- /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
- /// frequent re-allocations. However, the underlying data structures may still have internal
- /// capacity requirements, and the allocator itself may give more space than requested, so this
- /// cannot be relied upon to be precisely minimal.
- ///
- /// Computes in **O(n)** time.
- pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
- self.map.try_reserve_exact(additional)
- }
-
- /// Shrink the capacity of the set as much as possible.
- ///
- /// Computes in **O(n)** time.
- pub fn shrink_to_fit(&mut self) {
- self.map.shrink_to_fit();
- }
-
- /// Shrink the capacity of the set with a lower limit.
- ///
- /// Computes in **O(n)** time.
- pub fn shrink_to(&mut self, min_capacity: usize) {
- self.map.shrink_to(min_capacity);
- }
-}
-
-impl<T, S> IndexSet<T, S>
-where
- T: Hash + Eq,
- S: BuildHasher,
-{
- /// Insert the value into the set.
- ///
- /// If an equivalent item already exists in the set, it returns
- /// `false` leaving the original value in the set and without
- /// altering its insertion order. Otherwise, it inserts the new
- /// item and returns `true`.
- ///
- /// Computes in **O(1)** time (amortized average).
- pub fn insert(&mut self, value: T) -> bool {
- self.map.insert(value, ()).is_none()
- }
-
- /// Insert the value into the set, and get its index.
- ///
- /// If an equivalent item already exists in the set, it returns
- /// the index of the existing item and `false`, leaving the
- /// original value in the set and without altering its insertion
- /// order. Otherwise, it inserts the new item and returns the index
- /// of the inserted item and `true`.
- ///
- /// Computes in **O(1)** time (amortized average).
- pub fn insert_full(&mut self, value: T) -> (usize, bool) {
- let (index, existing) = self.map.insert_full(value, ());
- (index, existing.is_none())
- }
-
- /// Insert the value into the set at its ordered position among sorted values.
- ///
- /// This is equivalent to finding the position with
- /// [`binary_search`][Self::binary_search], and if needed calling
- /// [`insert_before`][Self::insert_before] for a new value.
- ///
- /// If the sorted item is found in the set, it returns the index of that
- /// existing item and `false`, without any change. Otherwise, it inserts the
- /// new item and returns its sorted index and `true`.
- ///
- /// If the existing items are **not** already sorted, then the insertion
- /// index is unspecified (like [`slice::binary_search`]), but the value
- /// is moved to or inserted at that position regardless.
- ///
- /// Computes in **O(n)** time (average). Instead of repeating calls to
- /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
- /// or [`extend`][Self::extend] and only call [`sort`][Self::sort] or
- /// [`sort_unstable`][Self::sort_unstable] once.
- pub fn insert_sorted(&mut self, value: T) -> (usize, bool)
- where
- T: Ord,
- {
- let (index, existing) = self.map.insert_sorted(value, ());
- (index, existing.is_none())
- }
-
- /// Insert the value into the set before the value at the given index, or at the end.
- ///
- /// If an equivalent item already exists in the set, it returns `false` leaving the
- /// original value in the set, but moved to the new position. The returned index
- /// will either be the given index or one less, depending on how the value moved.
- /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
- ///
- /// Otherwise, it inserts the new value exactly at the given index and returns `true`.
- ///
- /// ***Panics*** if `index` is out of bounds.
- /// Valid indices are `0..=set.len()` (inclusive).
- ///
- /// Computes in **O(n)** time (average).
- ///
- /// # Examples
- ///
- /// ```
- /// use indexmap::IndexSet;
- /// let mut set: IndexSet<char> = ('a'..='z').collect();
- ///
- /// // The new value '*' goes exactly at the given index.
- /// assert_eq!(set.get_index_of(&'*'), None);
- /// assert_eq!(set.insert_before(10, '*'), (10, true));
- /// assert_eq!(set.get_index_of(&'*'), Some(10));
- ///
- /// // Moving the value 'a' up will shift others down, so this moves *before* 10 to index 9.
- /// assert_eq!(set.insert_before(10, 'a'), (9, false));
- /// assert_eq!(set.get_index_of(&'a'), Some(9));
- /// assert_eq!(set.get_index_of(&'*'), Some(10));
- ///
- /// // Moving the value 'z' down will shift others up, so this moves to exactly 10.
- /// assert_eq!(set.insert_before(10, 'z'), (10, false));
- /// assert_eq!(set.get_index_of(&'z'), Some(10));
- /// assert_eq!(set.get_index_of(&'*'), Some(11));
- ///
- /// // Moving or inserting before the endpoint is also valid.
- /// assert_eq!(set.len(), 27);
- /// assert_eq!(set.insert_before(set.len(), '*'), (26, false));
- /// assert_eq!(set.get_index_of(&'*'), Some(26));
- /// assert_eq!(set.insert_before(set.len(), '+'), (27, true));
- /// assert_eq!(set.get_index_of(&'+'), Some(27));
- /// assert_eq!(set.len(), 28);
- /// ```
- #[track_caller]
- pub fn insert_before(&mut self, index: usize, value: T) -> (usize, bool) {
- let (index, existing) = self.map.insert_before(index, value, ());
- (index, existing.is_none())
- }
-
- /// Insert the value into the set at the given index.
- ///
- /// If an equivalent item already exists in the set, it returns `false` leaving
- /// the original value in the set, but moved to the given index.
- /// Note that existing values **cannot** be moved to `index == set.len()`!
- /// (See [`insert_before`](Self::insert_before) for different behavior here.)
- ///
- /// Otherwise, it inserts the new value at the given index and returns `true`.
- ///
- /// ***Panics*** if `index` is out of bounds.
- /// Valid indices are `0..set.len()` (exclusive) when moving an existing value, or
- /// `0..=set.len()` (inclusive) when inserting a new value.
- ///
- /// Computes in **O(n)** time (average).
- ///
- /// # Examples
- ///
- /// ```
- /// use indexmap::IndexSet;
- /// let mut set: IndexSet<char> = ('a'..='z').collect();
- ///
- /// // The new value '*' goes exactly at the given index.
- /// assert_eq!(set.get_index_of(&'*'), None);
- /// assert_eq!(set.shift_insert(10, '*'), true);
- /// assert_eq!(set.get_index_of(&'*'), Some(10));
- ///
- /// // Moving the value 'a' up to 10 will shift others down, including the '*' that was at 10.
- /// assert_eq!(set.shift_insert(10, 'a'), false);
- /// assert_eq!(set.get_index_of(&'a'), Some(10));
- /// assert_eq!(set.get_index_of(&'*'), Some(9));
- ///
- /// // Moving the value 'z' down to 9 will shift others up, including the '*' that was at 9.
- /// assert_eq!(set.shift_insert(9, 'z'), false);
- /// assert_eq!(set.get_index_of(&'z'), Some(9));
- /// assert_eq!(set.get_index_of(&'*'), Some(10));
- ///
- /// // Existing values can move to len-1 at most, but new values can insert at the endpoint.
- /// assert_eq!(set.len(), 27);
- /// assert_eq!(set.shift_insert(set.len() - 1, '*'), false);
- /// assert_eq!(set.get_index_of(&'*'), Some(26));
- /// assert_eq!(set.shift_insert(set.len(), '+'), true);
- /// assert_eq!(set.get_index_of(&'+'), Some(27));
- /// assert_eq!(set.len(), 28);
- /// ```
- ///
- /// ```should_panic
- /// use indexmap::IndexSet;
- /// let mut set: IndexSet<char> = ('a'..='z').collect();
- ///
- /// // This is an invalid index for moving an existing value!
- /// set.shift_insert(set.len(), 'a');
- /// ```
- #[track_caller]
- pub fn shift_insert(&mut self, index: usize, value: T) -> bool {
- self.map.shift_insert(index, value, ()).is_none()
- }
-
- /// Adds a value to the set, replacing the existing value, if any, that is
- /// equal to the given one, without altering its insertion order. Returns
- /// the replaced value.
- ///
- /// Computes in **O(1)** time (average).
- pub fn replace(&mut self, value: T) -> Option<T> {
- self.replace_full(value).1
- }
-
- /// Adds a value to the set, replacing the existing value, if any, that is
- /// equal to the given one, without altering its insertion order. Returns
- /// the index of the item and its replaced value.
- ///
- /// Computes in **O(1)** time (average).
- pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) {
- let hash = self.map.hash(&value);
- match self.map.core.replace_full(hash, value, ()) {
- (i, Some((replaced, ()))) => (i, Some(replaced)),
- (i, None) => (i, None),
- }
- }
-
- /// Return an iterator over the values that are in `self` but not `other`.
- ///
- /// Values are produced in the same order that they appear in `self`.
- pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2>
- where
- S2: BuildHasher,
- {
- Difference::new(self, other)
- }
-
- /// Return an iterator over the values that are in `self` or `other`,
- /// but not in both.
- ///
- /// Values from `self` are produced in their original order, followed by
- /// values from `other` in their original order.
- pub fn symmetric_difference<'a, S2>(
- &'a self,
- other: &'a IndexSet<T, S2>,
- ) -> SymmetricDifference<'a, T, S, S2>
- where
- S2: BuildHasher,
- {
- SymmetricDifference::new(self, other)
- }
-
- /// Return an iterator over the values that are in both `self` and `other`.
- ///
- /// Values are produced in the same order that they appear in `self`.
- pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2>
- where
- S2: BuildHasher,
- {
- Intersection::new(self, other)
- }
-
- /// Return an iterator over all values that are in `self` or `other`.
- ///
- /// Values from `self` are produced in their original order, followed by
- /// values that are unique to `other` in their original order.
- pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S>
- where
- S2: BuildHasher,
- {
- Union::new(self, other)
- }
-
- /// Creates a splicing iterator that replaces the specified range in the set
- /// with the given `replace_with` iterator and yields the removed items.
- /// `replace_with` does not need to be the same length as `range`.
- ///
- /// The `range` is removed even if the iterator is not consumed until the
- /// end. It is unspecified how many elements are removed from the set if the
- /// `Splice` value is leaked.
- ///
- /// The input iterator `replace_with` is only consumed when the `Splice`
- /// value is dropped. If a value from the iterator matches an existing entry
- /// in the set (outside of `range`), then the original will be unchanged.
- /// Otherwise, the new value will be inserted in the replaced `range`.
- ///
- /// ***Panics*** if the starting point is greater than the end point or if
- /// the end point is greater than the length of the set.
- ///
- /// # Examples
- ///
- /// ```
- /// use indexmap::IndexSet;
- ///
- /// let mut set = IndexSet::from([0, 1, 2, 3, 4]);
- /// let new = [5, 4, 3, 2, 1];
- /// let removed: Vec<_> = set.splice(2..4, new).collect();
- ///
- /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted.
- /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4]));
- /// assert_eq!(removed, &[2, 3]);
- /// ```
- #[track_caller]
- pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S>
- where
- R: RangeBounds<usize>,
- I: IntoIterator<Item = T>,
- {
- Splice::new(self, range, replace_with.into_iter())
- }
-
- /// Moves all values from `other` into `self`, leaving `other` empty.
- ///
- /// This is equivalent to calling [`insert`][Self::insert] for each value
- /// from `other` in order, which means that values that already exist
- /// in `self` are unchanged in their current position.
- ///
- /// See also [`union`][Self::union] to iterate the combined values by
- /// reference, without modifying `self` or `other`.
- ///
- /// # Examples
- ///
- /// ```
- /// use indexmap::IndexSet;
- ///
- /// let mut a = IndexSet::from([3, 2, 1]);
- /// let mut b = IndexSet::from([3, 4, 5]);
- /// let old_capacity = b.capacity();
- ///
- /// a.append(&mut b);
- ///
- /// assert_eq!(a.len(), 5);
- /// assert_eq!(b.len(), 0);
- /// assert_eq!(b.capacity(), old_capacity);
- ///
- /// assert!(a.iter().eq(&[3, 2, 1, 4, 5]));
- /// ```
- pub fn append<S2>(&mut self, other: &mut IndexSet<T, S2>) {
- self.map.append(&mut other.map);
- }
-}
-
-impl<T, S> IndexSet<T, S>
-where
- S: BuildHasher,
-{
- /// Return `true` if an equivalent to `value` exists in the set.
- ///
- /// Computes in **O(1)** time (average).
- pub fn contains<Q>(&self, value: &Q) -> bool
- where
- Q: ?Sized + Hash + Equivalent<T>,
- {
- self.map.contains_key(value)
- }
-
- /// Return a reference to the value stored in the set, if it is present,
- /// else `None`.
- ///
- /// Computes in **O(1)** time (average).
- pub fn get<Q>(&self, value: &Q) -> Option<&T>
- where
- Q: ?Sized + Hash + Equivalent<T>,
- {
- self.map.get_key_value(value).map(|(x, &())| x)
- }
-
- /// Return item index and value
- pub fn get_full<Q>(&self, value: &Q) -> Option<(usize, &T)>
- where
- Q: ?Sized + Hash + Equivalent<T>,
- {
- self.map.get_full(value).map(|(i, x, &())| (i, x))
- }
-
- /// Return item index, if it exists in the set
- ///
- /// Computes in **O(1)** time (average).
- pub fn get_index_of<Q>(&self, value: &Q) -> Option<usize>
- where
- Q: ?Sized + Hash + Equivalent<T>,
- {
- self.map.get_index_of(value)
- }
-
- /// Remove the value from the set, and return `true` if it was present.
- ///
- /// **NOTE:** This is equivalent to [`.swap_remove(value)`][Self::swap_remove], replacing this
- /// value's position with the last element, and it is deprecated in favor of calling that
- /// explicitly. If you need to preserve the relative order of the values in the set, use
- /// [`.shift_remove(value)`][Self::shift_remove] instead.
- #[deprecated(note = "`remove` disrupts the set order -- \
- use `swap_remove` or `shift_remove` for explicit behavior.")]
- pub fn remove<Q>(&mut self, value: &Q) -> bool
- where
- Q: ?Sized + Hash + Equivalent<T>,
- {
- self.swap_remove(value)
- }
-
- /// Remove the value from the set, and return `true` if it was present.
- ///
- /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
- /// last element of the set and popping it off. **This perturbs
- /// the position of what used to be the last element!**
- ///
- /// Return `false` if `value` was not in the set.
- ///
- /// Computes in **O(1)** time (average).
- pub fn swap_remove<Q>(&mut self, value: &Q) -> bool
- where
- Q: ?Sized + Hash + Equivalent<T>,
- {
- self.map.swap_remove(value).is_some()
- }
-
- /// Remove the value from the set, and return `true` if it was present.
- ///
- /// Like [`Vec::remove`], the value is removed by shifting all of the
- /// elements that follow it, preserving their relative order.
- /// **This perturbs the index of all of those elements!**
- ///
- /// Return `false` if `value` was not in the set.
- ///
- /// Computes in **O(n)** time (average).
- pub fn shift_remove<Q>(&mut self, value: &Q) -> bool
- where
- Q: ?Sized + Hash + Equivalent<T>,
- {
- self.map.shift_remove(value).is_some()
- }
-
- /// Removes and returns the value in the set, if any, that is equal to the
- /// given one.
- ///
- /// **NOTE:** This is equivalent to [`.swap_take(value)`][Self::swap_take], replacing this
- /// value's position with the last element, and it is deprecated in favor of calling that
- /// explicitly. If you need to preserve the relative order of the values in the set, use
- /// [`.shift_take(value)`][Self::shift_take] instead.
- #[deprecated(note = "`take` disrupts the set order -- \
- use `swap_take` or `shift_take` for explicit behavior.")]
- pub fn take<Q>(&mut self, value: &Q) -> Option<T>
- where
- Q: ?Sized + Hash + Equivalent<T>,
- {
- self.swap_take(value)
- }
-
- /// Removes and returns the value in the set, if any, that is equal to the
- /// given one.
- ///
- /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
- /// last element of the set and popping it off. **This perturbs
- /// the position of what used to be the last element!**
- ///
- /// Return `None` if `value` was not in the set.
- ///
- /// Computes in **O(1)** time (average).
- pub fn swap_take<Q>(&mut self, value: &Q) -> Option<T>
- where
- Q: ?Sized + Hash + Equivalent<T>,
- {
- self.map.swap_remove_entry(value).map(|(x, ())| x)
- }
-
- /// Removes and returns the value in the set, if any, that is equal to the
- /// given one.
- ///
- /// Like [`Vec::remove`], the value is removed by shifting all of the
- /// elements that follow it, preserving their relative order.
- /// **This perturbs the index of all of those elements!**
- ///
- /// Return `None` if `value` was not in the set.
- ///
- /// Computes in **O(n)** time (average).
- pub fn shift_take<Q>(&mut self, value: &Q) -> Option<T>
- where
- Q: ?Sized + Hash + Equivalent<T>,
- {
- self.map.shift_remove_entry(value).map(|(x, ())| x)
- }
-
- /// Remove the value from the set return it and the index it had.
- ///
- /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
- /// last element of the set and popping it off. **This perturbs
- /// the position of what used to be the last element!**
- ///
- /// Return `None` if `value` was not in the set.
- pub fn swap_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
- where
- Q: ?Sized + Hash + Equivalent<T>,
- {
- self.map.swap_remove_full(value).map(|(i, x, ())| (i, x))
- }
-
- /// Remove the value from the set return it and the index it had.
- ///
- /// Like [`Vec::remove`], the value is removed by shifting all of the
- /// elements that follow it, preserving their relative order.
- /// **This perturbs the index of all of those elements!**
- ///
- /// Return `None` if `value` was not in the set.
- pub fn shift_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
- where
- Q: ?Sized + Hash + Equivalent<T>,
- {
- self.map.shift_remove_full(value).map(|(i, x, ())| (i, x))
- }
-}
-
-impl<T, S> IndexSet<T, S> {
- /// Remove the last value
- ///
- /// This preserves the order of the remaining elements.
- ///
- /// Computes in **O(1)** time (average).
- #[doc(alias = "pop_last")] // like `BTreeSet`
- pub fn pop(&mut self) -> Option<T> {
- self.map.pop().map(|(x, ())| x)
- }
-
- /// Scan through each value in the set and keep those where the
- /// closure `keep` returns `true`.
- ///
- /// The elements are visited in order, and remaining elements keep their
- /// order.
- ///
- /// Computes in **O(n)** time (average).
- pub fn retain<F>(&mut self, mut keep: F)
- where
- F: FnMut(&T) -> bool,
- {
- self.map.retain(move |x, &mut ()| keep(x))
- }
-
- /// Sort the set’s values by their default ordering.
- ///
- /// This is a stable sort -- but equivalent values should not normally coexist in
- /// a set at all, so [`sort_unstable`][Self::sort_unstable] is preferred
- /// because it is generally faster and doesn't allocate auxiliary memory.
- ///
- /// See [`sort_by`](Self::sort_by) for details.
- pub fn sort(&mut self)
- where
- T: Ord,
- {
- self.map.sort_keys()
- }
-
- /// Sort the set’s values in place using the comparison function `cmp`.
- ///
- /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
- pub fn sort_by<F>(&mut self, mut cmp: F)
- where
- F: FnMut(&T, &T) -> Ordering,
- {
- self.map.sort_by(move |a, _, b, _| cmp(a, b));
- }
-
- /// Sort the values of the set and return a by-value iterator of
- /// the values with the result.
- ///
- /// The sort is stable.
- pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T>
- where
- F: FnMut(&T, &T) -> Ordering,
- {
- let mut entries = self.into_entries();
- entries.sort_by(move |a, b| cmp(&a.key, &b.key));
- IntoIter::new(entries)
- }
-
- /// Sort the set's values by their default ordering.
- ///
- /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
- pub fn sort_unstable(&mut self)
- where
- T: Ord,
- {
- self.map.sort_unstable_keys()
- }
-
- /// Sort the set's values in place using the comparison function `cmp`.
- ///
- /// Computes in **O(n log n)** time. The sort is unstable.
- pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
- where
- F: FnMut(&T, &T) -> Ordering,
- {
- self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b))
- }
-
- /// Sort the values of the set and return a by-value iterator of
- /// the values with the result.
- pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T>
- where
- F: FnMut(&T, &T) -> Ordering,
- {
- let mut entries = self.into_entries();
- entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key));
- IntoIter::new(entries)
- }
-
- /// Sort the set’s values in place using a key extraction function.
- ///
- /// During sorting, the function is called at most once per entry, by using temporary storage
- /// to remember the results of its evaluation. The order of calls to the function is
- /// unspecified and may change between versions of `indexmap` or the standard library.
- ///
- /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
- /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
- pub fn sort_by_cached_key<K, F>(&mut self, mut sort_key: F)
- where
- K: Ord,
- F: FnMut(&T) -> K,
- {
- self.with_entries(move |entries| {
- entries.sort_by_cached_key(move |a| sort_key(&a.key));
- });
- }
-
- /// Search over a sorted set for a value.
- ///
- /// Returns the position where that value is present, or the position where it can be inserted
- /// to maintain the sort. See [`slice::binary_search`] for more details.
- ///
- /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up
- /// using [`get_index_of`][IndexSet::get_index_of], but this can also position missing values.
- pub fn binary_search(&self, x: &T) -> Result<usize, usize>
- where
- T: Ord,
- {
- self.as_slice().binary_search(x)
- }
-
- /// Search over a sorted set with a comparator function.
- ///
- /// Returns the position where that value is present, or the position where it can be inserted
- /// to maintain the sort. See [`slice::binary_search_by`] for more details.
- ///
- /// Computes in **O(log(n))** time.
- #[inline]
- pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
- where
- F: FnMut(&'a T) -> Ordering,
- {
- self.as_slice().binary_search_by(f)
- }
-
- /// Search over a sorted set with an extraction function.
- ///
- /// Returns the position where that value is present, or the position where it can be inserted
- /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
- ///
- /// Computes in **O(log(n))** time.
- #[inline]
- pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
- where
- F: FnMut(&'a T) -> B,
- B: Ord,
- {
- self.as_slice().binary_search_by_key(b, f)
- }
-
- /// Returns the index of the partition point of a sorted set according to the given predicate
- /// (the index of the first element of the second partition).
- ///
- /// See [`slice::partition_point`] for more details.
- ///
- /// Computes in **O(log(n))** time.
- #[must_use]
- pub fn partition_point<P>(&self, pred: P) -> usize
- where
- P: FnMut(&T) -> bool,
- {
- self.as_slice().partition_point(pred)
- }
-
- /// Reverses the order of the set’s values in place.
- ///
- /// Computes in **O(n)** time and **O(1)** space.
- pub fn reverse(&mut self) {
- self.map.reverse()
- }
-
- /// Returns a slice of all the values in the set.
- ///
- /// Computes in **O(1)** time.
- pub fn as_slice(&self) -> &Slice<T> {
- Slice::from_slice(self.as_entries())
- }
-
- /// Converts into a boxed slice of all the values in the set.
- ///
- /// Note that this will drop the inner hash table and any excess capacity.
- pub fn into_boxed_slice(self) -> Box<Slice<T>> {
- Slice::from_boxed(self.into_entries().into_boxed_slice())
- }
-
- /// Get a value by index
- ///
- /// Valid indices are `0 <= index < self.len()`.
- ///
- /// Computes in **O(1)** time.
- pub fn get_index(&self, index: usize) -> Option<&T> {
- self.as_entries().get(index).map(Bucket::key_ref)
- }
-
- /// Returns a slice of values in the given range of indices.
- ///
- /// Valid indices are `0 <= index < self.len()`.
- ///
- /// Computes in **O(1)** time.
- pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<T>> {
- let entries = self.as_entries();
- let range = try_simplify_range(range, entries.len())?;
- entries.get(range).map(Slice::from_slice)
- }
-
- /// Get the first value
- ///
- /// Computes in **O(1)** time.
- pub fn first(&self) -> Option<&T> {
- self.as_entries().first().map(Bucket::key_ref)
- }
-
- /// Get the last value
- ///
- /// Computes in **O(1)** time.
- pub fn last(&self) -> Option<&T> {
- self.as_entries().last().map(Bucket::key_ref)
- }
-
- /// Remove the value by index
- ///
- /// Valid indices are `0 <= index < self.len()`.
- ///
- /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
- /// last element of the set and popping it off. **This perturbs
- /// the position of what used to be the last element!**
- ///
- /// Computes in **O(1)** time (average).
- pub fn swap_remove_index(&mut self, index: usize) -> Option<T> {
- self.map.swap_remove_index(index).map(|(x, ())| x)
- }
-
- /// Remove the value by index
- ///
- /// Valid indices are `0 <= index < self.len()`.
- ///
- /// Like [`Vec::remove`], the value is removed by shifting all of the
- /// elements that follow it, preserving their relative order.
- /// **This perturbs the index of all of those elements!**
- ///
- /// Computes in **O(n)** time (average).
- pub fn shift_remove_index(&mut self, index: usize) -> Option<T> {
- self.map.shift_remove_index(index).map(|(x, ())| x)
- }
-
- /// Moves the position of a value from one index to another
- /// by shifting all other values in-between.
- ///
- /// * If `from < to`, the other values will shift down while the targeted value moves up.
- /// * If `from > to`, the other values will shift up while the targeted value moves down.
- ///
- /// ***Panics*** if `from` or `to` are out of bounds.
- ///
- /// Computes in **O(n)** time (average).
- #[track_caller]
- pub fn move_index(&mut self, from: usize, to: usize) {
- self.map.move_index(from, to)
- }
-
- /// Swaps the position of two values in the set.
- ///
- /// ***Panics*** if `a` or `b` are out of bounds.
- ///
- /// Computes in **O(1)** time (average).
- #[track_caller]
- pub fn swap_indices(&mut self, a: usize, b: usize) {
- self.map.swap_indices(a, b)
- }
-}
-
-/// Access [`IndexSet`] values at indexed positions.
-///
-/// # Examples
-///
-/// ```
-/// use indexmap::IndexSet;
-///
-/// let mut set = IndexSet::new();
-/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
-/// set.insert(word.to_string());
-/// }
-/// assert_eq!(set[0], "Lorem");
-/// assert_eq!(set[1], "ipsum");
-/// set.reverse();
-/// assert_eq!(set[0], "amet");
-/// assert_eq!(set[1], "sit");
-/// set.sort();
-/// assert_eq!(set[0], "Lorem");
-/// assert_eq!(set[1], "amet");
-/// ```
-///
-/// ```should_panic
-/// use indexmap::IndexSet;
-///
-/// let mut set = IndexSet::new();
-/// set.insert("foo");
-/// println!("{:?}", set[10]); // panics!
-/// ```
-impl<T, S> Index<usize> for IndexSet<T, S> {
- type Output = T;
-
- /// Returns a reference to the value at the supplied `index`.
- ///
- /// ***Panics*** if `index` is out of bounds.
- fn index(&self, index: usize) -> &T {
- self.get_index(index).unwrap_or_else(|| {
- panic!(
- "index out of bounds: the len is {len} but the index is {index}",
- len = self.len()
- );
- })
- }
-}
-
-impl<T, S> FromIterator<T> for IndexSet<T, S>
-where
- T: Hash + Eq,
- S: BuildHasher + Default,
-{
- fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
- let iter = iterable.into_iter().map(|x| (x, ()));
- IndexSet {
- map: IndexMap::from_iter(iter),
- }
- }
-}
-
-#[cfg(feature = "std")]
-#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
-impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState>
-where
- T: Eq + Hash,
-{
- /// # Examples
- ///
- /// ```
- /// use indexmap::IndexSet;
- ///
- /// let set1 = IndexSet::from([1, 2, 3, 4]);
- /// let set2: IndexSet<_> = [1, 2, 3, 4].into();
- /// assert_eq!(set1, set2);
- /// ```
- fn from(arr: [T; N]) -> Self {
- Self::from_iter(arr)
- }
-}
-
-impl<T, S> Extend<T> for IndexSet<T, S>
-where
- T: Hash + Eq,
- S: BuildHasher,
-{
- fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) {
- let iter = iterable.into_iter().map(|x| (x, ()));
- self.map.extend(iter);
- }
-}
-
-impl<'a, T, S> Extend<&'a T> for IndexSet<T, S>
-where
- T: Hash + Eq + Copy + 'a,
- S: BuildHasher,
-{
- fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) {
- let iter = iterable.into_iter().copied();
- self.extend(iter);
- }
-}
-
-impl<T, S> Default for IndexSet<T, S>
-where
- S: Default,
-{
- /// Return an empty [`IndexSet`]
- fn default() -> Self {
- IndexSet {
- map: IndexMap::default(),
- }
- }
-}
-
-impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1>
-where
- T: Hash + Eq,
- S1: BuildHasher,
- S2: BuildHasher,
-{
- fn eq(&self, other: &IndexSet<T, S2>) -> bool {
- self.len() == other.len() && self.is_subset(other)
- }
-}
-
-impl<T, S> Eq for IndexSet<T, S>
-where
- T: Eq + Hash,
- S: BuildHasher,
-{
-}
-
-impl<T, S> IndexSet<T, S>
-where
- T: Eq + Hash,
- S: BuildHasher,
-{
- /// Returns `true` if `self` has no elements in common with `other`.
- pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool
- where
- S2: BuildHasher,
- {
- if self.len() <= other.len() {
- self.iter().all(move |value| !other.contains(value))
- } else {
- other.iter().all(move |value| !self.contains(value))
- }
- }
-
- /// Returns `true` if all elements of `self` are contained in `other`.
- pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool
- where
- S2: BuildHasher,
- {
- self.len() <= other.len() && self.iter().all(move |value| other.contains(value))
- }
-
- /// Returns `true` if all elements of `other` are contained in `self`.
- pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool
- where
- S2: BuildHasher,
- {
- other.is_subset(self)
- }
-}
-
-impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1>
-where
- T: Eq + Hash + Clone,
- S1: BuildHasher + Default,
- S2: BuildHasher,
-{
- type Output = IndexSet<T, S1>;
-
- /// Returns the set intersection, cloned into a new set.
- ///
- /// Values are collected in the same order that they appear in `self`.
- fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output {
- self.intersection(other).cloned().collect()
- }
-}
-
-impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1>
-where
- T: Eq + Hash + Clone,
- S1: BuildHasher + Default,
- S2: BuildHasher,
-{
- type Output = IndexSet<T, S1>;
-
- /// Returns the set union, cloned into a new set.
- ///
- /// Values from `self` are collected in their original order, followed by
- /// values that are unique to `other` in their original order.
- fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output {
- self.union(other).cloned().collect()
- }
-}
-
-impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1>
-where
- T: Eq + Hash + Clone,
- S1: BuildHasher + Default,
- S2: BuildHasher,
-{
- type Output = IndexSet<T, S1>;
-
- /// Returns the set symmetric-difference, cloned into a new set.
- ///
- /// Values from `self` are collected in their original order, followed by
- /// values from `other` in their original order.
- fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output {
- self.symmetric_difference(other).cloned().collect()
- }
-}
-
-impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1>
-where
- T: Eq + Hash + Clone,
- S1: BuildHasher + Default,
- S2: BuildHasher,
-{
- type Output = IndexSet<T, S1>;
-
- /// Returns the set difference, cloned into a new set.
- ///
- /// Values are collected in the same order that they appear in `self`.
- fn sub(self, other: &IndexSet<T, S2>) -> Self::Output {
- self.difference(other).cloned().collect()
- }
-}