summaryrefslogtreecommitdiff
path: root/vendor/base64/src/read/decoder.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/base64/src/read/decoder.rs')
-rw-r--r--vendor/base64/src/read/decoder.rs335
1 files changed, 335 insertions, 0 deletions
diff --git a/vendor/base64/src/read/decoder.rs b/vendor/base64/src/read/decoder.rs
new file mode 100644
index 00000000..781f6f88
--- /dev/null
+++ b/vendor/base64/src/read/decoder.rs
@@ -0,0 +1,335 @@
+use crate::{engine::Engine, DecodeError, DecodeSliceError, PAD_BYTE};
+use std::{cmp, fmt, io};
+
+// This should be large, but it has to fit on the stack.
+pub(crate) const BUF_SIZE: usize = 1024;
+
+// 4 bytes of base64 data encode 3 bytes of raw data (modulo padding).
+const BASE64_CHUNK_SIZE: usize = 4;
+const DECODED_CHUNK_SIZE: usize = 3;
+
+/// A `Read` implementation that decodes base64 data read from an underlying reader.
+///
+/// # Examples
+///
+/// ```
+/// use std::io::Read;
+/// use std::io::Cursor;
+/// use base64::engine::general_purpose;
+///
+/// // use a cursor as the simplest possible `Read` -- in real code this is probably a file, etc.
+/// let mut wrapped_reader = Cursor::new(b"YXNkZg==");
+/// let mut decoder = base64::read::DecoderReader::new(
+/// &mut wrapped_reader,
+/// &general_purpose::STANDARD);
+///
+/// // handle errors as you normally would
+/// let mut result = Vec::new();
+/// decoder.read_to_end(&mut result).unwrap();
+///
+/// assert_eq!(b"asdf", &result[..]);
+///
+/// ```
+pub struct DecoderReader<'e, E: Engine, R: io::Read> {
+ engine: &'e E,
+ /// Where b64 data is read from
+ inner: R,
+
+ /// Holds b64 data read from the delegate reader.
+ b64_buffer: [u8; BUF_SIZE],
+ /// The start of the pending buffered data in `b64_buffer`.
+ b64_offset: usize,
+ /// The amount of buffered b64 data after `b64_offset` in `b64_len`.
+ b64_len: usize,
+ /// Since the caller may provide us with a buffer of size 1 or 2 that's too small to copy a
+ /// decoded chunk in to, we have to be able to hang on to a few decoded bytes.
+ /// Technically we only need to hold 2 bytes, but then we'd need a separate temporary buffer to
+ /// decode 3 bytes into and then juggle copying one byte into the provided read buf and the rest
+ /// into here, which seems like a lot of complexity for 1 extra byte of storage.
+ decoded_chunk_buffer: [u8; DECODED_CHUNK_SIZE],
+ /// Index of start of decoded data in `decoded_chunk_buffer`
+ decoded_offset: usize,
+ /// Length of decoded data after `decoded_offset` in `decoded_chunk_buffer`
+ decoded_len: usize,
+ /// Input length consumed so far.
+ /// Used to provide accurate offsets in errors
+ input_consumed_len: usize,
+ /// offset of previously seen padding, if any
+ padding_offset: Option<usize>,
+}
+
+// exclude b64_buffer as it's uselessly large
+impl<'e, E: Engine, R: io::Read> fmt::Debug for DecoderReader<'e, E, R> {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ f.debug_struct("DecoderReader")
+ .field("b64_offset", &self.b64_offset)
+ .field("b64_len", &self.b64_len)
+ .field("decoded_chunk_buffer", &self.decoded_chunk_buffer)
+ .field("decoded_offset", &self.decoded_offset)
+ .field("decoded_len", &self.decoded_len)
+ .field("input_consumed_len", &self.input_consumed_len)
+ .field("padding_offset", &self.padding_offset)
+ .finish()
+ }
+}
+
+impl<'e, E: Engine, R: io::Read> DecoderReader<'e, E, R> {
+ /// Create a new decoder that will read from the provided reader `r`.
+ pub fn new(reader: R, engine: &'e E) -> Self {
+ DecoderReader {
+ engine,
+ inner: reader,
+ b64_buffer: [0; BUF_SIZE],
+ b64_offset: 0,
+ b64_len: 0,
+ decoded_chunk_buffer: [0; DECODED_CHUNK_SIZE],
+ decoded_offset: 0,
+ decoded_len: 0,
+ input_consumed_len: 0,
+ padding_offset: None,
+ }
+ }
+
+ /// Write as much as possible of the decoded buffer into the target buffer.
+ /// Must only be called when there is something to write and space to write into.
+ /// Returns a Result with the number of (decoded) bytes copied.
+ fn flush_decoded_buf(&mut self, buf: &mut [u8]) -> io::Result<usize> {
+ debug_assert!(self.decoded_len > 0);
+ debug_assert!(!buf.is_empty());
+
+ let copy_len = cmp::min(self.decoded_len, buf.len());
+ debug_assert!(copy_len > 0);
+ debug_assert!(copy_len <= self.decoded_len);
+
+ buf[..copy_len].copy_from_slice(
+ &self.decoded_chunk_buffer[self.decoded_offset..self.decoded_offset + copy_len],
+ );
+
+ self.decoded_offset += copy_len;
+ self.decoded_len -= copy_len;
+
+ debug_assert!(self.decoded_len < DECODED_CHUNK_SIZE);
+
+ Ok(copy_len)
+ }
+
+ /// Read into the remaining space in the buffer after the current contents.
+ /// Must only be called when there is space to read into in the buffer.
+ /// Returns the number of bytes read.
+ fn read_from_delegate(&mut self) -> io::Result<usize> {
+ debug_assert!(self.b64_offset + self.b64_len < BUF_SIZE);
+
+ let read = self
+ .inner
+ .read(&mut self.b64_buffer[self.b64_offset + self.b64_len..])?;
+ self.b64_len += read;
+
+ debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
+
+ Ok(read)
+ }
+
+ /// Decode the requested number of bytes from the b64 buffer into the provided buffer. It's the
+ /// caller's responsibility to choose the number of b64 bytes to decode correctly.
+ ///
+ /// Returns a Result with the number of decoded bytes written to `buf`.
+ ///
+ /// # Panics
+ ///
+ /// panics if `buf` is too small
+ fn decode_to_buf(&mut self, b64_len_to_decode: usize, buf: &mut [u8]) -> io::Result<usize> {
+ debug_assert!(self.b64_len >= b64_len_to_decode);
+ debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
+ debug_assert!(!buf.is_empty());
+
+ let b64_to_decode = &self.b64_buffer[self.b64_offset..self.b64_offset + b64_len_to_decode];
+ let decode_metadata = self
+ .engine
+ .internal_decode(
+ b64_to_decode,
+ buf,
+ self.engine.internal_decoded_len_estimate(b64_len_to_decode),
+ )
+ .map_err(|dse| match dse {
+ DecodeSliceError::DecodeError(de) => {
+ match de {
+ DecodeError::InvalidByte(offset, byte) => {
+ match (byte, self.padding_offset) {
+ // if there was padding in a previous block of decoding that happened to
+ // be correct, and we now find more padding that happens to be incorrect,
+ // to be consistent with non-reader decodes, record the error at the first
+ // padding
+ (PAD_BYTE, Some(first_pad_offset)) => {
+ DecodeError::InvalidByte(first_pad_offset, PAD_BYTE)
+ }
+ _ => {
+ DecodeError::InvalidByte(self.input_consumed_len + offset, byte)
+ }
+ }
+ }
+ DecodeError::InvalidLength(len) => {
+ DecodeError::InvalidLength(self.input_consumed_len + len)
+ }
+ DecodeError::InvalidLastSymbol(offset, byte) => {
+ DecodeError::InvalidLastSymbol(self.input_consumed_len + offset, byte)
+ }
+ DecodeError::InvalidPadding => DecodeError::InvalidPadding,
+ }
+ }
+ DecodeSliceError::OutputSliceTooSmall => {
+ unreachable!("buf is sized correctly in calling code")
+ }
+ })
+ .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
+
+ if let Some(offset) = self.padding_offset {
+ // we've already seen padding
+ if decode_metadata.decoded_len > 0 {
+ // we read more after already finding padding; report error at first padding byte
+ return Err(io::Error::new(
+ io::ErrorKind::InvalidData,
+ DecodeError::InvalidByte(offset, PAD_BYTE),
+ ));
+ }
+ }
+
+ self.padding_offset = self.padding_offset.or(decode_metadata
+ .padding_offset
+ .map(|offset| self.input_consumed_len + offset));
+ self.input_consumed_len += b64_len_to_decode;
+ self.b64_offset += b64_len_to_decode;
+ self.b64_len -= b64_len_to_decode;
+
+ debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
+
+ Ok(decode_metadata.decoded_len)
+ }
+
+ /// Unwraps this `DecoderReader`, returning the base reader which it reads base64 encoded
+ /// input from.
+ ///
+ /// Because `DecoderReader` performs internal buffering, the state of the inner reader is
+ /// unspecified. This function is mainly provided because the inner reader type may provide
+ /// additional functionality beyond the `Read` implementation which may still be useful.
+ pub fn into_inner(self) -> R {
+ self.inner
+ }
+}
+
+impl<'e, E: Engine, R: io::Read> io::Read for DecoderReader<'e, E, R> {
+ /// Decode input from the wrapped reader.
+ ///
+ /// Under non-error circumstances, this returns `Ok` with the value being the number of bytes
+ /// written in `buf`.
+ ///
+ /// Where possible, this function buffers base64 to minimize the number of read() calls to the
+ /// delegate reader.
+ ///
+ /// # Errors
+ ///
+ /// Any errors emitted by the delegate reader are returned. Decoding errors due to invalid
+ /// base64 are also possible, and will have `io::ErrorKind::InvalidData`.
+ fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
+ if buf.is_empty() {
+ return Ok(0);
+ }
+
+ // offset == BUF_SIZE when we copied it all last time
+ debug_assert!(self.b64_offset <= BUF_SIZE);
+ debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
+ debug_assert!(if self.b64_offset == BUF_SIZE {
+ self.b64_len == 0
+ } else {
+ self.b64_len <= BUF_SIZE
+ });
+
+ debug_assert!(if self.decoded_len == 0 {
+ // can be = when we were able to copy the complete chunk
+ self.decoded_offset <= DECODED_CHUNK_SIZE
+ } else {
+ self.decoded_offset < DECODED_CHUNK_SIZE
+ });
+
+ // We shouldn't ever decode into decoded_buffer when we can't immediately write at least one
+ // byte into the provided buf, so the effective length should only be 3 momentarily between
+ // when we decode and when we copy into the target buffer.
+ debug_assert!(self.decoded_len < DECODED_CHUNK_SIZE);
+ debug_assert!(self.decoded_len + self.decoded_offset <= DECODED_CHUNK_SIZE);
+
+ if self.decoded_len > 0 {
+ // we have a few leftover decoded bytes; flush that rather than pull in more b64
+ self.flush_decoded_buf(buf)
+ } else {
+ let mut at_eof = false;
+ while self.b64_len < BASE64_CHUNK_SIZE {
+ // Copy any bytes we have to the start of the buffer.
+ self.b64_buffer
+ .copy_within(self.b64_offset..self.b64_offset + self.b64_len, 0);
+ self.b64_offset = 0;
+
+ // then fill in more data
+ let read = self.read_from_delegate()?;
+ if read == 0 {
+ // we never read into an empty buf, so 0 => we've hit EOF
+ at_eof = true;
+ break;
+ }
+ }
+
+ if self.b64_len == 0 {
+ debug_assert!(at_eof);
+ // we must be at EOF, and we have no data left to decode
+ return Ok(0);
+ };
+
+ debug_assert!(if at_eof {
+ // if we are at eof, we may not have a complete chunk
+ self.b64_len > 0
+ } else {
+ // otherwise, we must have at least one chunk
+ self.b64_len >= BASE64_CHUNK_SIZE
+ });
+
+ debug_assert_eq!(0, self.decoded_len);
+
+ if buf.len() < DECODED_CHUNK_SIZE {
+ // caller requested an annoyingly short read
+ // have to write to a tmp buf first to avoid double mutable borrow
+ let mut decoded_chunk = [0_u8; DECODED_CHUNK_SIZE];
+ // if we are at eof, could have less than BASE64_CHUNK_SIZE, in which case we have
+ // to assume that these last few tokens are, in fact, valid (i.e. must be 2-4 b64
+ // tokens, not 1, since 1 token can't decode to 1 byte).
+ let to_decode = cmp::min(self.b64_len, BASE64_CHUNK_SIZE);
+
+ let decoded = self.decode_to_buf(to_decode, &mut decoded_chunk[..])?;
+ self.decoded_chunk_buffer[..decoded].copy_from_slice(&decoded_chunk[..decoded]);
+
+ self.decoded_offset = 0;
+ self.decoded_len = decoded;
+
+ // can be less than 3 on last block due to padding
+ debug_assert!(decoded <= 3);
+
+ self.flush_decoded_buf(buf)
+ } else {
+ let b64_bytes_that_can_decode_into_buf = (buf.len() / DECODED_CHUNK_SIZE)
+ .checked_mul(BASE64_CHUNK_SIZE)
+ .expect("too many chunks");
+ debug_assert!(b64_bytes_that_can_decode_into_buf >= BASE64_CHUNK_SIZE);
+
+ let b64_bytes_available_to_decode = if at_eof {
+ self.b64_len
+ } else {
+ // only use complete chunks
+ self.b64_len - self.b64_len % 4
+ };
+
+ let actual_decode_len = cmp::min(
+ b64_bytes_that_can_decode_into_buf,
+ b64_bytes_available_to_decode,
+ );
+ self.decode_to_buf(actual_decode_len, buf)
+ }
+ }
+ }
+}