diff options
Diffstat (limited to 'vendor/indexmap/src/map.rs')
| -rw-r--r-- | vendor/indexmap/src/map.rs | 1651 |
1 files changed, 0 insertions, 1651 deletions
diff --git a/vendor/indexmap/src/map.rs b/vendor/indexmap/src/map.rs deleted file mode 100644 index 79a45527..00000000 --- a/vendor/indexmap/src/map.rs +++ /dev/null @@ -1,1651 +0,0 @@ -//! [`IndexMap`] is a hash table where the iteration order of the key-value -//! pairs is independent of the hash values of the keys. - -mod core; -mod iter; -mod mutable; -mod slice; - -#[cfg(feature = "serde")] -#[cfg_attr(docsrs, doc(cfg(feature = "serde")))] -pub mod serde_seq; - -#[cfg(test)] -mod tests; - -pub use self::core::raw_entry_v1::{self, RawEntryApiV1}; -pub use self::core::{Entry, IndexedEntry, OccupiedEntry, VacantEntry}; -pub use self::iter::{ - Drain, IntoIter, IntoKeys, IntoValues, Iter, IterMut, IterMut2, Keys, Splice, Values, ValuesMut, -}; -pub use self::mutable::MutableEntryKey; -pub use self::mutable::MutableKeys; -pub use self::slice::Slice; - -#[cfg(feature = "rayon")] -pub use crate::rayon::map as rayon; - -use ::core::cmp::Ordering; -use ::core::fmt; -use ::core::hash::{BuildHasher, Hash, Hasher}; -use ::core::mem; -use ::core::ops::{Index, IndexMut, RangeBounds}; -use alloc::boxed::Box; -use alloc::vec::Vec; - -#[cfg(feature = "std")] -use std::collections::hash_map::RandomState; - -use self::core::IndexMapCore; -use crate::util::{third, try_simplify_range}; -use crate::{Bucket, Entries, Equivalent, GetDisjointMutError, HashValue, TryReserveError}; - -/// A hash table where the iteration order of the key-value pairs is independent -/// of the hash values of the keys. -/// -/// The interface is closely compatible with the standard -/// [`HashMap`][std::collections::HashMap], -/// but also has additional features. -/// -/// # Order -/// -/// The key-value pairs have a consistent order that is determined by -/// the sequence of insertion and removal calls on the map. The order does -/// not depend on the keys or the hash function at all. -/// -/// All iterators traverse the map in *the order*. -/// -/// The insertion order is preserved, with **notable exceptions** like the -/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods. -/// Methods such as [`.sort_by()`][Self::sort_by] of -/// course result in a new order, depending on the sorting order. -/// -/// # Indices -/// -/// The key-value pairs are indexed in a compact range without holes in the -/// range `0..self.len()`. For example, the method `.get_full` looks up the -/// index for a key, and the method `.get_index` looks up the key-value pair by -/// index. -/// -/// # Examples -/// -/// ``` -/// use indexmap::IndexMap; -/// -/// // count the frequency of each letter in a sentence. -/// let mut letters = IndexMap::new(); -/// for ch in "a short treatise on fungi".chars() { -/// *letters.entry(ch).or_insert(0) += 1; -/// } -/// -/// assert_eq!(letters[&'s'], 2); -/// assert_eq!(letters[&'t'], 3); -/// assert_eq!(letters[&'u'], 1); -/// assert_eq!(letters.get(&'y'), None); -/// ``` -#[cfg(feature = "std")] -pub struct IndexMap<K, V, S = RandomState> { - pub(crate) core: IndexMapCore<K, V>, - hash_builder: S, -} -#[cfg(not(feature = "std"))] -pub struct IndexMap<K, V, S> { - pub(crate) core: IndexMapCore<K, V>, - hash_builder: S, -} - -impl<K, V, S> Clone for IndexMap<K, V, S> -where - K: Clone, - V: Clone, - S: Clone, -{ - fn clone(&self) -> Self { - IndexMap { - core: self.core.clone(), - hash_builder: self.hash_builder.clone(), - } - } - - fn clone_from(&mut self, other: &Self) { - self.core.clone_from(&other.core); - self.hash_builder.clone_from(&other.hash_builder); - } -} - -impl<K, V, S> Entries for IndexMap<K, V, S> { - type Entry = Bucket<K, V>; - - #[inline] - fn into_entries(self) -> Vec<Self::Entry> { - self.core.into_entries() - } - - #[inline] - fn as_entries(&self) -> &[Self::Entry] { - self.core.as_entries() - } - - #[inline] - fn as_entries_mut(&mut self) -> &mut [Self::Entry] { - self.core.as_entries_mut() - } - - fn with_entries<F>(&mut self, f: F) - where - F: FnOnce(&mut [Self::Entry]), - { - self.core.with_entries(f); - } -} - -impl<K, V, S> fmt::Debug for IndexMap<K, V, S> -where - K: fmt::Debug, - V: fmt::Debug, -{ - #[cfg(not(feature = "test_debug"))] - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - f.debug_map().entries(self.iter()).finish() - } - - #[cfg(feature = "test_debug")] - fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { - // Let the inner `IndexMapCore` print all of its details - f.debug_struct("IndexMap") - .field("core", &self.core) - .finish() - } -} - -#[cfg(feature = "std")] -#[cfg_attr(docsrs, doc(cfg(feature = "std")))] -impl<K, V> IndexMap<K, V> { - /// Create a new map. (Does not allocate.) - #[inline] - pub fn new() -> Self { - Self::with_capacity(0) - } - - /// Create a new map with capacity for `n` key-value pairs. (Does not - /// allocate if `n` is zero.) - /// - /// Computes in **O(n)** time. - #[inline] - pub fn with_capacity(n: usize) -> Self { - Self::with_capacity_and_hasher(n, <_>::default()) - } -} - -impl<K, V, S> IndexMap<K, V, S> { - /// Create a new map with capacity for `n` key-value pairs. (Does not - /// allocate if `n` is zero.) - /// - /// Computes in **O(n)** time. - #[inline] - pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self { - if n == 0 { - Self::with_hasher(hash_builder) - } else { - IndexMap { - core: IndexMapCore::with_capacity(n), - hash_builder, - } - } - } - - /// Create a new map with `hash_builder`. - /// - /// This function is `const`, so it - /// can be called in `static` contexts. - pub const fn with_hasher(hash_builder: S) -> Self { - IndexMap { - core: IndexMapCore::new(), - hash_builder, - } - } - - /// Return the number of elements the map can hold without reallocating. - /// - /// This number is a lower bound; the map might be able to hold more, - /// but is guaranteed to be able to hold at least this many. - /// - /// Computes in **O(1)** time. - pub fn capacity(&self) -> usize { - self.core.capacity() - } - - /// Return a reference to the map's `BuildHasher`. - pub fn hasher(&self) -> &S { - &self.hash_builder - } - - /// Return the number of key-value pairs in the map. - /// - /// Computes in **O(1)** time. - #[inline] - pub fn len(&self) -> usize { - self.core.len() - } - - /// Returns true if the map contains no elements. - /// - /// Computes in **O(1)** time. - #[inline] - pub fn is_empty(&self) -> bool { - self.len() == 0 - } - - /// Return an iterator over the key-value pairs of the map, in their order - pub fn iter(&self) -> Iter<'_, K, V> { - Iter::new(self.as_entries()) - } - - /// Return an iterator over the key-value pairs of the map, in their order - pub fn iter_mut(&mut self) -> IterMut<'_, K, V> { - IterMut::new(self.as_entries_mut()) - } - - /// Return an iterator over the keys of the map, in their order - pub fn keys(&self) -> Keys<'_, K, V> { - Keys::new(self.as_entries()) - } - - /// Return an owning iterator over the keys of the map, in their order - pub fn into_keys(self) -> IntoKeys<K, V> { - IntoKeys::new(self.into_entries()) - } - - /// Return an iterator over the values of the map, in their order - pub fn values(&self) -> Values<'_, K, V> { - Values::new(self.as_entries()) - } - - /// Return an iterator over mutable references to the values of the map, - /// in their order - pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> { - ValuesMut::new(self.as_entries_mut()) - } - - /// Return an owning iterator over the values of the map, in their order - pub fn into_values(self) -> IntoValues<K, V> { - IntoValues::new(self.into_entries()) - } - - /// Remove all key-value pairs in the map, while preserving its capacity. - /// - /// Computes in **O(n)** time. - pub fn clear(&mut self) { - self.core.clear(); - } - - /// Shortens the map, keeping the first `len` elements and dropping the rest. - /// - /// If `len` is greater than the map's current length, this has no effect. - pub fn truncate(&mut self, len: usize) { - self.core.truncate(len); - } - - /// Clears the `IndexMap` in the given index range, returning those - /// key-value pairs as a drain iterator. - /// - /// The range may be any type that implements [`RangeBounds<usize>`], - /// including all of the `std::ops::Range*` types, or even a tuple pair of - /// `Bound` start and end values. To drain the map entirely, use `RangeFull` - /// like `map.drain(..)`. - /// - /// This shifts down all entries following the drained range to fill the - /// gap, and keeps the allocated memory for reuse. - /// - /// ***Panics*** if the starting point is greater than the end point or if - /// the end point is greater than the length of the map. - #[track_caller] - pub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V> - where - R: RangeBounds<usize>, - { - Drain::new(self.core.drain(range)) - } - - /// Splits the collection into two at the given index. - /// - /// Returns a newly allocated map containing the elements in the range - /// `[at, len)`. After the call, the original map will be left containing - /// the elements `[0, at)` with its previous capacity unchanged. - /// - /// ***Panics*** if `at > len`. - #[track_caller] - pub fn split_off(&mut self, at: usize) -> Self - where - S: Clone, - { - Self { - core: self.core.split_off(at), - hash_builder: self.hash_builder.clone(), - } - } - - /// Reserve capacity for `additional` more key-value pairs. - /// - /// Computes in **O(n)** time. - pub fn reserve(&mut self, additional: usize) { - self.core.reserve(additional); - } - - /// Reserve capacity for `additional` more key-value pairs, without over-allocating. - /// - /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid - /// frequent re-allocations. However, the underlying data structures may still have internal - /// capacity requirements, and the allocator itself may give more space than requested, so this - /// cannot be relied upon to be precisely minimal. - /// - /// Computes in **O(n)** time. - pub fn reserve_exact(&mut self, additional: usize) { - self.core.reserve_exact(additional); - } - - /// Try to reserve capacity for `additional` more key-value pairs. - /// - /// Computes in **O(n)** time. - pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { - self.core.try_reserve(additional) - } - - /// Try to reserve capacity for `additional` more key-value pairs, without over-allocating. - /// - /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid - /// frequent re-allocations. However, the underlying data structures may still have internal - /// capacity requirements, and the allocator itself may give more space than requested, so this - /// cannot be relied upon to be precisely minimal. - /// - /// Computes in **O(n)** time. - pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { - self.core.try_reserve_exact(additional) - } - - /// Shrink the capacity of the map as much as possible. - /// - /// Computes in **O(n)** time. - pub fn shrink_to_fit(&mut self) { - self.core.shrink_to(0); - } - - /// Shrink the capacity of the map with a lower limit. - /// - /// Computes in **O(n)** time. - pub fn shrink_to(&mut self, min_capacity: usize) { - self.core.shrink_to(min_capacity); - } -} - -impl<K, V, S> IndexMap<K, V, S> -where - K: Hash + Eq, - S: BuildHasher, -{ - /// Insert a key-value pair in the map. - /// - /// If an equivalent key already exists in the map: the key remains and - /// retains in its place in the order, its corresponding value is updated - /// with `value`, and the older value is returned inside `Some(_)`. - /// - /// If no equivalent key existed in the map: the new key-value pair is - /// inserted, last in order, and `None` is returned. - /// - /// Computes in **O(1)** time (amortized average). - /// - /// See also [`entry`][Self::entry] if you want to insert *or* modify, - /// or [`insert_full`][Self::insert_full] if you need to get the index of - /// the corresponding key-value pair. - pub fn insert(&mut self, key: K, value: V) -> Option<V> { - self.insert_full(key, value).1 - } - - /// Insert a key-value pair in the map, and get their index. - /// - /// If an equivalent key already exists in the map: the key remains and - /// retains in its place in the order, its corresponding value is updated - /// with `value`, and the older value is returned inside `(index, Some(_))`. - /// - /// If no equivalent key existed in the map: the new key-value pair is - /// inserted, last in order, and `(index, None)` is returned. - /// - /// Computes in **O(1)** time (amortized average). - /// - /// See also [`entry`][Self::entry] if you want to insert *or* modify. - pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>) { - let hash = self.hash(&key); - self.core.insert_full(hash, key, value) - } - - /// Insert a key-value pair in the map at its ordered position among sorted keys. - /// - /// This is equivalent to finding the position with - /// [`binary_search_keys`][Self::binary_search_keys], then either updating - /// it or calling [`insert_before`][Self::insert_before] for a new key. - /// - /// If the sorted key is found in the map, its corresponding value is - /// updated with `value`, and the older value is returned inside - /// `(index, Some(_))`. Otherwise, the new key-value pair is inserted at - /// the sorted position, and `(index, None)` is returned. - /// - /// If the existing keys are **not** already sorted, then the insertion - /// index is unspecified (like [`slice::binary_search`]), but the key-value - /// pair is moved to or inserted at that position regardless. - /// - /// Computes in **O(n)** time (average). Instead of repeating calls to - /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert] - /// or [`extend`][Self::extend] and only call [`sort_keys`][Self::sort_keys] - /// or [`sort_unstable_keys`][Self::sort_unstable_keys] once. - pub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option<V>) - where - K: Ord, - { - match self.binary_search_keys(&key) { - Ok(i) => (i, Some(mem::replace(&mut self[i], value))), - Err(i) => self.insert_before(i, key, value), - } - } - - /// Insert a key-value pair in the map before the entry at the given index, or at the end. - /// - /// If an equivalent key already exists in the map: the key remains and - /// is moved to the new position in the map, its corresponding value is updated - /// with `value`, and the older value is returned inside `Some(_)`. The returned index - /// will either be the given index or one less, depending on how the entry moved. - /// (See [`shift_insert`](Self::shift_insert) for different behavior here.) - /// - /// If no equivalent key existed in the map: the new key-value pair is - /// inserted exactly at the given index, and `None` is returned. - /// - /// ***Panics*** if `index` is out of bounds. - /// Valid indices are `0..=map.len()` (inclusive). - /// - /// Computes in **O(n)** time (average). - /// - /// See also [`entry`][Self::entry] if you want to insert *or* modify, - /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`]. - /// - /// # Examples - /// - /// ``` - /// use indexmap::IndexMap; - /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect(); - /// - /// // The new key '*' goes exactly at the given index. - /// assert_eq!(map.get_index_of(&'*'), None); - /// assert_eq!(map.insert_before(10, '*', ()), (10, None)); - /// assert_eq!(map.get_index_of(&'*'), Some(10)); - /// - /// // Moving the key 'a' up will shift others down, so this moves *before* 10 to index 9. - /// assert_eq!(map.insert_before(10, 'a', ()), (9, Some(()))); - /// assert_eq!(map.get_index_of(&'a'), Some(9)); - /// assert_eq!(map.get_index_of(&'*'), Some(10)); - /// - /// // Moving the key 'z' down will shift others up, so this moves to exactly 10. - /// assert_eq!(map.insert_before(10, 'z', ()), (10, Some(()))); - /// assert_eq!(map.get_index_of(&'z'), Some(10)); - /// assert_eq!(map.get_index_of(&'*'), Some(11)); - /// - /// // Moving or inserting before the endpoint is also valid. - /// assert_eq!(map.len(), 27); - /// assert_eq!(map.insert_before(map.len(), '*', ()), (26, Some(()))); - /// assert_eq!(map.get_index_of(&'*'), Some(26)); - /// assert_eq!(map.insert_before(map.len(), '+', ()), (27, None)); - /// assert_eq!(map.get_index_of(&'+'), Some(27)); - /// assert_eq!(map.len(), 28); - /// ``` - #[track_caller] - pub fn insert_before(&mut self, mut index: usize, key: K, value: V) -> (usize, Option<V>) { - let len = self.len(); - - assert!( - index <= len, - "index out of bounds: the len is {len} but the index is {index}. Expected index <= len" - ); - - match self.entry(key) { - Entry::Occupied(mut entry) => { - if index > entry.index() { - // Some entries will shift down when this one moves up, - // so "insert before index" becomes "move to index - 1", - // keeping the entry at the original index unmoved. - index -= 1; - } - let old = mem::replace(entry.get_mut(), value); - entry.move_index(index); - (index, Some(old)) - } - Entry::Vacant(entry) => { - entry.shift_insert(index, value); - (index, None) - } - } - } - - /// Insert a key-value pair in the map at the given index. - /// - /// If an equivalent key already exists in the map: the key remains and - /// is moved to the given index in the map, its corresponding value is updated - /// with `value`, and the older value is returned inside `Some(_)`. - /// Note that existing entries **cannot** be moved to `index == map.len()`! - /// (See [`insert_before`](Self::insert_before) for different behavior here.) - /// - /// If no equivalent key existed in the map: the new key-value pair is - /// inserted at the given index, and `None` is returned. - /// - /// ***Panics*** if `index` is out of bounds. - /// Valid indices are `0..map.len()` (exclusive) when moving an existing entry, or - /// `0..=map.len()` (inclusive) when inserting a new key. - /// - /// Computes in **O(n)** time (average). - /// - /// See also [`entry`][Self::entry] if you want to insert *or* modify, - /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`]. - /// - /// # Examples - /// - /// ``` - /// use indexmap::IndexMap; - /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect(); - /// - /// // The new key '*' goes exactly at the given index. - /// assert_eq!(map.get_index_of(&'*'), None); - /// assert_eq!(map.shift_insert(10, '*', ()), None); - /// assert_eq!(map.get_index_of(&'*'), Some(10)); - /// - /// // Moving the key 'a' up to 10 will shift others down, including the '*' that was at 10. - /// assert_eq!(map.shift_insert(10, 'a', ()), Some(())); - /// assert_eq!(map.get_index_of(&'a'), Some(10)); - /// assert_eq!(map.get_index_of(&'*'), Some(9)); - /// - /// // Moving the key 'z' down to 9 will shift others up, including the '*' that was at 9. - /// assert_eq!(map.shift_insert(9, 'z', ()), Some(())); - /// assert_eq!(map.get_index_of(&'z'), Some(9)); - /// assert_eq!(map.get_index_of(&'*'), Some(10)); - /// - /// // Existing keys can move to len-1 at most, but new keys can insert at the endpoint. - /// assert_eq!(map.len(), 27); - /// assert_eq!(map.shift_insert(map.len() - 1, '*', ()), Some(())); - /// assert_eq!(map.get_index_of(&'*'), Some(26)); - /// assert_eq!(map.shift_insert(map.len(), '+', ()), None); - /// assert_eq!(map.get_index_of(&'+'), Some(27)); - /// assert_eq!(map.len(), 28); - /// ``` - /// - /// ```should_panic - /// use indexmap::IndexMap; - /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect(); - /// - /// // This is an invalid index for moving an existing key! - /// map.shift_insert(map.len(), 'a', ()); - /// ``` - #[track_caller] - pub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option<V> { - let len = self.len(); - match self.entry(key) { - Entry::Occupied(mut entry) => { - assert!( - index < len, - "index out of bounds: the len is {len} but the index is {index}" - ); - - let old = mem::replace(entry.get_mut(), value); - entry.move_index(index); - Some(old) - } - Entry::Vacant(entry) => { - assert!( - index <= len, - "index out of bounds: the len is {len} but the index is {index}. Expected index <= len" - ); - - entry.shift_insert(index, value); - None - } - } - } - - /// Get the given key’s corresponding entry in the map for insertion and/or - /// in-place manipulation. - /// - /// Computes in **O(1)** time (amortized average). - pub fn entry(&mut self, key: K) -> Entry<'_, K, V> { - let hash = self.hash(&key); - self.core.entry(hash, key) - } - - /// Creates a splicing iterator that replaces the specified range in the map - /// with the given `replace_with` key-value iterator and yields the removed - /// items. `replace_with` does not need to be the same length as `range`. - /// - /// The `range` is removed even if the iterator is not consumed until the - /// end. It is unspecified how many elements are removed from the map if the - /// `Splice` value is leaked. - /// - /// The input iterator `replace_with` is only consumed when the `Splice` - /// value is dropped. If a key from the iterator matches an existing entry - /// in the map (outside of `range`), then the value will be updated in that - /// position. Otherwise, the new key-value pair will be inserted in the - /// replaced `range`. - /// - /// ***Panics*** if the starting point is greater than the end point or if - /// the end point is greater than the length of the map. - /// - /// # Examples - /// - /// ``` - /// use indexmap::IndexMap; - /// - /// let mut map = IndexMap::from([(0, '_'), (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]); - /// let new = [(5, 'E'), (4, 'D'), (3, 'C'), (2, 'B'), (1, 'A')]; - /// let removed: Vec<_> = map.splice(2..4, new).collect(); - /// - /// // 1 and 4 got new values, while 5, 3, and 2 were newly inserted. - /// assert!(map.into_iter().eq([(0, '_'), (1, 'A'), (5, 'E'), (3, 'C'), (2, 'B'), (4, 'D')])); - /// assert_eq!(removed, &[(2, 'b'), (3, 'c')]); - /// ``` - #[track_caller] - pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, K, V, S> - where - R: RangeBounds<usize>, - I: IntoIterator<Item = (K, V)>, - { - Splice::new(self, range, replace_with.into_iter()) - } - - /// Moves all key-value pairs from `other` into `self`, leaving `other` empty. - /// - /// This is equivalent to calling [`insert`][Self::insert] for each - /// key-value pair from `other` in order, which means that for keys that - /// already exist in `self`, their value is updated in the current position. - /// - /// # Examples - /// - /// ``` - /// use indexmap::IndexMap; - /// - /// // Note: Key (3) is present in both maps. - /// let mut a = IndexMap::from([(3, "c"), (2, "b"), (1, "a")]); - /// let mut b = IndexMap::from([(3, "d"), (4, "e"), (5, "f")]); - /// let old_capacity = b.capacity(); - /// - /// a.append(&mut b); - /// - /// assert_eq!(a.len(), 5); - /// assert_eq!(b.len(), 0); - /// assert_eq!(b.capacity(), old_capacity); - /// - /// assert!(a.keys().eq(&[3, 2, 1, 4, 5])); - /// assert_eq!(a[&3], "d"); // "c" was overwritten. - /// ``` - pub fn append<S2>(&mut self, other: &mut IndexMap<K, V, S2>) { - self.extend(other.drain(..)); - } -} - -impl<K, V, S> IndexMap<K, V, S> -where - S: BuildHasher, -{ - pub(crate) fn hash<Q: ?Sized + Hash>(&self, key: &Q) -> HashValue { - let mut h = self.hash_builder.build_hasher(); - key.hash(&mut h); - HashValue(h.finish() as usize) - } - - /// Return `true` if an equivalent to `key` exists in the map. - /// - /// Computes in **O(1)** time (average). - pub fn contains_key<Q>(&self, key: &Q) -> bool - where - Q: ?Sized + Hash + Equivalent<K>, - { - self.get_index_of(key).is_some() - } - - /// Return a reference to the value stored for `key`, if it is present, - /// else `None`. - /// - /// Computes in **O(1)** time (average). - pub fn get<Q>(&self, key: &Q) -> Option<&V> - where - Q: ?Sized + Hash + Equivalent<K>, - { - if let Some(i) = self.get_index_of(key) { - let entry = &self.as_entries()[i]; - Some(&entry.value) - } else { - None - } - } - - /// Return references to the key-value pair stored for `key`, - /// if it is present, else `None`. - /// - /// Computes in **O(1)** time (average). - pub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)> - where - Q: ?Sized + Hash + Equivalent<K>, - { - if let Some(i) = self.get_index_of(key) { - let entry = &self.as_entries()[i]; - Some((&entry.key, &entry.value)) - } else { - None - } - } - - /// Return item index, key and value - pub fn get_full<Q>(&self, key: &Q) -> Option<(usize, &K, &V)> - where - Q: ?Sized + Hash + Equivalent<K>, - { - if let Some(i) = self.get_index_of(key) { - let entry = &self.as_entries()[i]; - Some((i, &entry.key, &entry.value)) - } else { - None - } - } - - /// Return item index, if it exists in the map - /// - /// Computes in **O(1)** time (average). - pub fn get_index_of<Q>(&self, key: &Q) -> Option<usize> - where - Q: ?Sized + Hash + Equivalent<K>, - { - match self.as_entries() { - [] => None, - [x] => key.equivalent(&x.key).then_some(0), - _ => { - let hash = self.hash(key); - self.core.get_index_of(hash, key) - } - } - } - - pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V> - where - Q: ?Sized + Hash + Equivalent<K>, - { - if let Some(i) = self.get_index_of(key) { - let entry = &mut self.as_entries_mut()[i]; - Some(&mut entry.value) - } else { - None - } - } - - pub fn get_full_mut<Q>(&mut self, key: &Q) -> Option<(usize, &K, &mut V)> - where - Q: ?Sized + Hash + Equivalent<K>, - { - if let Some(i) = self.get_index_of(key) { - let entry = &mut self.as_entries_mut()[i]; - Some((i, &entry.key, &mut entry.value)) - } else { - None - } - } - - /// Return the values for `N` keys. If any key is duplicated, this function will panic. - /// - /// # Examples - /// - /// ``` - /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]); - /// assert_eq!(map.get_disjoint_mut([&2, &1]), [Some(&mut 'c'), Some(&mut 'a')]); - /// ``` - pub fn get_disjoint_mut<Q, const N: usize>(&mut self, keys: [&Q; N]) -> [Option<&mut V>; N] - where - Q: ?Sized + Hash + Equivalent<K>, - { - let indices = keys.map(|key| self.get_index_of(key)); - match self.as_mut_slice().get_disjoint_opt_mut(indices) { - Err(GetDisjointMutError::IndexOutOfBounds) => { - unreachable!( - "Internal error: indices should never be OOB as we got them from get_index_of" - ); - } - Err(GetDisjointMutError::OverlappingIndices) => { - panic!("duplicate keys found"); - } - Ok(key_values) => key_values.map(|kv_opt| kv_opt.map(|kv| kv.1)), - } - } - - /// Remove the key-value pair equivalent to `key` and return - /// its value. - /// - /// **NOTE:** This is equivalent to [`.swap_remove(key)`][Self::swap_remove], replacing this - /// entry's position with the last element, and it is deprecated in favor of calling that - /// explicitly. If you need to preserve the relative order of the keys in the map, use - /// [`.shift_remove(key)`][Self::shift_remove] instead. - #[deprecated(note = "`remove` disrupts the map order -- \ - use `swap_remove` or `shift_remove` for explicit behavior.")] - pub fn remove<Q>(&mut self, key: &Q) -> Option<V> - where - Q: ?Sized + Hash + Equivalent<K>, - { - self.swap_remove(key) - } - - /// Remove and return the key-value pair equivalent to `key`. - /// - /// **NOTE:** This is equivalent to [`.swap_remove_entry(key)`][Self::swap_remove_entry], - /// replacing this entry's position with the last element, and it is deprecated in favor of - /// calling that explicitly. If you need to preserve the relative order of the keys in the map, - /// use [`.shift_remove_entry(key)`][Self::shift_remove_entry] instead. - #[deprecated(note = "`remove_entry` disrupts the map order -- \ - use `swap_remove_entry` or `shift_remove_entry` for explicit behavior.")] - pub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)> - where - Q: ?Sized + Hash + Equivalent<K>, - { - self.swap_remove_entry(key) - } - - /// Remove the key-value pair equivalent to `key` and return - /// its value. - /// - /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the - /// last element of the map and popping it off. **This perturbs - /// the position of what used to be the last element!** - /// - /// Return `None` if `key` is not in map. - /// - /// Computes in **O(1)** time (average). - pub fn swap_remove<Q>(&mut self, key: &Q) -> Option<V> - where - Q: ?Sized + Hash + Equivalent<K>, - { - self.swap_remove_full(key).map(third) - } - - /// Remove and return the key-value pair equivalent to `key`. - /// - /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the - /// last element of the map and popping it off. **This perturbs - /// the position of what used to be the last element!** - /// - /// Return `None` if `key` is not in map. - /// - /// Computes in **O(1)** time (average). - pub fn swap_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)> - where - Q: ?Sized + Hash + Equivalent<K>, - { - match self.swap_remove_full(key) { - Some((_, key, value)) => Some((key, value)), - None => None, - } - } - - /// Remove the key-value pair equivalent to `key` and return it and - /// the index it had. - /// - /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the - /// last element of the map and popping it off. **This perturbs - /// the position of what used to be the last element!** - /// - /// Return `None` if `key` is not in map. - /// - /// Computes in **O(1)** time (average). - pub fn swap_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)> - where - Q: ?Sized + Hash + Equivalent<K>, - { - match self.as_entries() { - [x] if key.equivalent(&x.key) => { - let (k, v) = self.core.pop()?; - Some((0, k, v)) - } - [_] | [] => None, - _ => { - let hash = self.hash(key); - self.core.swap_remove_full(hash, key) - } - } - } - - /// Remove the key-value pair equivalent to `key` and return - /// its value. - /// - /// Like [`Vec::remove`], the pair is removed by shifting all of the - /// elements that follow it, preserving their relative order. - /// **This perturbs the index of all of those elements!** - /// - /// Return `None` if `key` is not in map. - /// - /// Computes in **O(n)** time (average). - pub fn shift_remove<Q>(&mut self, key: &Q) -> Option<V> - where - Q: ?Sized + Hash + Equivalent<K>, - { - self.shift_remove_full(key).map(third) - } - - /// Remove and return the key-value pair equivalent to `key`. - /// - /// Like [`Vec::remove`], the pair is removed by shifting all of the - /// elements that follow it, preserving their relative order. - /// **This perturbs the index of all of those elements!** - /// - /// Return `None` if `key` is not in map. - /// - /// Computes in **O(n)** time (average). - pub fn shift_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)> - where - Q: ?Sized + Hash + Equivalent<K>, - { - match self.shift_remove_full(key) { - Some((_, key, value)) => Some((key, value)), - None => None, - } - } - - /// Remove the key-value pair equivalent to `key` and return it and - /// the index it had. - /// - /// Like [`Vec::remove`], the pair is removed by shifting all of the - /// elements that follow it, preserving their relative order. - /// **This perturbs the index of all of those elements!** - /// - /// Return `None` if `key` is not in map. - /// - /// Computes in **O(n)** time (average). - pub fn shift_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)> - where - Q: ?Sized + Hash + Equivalent<K>, - { - match self.as_entries() { - [x] if key.equivalent(&x.key) => { - let (k, v) = self.core.pop()?; - Some((0, k, v)) - } - [_] | [] => None, - _ => { - let hash = self.hash(key); - self.core.shift_remove_full(hash, key) - } - } - } -} - -impl<K, V, S> IndexMap<K, V, S> { - /// Remove the last key-value pair - /// - /// This preserves the order of the remaining elements. - /// - /// Computes in **O(1)** time (average). - #[doc(alias = "pop_last")] // like `BTreeMap` - pub fn pop(&mut self) -> Option<(K, V)> { - self.core.pop() - } - - /// Scan through each key-value pair in the map and keep those where the - /// closure `keep` returns `true`. - /// - /// The elements are visited in order, and remaining elements keep their - /// order. - /// - /// Computes in **O(n)** time (average). - pub fn retain<F>(&mut self, mut keep: F) - where - F: FnMut(&K, &mut V) -> bool, - { - self.core.retain_in_order(move |k, v| keep(k, v)); - } - - /// Sort the map’s key-value pairs by the default ordering of the keys. - /// - /// This is a stable sort -- but equivalent keys should not normally coexist in - /// a map at all, so [`sort_unstable_keys`][Self::sort_unstable_keys] is preferred - /// because it is generally faster and doesn't allocate auxiliary memory. - /// - /// See [`sort_by`](Self::sort_by) for details. - pub fn sort_keys(&mut self) - where - K: Ord, - { - self.with_entries(move |entries| { - entries.sort_by(move |a, b| K::cmp(&a.key, &b.key)); - }); - } - - /// Sort the map’s key-value pairs in place using the comparison - /// function `cmp`. - /// - /// The comparison function receives two key and value pairs to compare (you - /// can sort by keys or values or their combination as needed). - /// - /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is - /// the length of the map and *c* the capacity. The sort is stable. - pub fn sort_by<F>(&mut self, mut cmp: F) - where - F: FnMut(&K, &V, &K, &V) -> Ordering, - { - self.with_entries(move |entries| { - entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); - }); - } - - /// Sort the key-value pairs of the map and return a by-value iterator of - /// the key-value pairs with the result. - /// - /// The sort is stable. - pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<K, V> - where - F: FnMut(&K, &V, &K, &V) -> Ordering, - { - let mut entries = self.into_entries(); - entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); - IntoIter::new(entries) - } - - /// Sort the map's key-value pairs by the default ordering of the keys, but - /// may not preserve the order of equal elements. - /// - /// See [`sort_unstable_by`](Self::sort_unstable_by) for details. - pub fn sort_unstable_keys(&mut self) - where - K: Ord, - { - self.with_entries(move |entries| { - entries.sort_unstable_by(move |a, b| K::cmp(&a.key, &b.key)); - }); - } - - /// Sort the map's key-value pairs in place using the comparison function `cmp`, but - /// may not preserve the order of equal elements. - /// - /// The comparison function receives two key and value pairs to compare (you - /// can sort by keys or values or their combination as needed). - /// - /// Computes in **O(n log n + c)** time where *n* is - /// the length of the map and *c* is the capacity. The sort is unstable. - pub fn sort_unstable_by<F>(&mut self, mut cmp: F) - where - F: FnMut(&K, &V, &K, &V) -> Ordering, - { - self.with_entries(move |entries| { - entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); - }); - } - - /// Sort the key-value pairs of the map and return a by-value iterator of - /// the key-value pairs with the result. - /// - /// The sort is unstable. - #[inline] - pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<K, V> - where - F: FnMut(&K, &V, &K, &V) -> Ordering, - { - let mut entries = self.into_entries(); - entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); - IntoIter::new(entries) - } - - /// Sort the map’s key-value pairs in place using a sort-key extraction function. - /// - /// During sorting, the function is called at most once per entry, by using temporary storage - /// to remember the results of its evaluation. The order of calls to the function is - /// unspecified and may change between versions of `indexmap` or the standard library. - /// - /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is - /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable. - pub fn sort_by_cached_key<T, F>(&mut self, mut sort_key: F) - where - T: Ord, - F: FnMut(&K, &V) -> T, - { - self.with_entries(move |entries| { - entries.sort_by_cached_key(move |a| sort_key(&a.key, &a.value)); - }); - } - - /// Search over a sorted map for a key. - /// - /// Returns the position where that key is present, or the position where it can be inserted to - /// maintain the sort. See [`slice::binary_search`] for more details. - /// - /// Computes in **O(log(n))** time, which is notably less scalable than looking the key up - /// using [`get_index_of`][IndexMap::get_index_of], but this can also position missing keys. - pub fn binary_search_keys(&self, x: &K) -> Result<usize, usize> - where - K: Ord, - { - self.as_slice().binary_search_keys(x) - } - - /// Search over a sorted map with a comparator function. - /// - /// Returns the position where that value is present, or the position where it can be inserted - /// to maintain the sort. See [`slice::binary_search_by`] for more details. - /// - /// Computes in **O(log(n))** time. - #[inline] - pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> - where - F: FnMut(&'a K, &'a V) -> Ordering, - { - self.as_slice().binary_search_by(f) - } - - /// Search over a sorted map with an extraction function. - /// - /// Returns the position where that value is present, or the position where it can be inserted - /// to maintain the sort. See [`slice::binary_search_by_key`] for more details. - /// - /// Computes in **O(log(n))** time. - #[inline] - pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize> - where - F: FnMut(&'a K, &'a V) -> B, - B: Ord, - { - self.as_slice().binary_search_by_key(b, f) - } - - /// Returns the index of the partition point of a sorted map according to the given predicate - /// (the index of the first element of the second partition). - /// - /// See [`slice::partition_point`] for more details. - /// - /// Computes in **O(log(n))** time. - #[must_use] - pub fn partition_point<P>(&self, pred: P) -> usize - where - P: FnMut(&K, &V) -> bool, - { - self.as_slice().partition_point(pred) - } - - /// Reverses the order of the map’s key-value pairs in place. - /// - /// Computes in **O(n)** time and **O(1)** space. - pub fn reverse(&mut self) { - self.core.reverse() - } - - /// Returns a slice of all the key-value pairs in the map. - /// - /// Computes in **O(1)** time. - pub fn as_slice(&self) -> &Slice<K, V> { - Slice::from_slice(self.as_entries()) - } - - /// Returns a mutable slice of all the key-value pairs in the map. - /// - /// Computes in **O(1)** time. - pub fn as_mut_slice(&mut self) -> &mut Slice<K, V> { - Slice::from_mut_slice(self.as_entries_mut()) - } - - /// Converts into a boxed slice of all the key-value pairs in the map. - /// - /// Note that this will drop the inner hash table and any excess capacity. - pub fn into_boxed_slice(self) -> Box<Slice<K, V>> { - Slice::from_boxed(self.into_entries().into_boxed_slice()) - } - - /// Get a key-value pair by index - /// - /// Valid indices are `0 <= index < self.len()`. - /// - /// Computes in **O(1)** time. - pub fn get_index(&self, index: usize) -> Option<(&K, &V)> { - self.as_entries().get(index).map(Bucket::refs) - } - - /// Get a key-value pair by index - /// - /// Valid indices are `0 <= index < self.len()`. - /// - /// Computes in **O(1)** time. - pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> { - self.as_entries_mut().get_mut(index).map(Bucket::ref_mut) - } - - /// Get an entry in the map by index for in-place manipulation. - /// - /// Valid indices are `0 <= index < self.len()`. - /// - /// Computes in **O(1)** time. - pub fn get_index_entry(&mut self, index: usize) -> Option<IndexedEntry<'_, K, V>> { - if index >= self.len() { - return None; - } - Some(IndexedEntry::new(&mut self.core, index)) - } - - /// Get an array of `N` key-value pairs by `N` indices - /// - /// Valid indices are *0 <= index < self.len()* and each index needs to be unique. - /// - /// # Examples - /// - /// ``` - /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]); - /// assert_eq!(map.get_disjoint_indices_mut([2, 0]), Ok([(&2, &mut 'c'), (&1, &mut 'a')])); - /// ``` - pub fn get_disjoint_indices_mut<const N: usize>( - &mut self, - indices: [usize; N], - ) -> Result<[(&K, &mut V); N], GetDisjointMutError> { - self.as_mut_slice().get_disjoint_mut(indices) - } - - /// Returns a slice of key-value pairs in the given range of indices. - /// - /// Valid indices are `0 <= index < self.len()`. - /// - /// Computes in **O(1)** time. - pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<K, V>> { - let entries = self.as_entries(); - let range = try_simplify_range(range, entries.len())?; - entries.get(range).map(Slice::from_slice) - } - - /// Returns a mutable slice of key-value pairs in the given range of indices. - /// - /// Valid indices are `0 <= index < self.len()`. - /// - /// Computes in **O(1)** time. - pub fn get_range_mut<R: RangeBounds<usize>>(&mut self, range: R) -> Option<&mut Slice<K, V>> { - let entries = self.as_entries_mut(); - let range = try_simplify_range(range, entries.len())?; - entries.get_mut(range).map(Slice::from_mut_slice) - } - - /// Get the first key-value pair - /// - /// Computes in **O(1)** time. - #[doc(alias = "first_key_value")] // like `BTreeMap` - pub fn first(&self) -> Option<(&K, &V)> { - self.as_entries().first().map(Bucket::refs) - } - - /// Get the first key-value pair, with mutable access to the value - /// - /// Computes in **O(1)** time. - pub fn first_mut(&mut self) -> Option<(&K, &mut V)> { - self.as_entries_mut().first_mut().map(Bucket::ref_mut) - } - - /// Get the first entry in the map for in-place manipulation. - /// - /// Computes in **O(1)** time. - pub fn first_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> { - self.get_index_entry(0) - } - - /// Get the last key-value pair - /// - /// Computes in **O(1)** time. - #[doc(alias = "last_key_value")] // like `BTreeMap` - pub fn last(&self) -> Option<(&K, &V)> { - self.as_entries().last().map(Bucket::refs) - } - - /// Get the last key-value pair, with mutable access to the value - /// - /// Computes in **O(1)** time. - pub fn last_mut(&mut self) -> Option<(&K, &mut V)> { - self.as_entries_mut().last_mut().map(Bucket::ref_mut) - } - - /// Get the last entry in the map for in-place manipulation. - /// - /// Computes in **O(1)** time. - pub fn last_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> { - self.get_index_entry(self.len().checked_sub(1)?) - } - - /// Remove the key-value pair by index - /// - /// Valid indices are `0 <= index < self.len()`. - /// - /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the - /// last element of the map and popping it off. **This perturbs - /// the position of what used to be the last element!** - /// - /// Computes in **O(1)** time (average). - pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> { - self.core.swap_remove_index(index) - } - - /// Remove the key-value pair by index - /// - /// Valid indices are `0 <= index < self.len()`. - /// - /// Like [`Vec::remove`], the pair is removed by shifting all of the - /// elements that follow it, preserving their relative order. - /// **This perturbs the index of all of those elements!** - /// - /// Computes in **O(n)** time (average). - pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> { - self.core.shift_remove_index(index) - } - - /// Moves the position of a key-value pair from one index to another - /// by shifting all other pairs in-between. - /// - /// * If `from < to`, the other pairs will shift down while the targeted pair moves up. - /// * If `from > to`, the other pairs will shift up while the targeted pair moves down. - /// - /// ***Panics*** if `from` or `to` are out of bounds. - /// - /// Computes in **O(n)** time (average). - #[track_caller] - pub fn move_index(&mut self, from: usize, to: usize) { - self.core.move_index(from, to) - } - - /// Swaps the position of two key-value pairs in the map. - /// - /// ***Panics*** if `a` or `b` are out of bounds. - /// - /// Computes in **O(1)** time (average). - #[track_caller] - pub fn swap_indices(&mut self, a: usize, b: usize) { - self.core.swap_indices(a, b) - } -} - -/// Access [`IndexMap`] values corresponding to a key. -/// -/// # Examples -/// -/// ``` -/// use indexmap::IndexMap; -/// -/// let mut map = IndexMap::new(); -/// for word in "Lorem ipsum dolor sit amet".split_whitespace() { -/// map.insert(word.to_lowercase(), word.to_uppercase()); -/// } -/// assert_eq!(map["lorem"], "LOREM"); -/// assert_eq!(map["ipsum"], "IPSUM"); -/// ``` -/// -/// ```should_panic -/// use indexmap::IndexMap; -/// -/// let mut map = IndexMap::new(); -/// map.insert("foo", 1); -/// println!("{:?}", map["bar"]); // panics! -/// ``` -impl<K, V, Q: ?Sized, S> Index<&Q> for IndexMap<K, V, S> -where - Q: Hash + Equivalent<K>, - S: BuildHasher, -{ - type Output = V; - - /// Returns a reference to the value corresponding to the supplied `key`. - /// - /// ***Panics*** if `key` is not present in the map. - fn index(&self, key: &Q) -> &V { - self.get(key).expect("no entry found for key") - } -} - -/// Access [`IndexMap`] values corresponding to a key. -/// -/// Mutable indexing allows changing / updating values of key-value -/// pairs that are already present. -/// -/// You can **not** insert new pairs with index syntax, use `.insert()`. -/// -/// # Examples -/// -/// ``` -/// use indexmap::IndexMap; -/// -/// let mut map = IndexMap::new(); -/// for word in "Lorem ipsum dolor sit amet".split_whitespace() { -/// map.insert(word.to_lowercase(), word.to_string()); -/// } -/// let lorem = &mut map["lorem"]; -/// assert_eq!(lorem, "Lorem"); -/// lorem.retain(char::is_lowercase); -/// assert_eq!(map["lorem"], "orem"); -/// ``` -/// -/// ```should_panic -/// use indexmap::IndexMap; -/// -/// let mut map = IndexMap::new(); -/// map.insert("foo", 1); -/// map["bar"] = 1; // panics! -/// ``` -impl<K, V, Q: ?Sized, S> IndexMut<&Q> for IndexMap<K, V, S> -where - Q: Hash + Equivalent<K>, - S: BuildHasher, -{ - /// Returns a mutable reference to the value corresponding to the supplied `key`. - /// - /// ***Panics*** if `key` is not present in the map. - fn index_mut(&mut self, key: &Q) -> &mut V { - self.get_mut(key).expect("no entry found for key") - } -} - -/// Access [`IndexMap`] values at indexed positions. -/// -/// See [`Index<usize> for Keys`][keys] to access a map's keys instead. -/// -/// [keys]: Keys#impl-Index<usize>-for-Keys<'a,+K,+V> -/// -/// # Examples -/// -/// ``` -/// use indexmap::IndexMap; -/// -/// let mut map = IndexMap::new(); -/// for word in "Lorem ipsum dolor sit amet".split_whitespace() { -/// map.insert(word.to_lowercase(), word.to_uppercase()); -/// } -/// assert_eq!(map[0], "LOREM"); -/// assert_eq!(map[1], "IPSUM"); -/// map.reverse(); -/// assert_eq!(map[0], "AMET"); -/// assert_eq!(map[1], "SIT"); -/// map.sort_keys(); -/// assert_eq!(map[0], "AMET"); -/// assert_eq!(map[1], "DOLOR"); -/// ``` -/// -/// ```should_panic -/// use indexmap::IndexMap; -/// -/// let mut map = IndexMap::new(); -/// map.insert("foo", 1); -/// println!("{:?}", map[10]); // panics! -/// ``` -impl<K, V, S> Index<usize> for IndexMap<K, V, S> { - type Output = V; - - /// Returns a reference to the value at the supplied `index`. - /// - /// ***Panics*** if `index` is out of bounds. - fn index(&self, index: usize) -> &V { - self.get_index(index) - .unwrap_or_else(|| { - panic!( - "index out of bounds: the len is {len} but the index is {index}", - len = self.len() - ); - }) - .1 - } -} - -/// Access [`IndexMap`] values at indexed positions. -/// -/// Mutable indexing allows changing / updating indexed values -/// that are already present. -/// -/// You can **not** insert new values with index syntax -- use [`.insert()`][IndexMap::insert]. -/// -/// # Examples -/// -/// ``` -/// use indexmap::IndexMap; -/// -/// let mut map = IndexMap::new(); -/// for word in "Lorem ipsum dolor sit amet".split_whitespace() { -/// map.insert(word.to_lowercase(), word.to_string()); -/// } -/// let lorem = &mut map[0]; -/// assert_eq!(lorem, "Lorem"); -/// lorem.retain(char::is_lowercase); -/// assert_eq!(map["lorem"], "orem"); -/// ``` -/// -/// ```should_panic -/// use indexmap::IndexMap; -/// -/// let mut map = IndexMap::new(); -/// map.insert("foo", 1); -/// map[10] = 1; // panics! -/// ``` -impl<K, V, S> IndexMut<usize> for IndexMap<K, V, S> { - /// Returns a mutable reference to the value at the supplied `index`. - /// - /// ***Panics*** if `index` is out of bounds. - fn index_mut(&mut self, index: usize) -> &mut V { - let len: usize = self.len(); - - self.get_index_mut(index) - .unwrap_or_else(|| { - panic!("index out of bounds: the len is {len} but the index is {index}"); - }) - .1 - } -} - -impl<K, V, S> FromIterator<(K, V)> for IndexMap<K, V, S> -where - K: Hash + Eq, - S: BuildHasher + Default, -{ - /// Create an `IndexMap` from the sequence of key-value pairs in the - /// iterable. - /// - /// `from_iter` uses the same logic as `extend`. See - /// [`extend`][IndexMap::extend] for more details. - fn from_iter<I: IntoIterator<Item = (K, V)>>(iterable: I) -> Self { - let iter = iterable.into_iter(); - let (low, _) = iter.size_hint(); - let mut map = Self::with_capacity_and_hasher(low, <_>::default()); - map.extend(iter); - map - } -} - -#[cfg(feature = "std")] -#[cfg_attr(docsrs, doc(cfg(feature = "std")))] -impl<K, V, const N: usize> From<[(K, V); N]> for IndexMap<K, V, RandomState> -where - K: Hash + Eq, -{ - /// # Examples - /// - /// ``` - /// use indexmap::IndexMap; - /// - /// let map1 = IndexMap::from([(1, 2), (3, 4)]); - /// let map2: IndexMap<_, _> = [(1, 2), (3, 4)].into(); - /// assert_eq!(map1, map2); - /// ``` - fn from(arr: [(K, V); N]) -> Self { - Self::from_iter(arr) - } -} - -impl<K, V, S> Extend<(K, V)> for IndexMap<K, V, S> -where - K: Hash + Eq, - S: BuildHasher, -{ - /// Extend the map with all key-value pairs in the iterable. - /// - /// This is equivalent to calling [`insert`][IndexMap::insert] for each of - /// them in order, which means that for keys that already existed - /// in the map, their value is updated but it keeps the existing order. - /// - /// New keys are inserted in the order they appear in the sequence. If - /// equivalents of a key occur more than once, the last corresponding value - /// prevails. - fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iterable: I) { - // (Note: this is a copy of `std`/`hashbrown`'s reservation logic.) - // Keys may be already present or show multiple times in the iterator. - // Reserve the entire hint lower bound if the map is empty. - // Otherwise reserve half the hint (rounded up), so the map - // will only resize twice in the worst case. - let iter = iterable.into_iter(); - let reserve = if self.is_empty() { - iter.size_hint().0 - } else { - (iter.size_hint().0 + 1) / 2 - }; - self.reserve(reserve); - iter.for_each(move |(k, v)| { - self.insert(k, v); - }); - } -} - -impl<'a, K, V, S> Extend<(&'a K, &'a V)> for IndexMap<K, V, S> -where - K: Hash + Eq + Copy, - V: Copy, - S: BuildHasher, -{ - /// Extend the map with all key-value pairs in the iterable. - /// - /// See the first extend method for more details. - fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iterable: I) { - self.extend(iterable.into_iter().map(|(&key, &value)| (key, value))); - } -} - -impl<K, V, S> Default for IndexMap<K, V, S> -where - S: Default, -{ - /// Return an empty [`IndexMap`] - fn default() -> Self { - Self::with_capacity_and_hasher(0, S::default()) - } -} - -impl<K, V1, S1, V2, S2> PartialEq<IndexMap<K, V2, S2>> for IndexMap<K, V1, S1> -where - K: Hash + Eq, - V1: PartialEq<V2>, - S1: BuildHasher, - S2: BuildHasher, -{ - fn eq(&self, other: &IndexMap<K, V2, S2>) -> bool { - if self.len() != other.len() { - return false; - } - - self.iter() - .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v)) - } -} - -impl<K, V, S> Eq for IndexMap<K, V, S> -where - K: Eq + Hash, - V: Eq, - S: BuildHasher, -{ -} |
