summaryrefslogtreecommitdiff
path: root/vendor/base64/src/engine/general_purpose/mod.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/base64/src/engine/general_purpose/mod.rs')
-rw-r--r--vendor/base64/src/engine/general_purpose/mod.rs352
1 files changed, 352 insertions, 0 deletions
diff --git a/vendor/base64/src/engine/general_purpose/mod.rs b/vendor/base64/src/engine/general_purpose/mod.rs
new file mode 100644
index 00000000..6fe95809
--- /dev/null
+++ b/vendor/base64/src/engine/general_purpose/mod.rs
@@ -0,0 +1,352 @@
+//! Provides the [GeneralPurpose] engine and associated config types.
+use crate::{
+ alphabet,
+ alphabet::Alphabet,
+ engine::{Config, DecodeMetadata, DecodePaddingMode},
+ DecodeSliceError,
+};
+use core::convert::TryInto;
+
+pub(crate) mod decode;
+pub(crate) mod decode_suffix;
+
+pub use decode::GeneralPurposeEstimate;
+
+pub(crate) const INVALID_VALUE: u8 = 255;
+
+/// A general-purpose base64 engine.
+///
+/// - It uses no vector CPU instructions, so it will work on any system.
+/// - It is reasonably fast (~2-3GiB/s).
+/// - It is not constant-time, though, so it is vulnerable to timing side-channel attacks. For loading cryptographic keys, etc, it is suggested to use the forthcoming constant-time implementation.
+
+#[derive(Debug, Clone)]
+pub struct GeneralPurpose {
+ encode_table: [u8; 64],
+ decode_table: [u8; 256],
+ config: GeneralPurposeConfig,
+}
+
+impl GeneralPurpose {
+ /// Create a `GeneralPurpose` engine from an [Alphabet].
+ ///
+ /// While not very expensive to initialize, ideally these should be cached
+ /// if the engine will be used repeatedly.
+ pub const fn new(alphabet: &Alphabet, config: GeneralPurposeConfig) -> Self {
+ Self {
+ encode_table: encode_table(alphabet),
+ decode_table: decode_table(alphabet),
+ config,
+ }
+ }
+}
+
+impl super::Engine for GeneralPurpose {
+ type Config = GeneralPurposeConfig;
+ type DecodeEstimate = GeneralPurposeEstimate;
+
+ fn internal_encode(&self, input: &[u8], output: &mut [u8]) -> usize {
+ let mut input_index: usize = 0;
+
+ const BLOCKS_PER_FAST_LOOP: usize = 4;
+ const LOW_SIX_BITS: u64 = 0x3F;
+
+ // we read 8 bytes at a time (u64) but only actually consume 6 of those bytes. Thus, we need
+ // 2 trailing bytes to be available to read..
+ let last_fast_index = input.len().saturating_sub(BLOCKS_PER_FAST_LOOP * 6 + 2);
+ let mut output_index = 0;
+
+ if last_fast_index > 0 {
+ while input_index <= last_fast_index {
+ // Major performance wins from letting the optimizer do the bounds check once, mostly
+ // on the output side
+ let input_chunk =
+ &input[input_index..(input_index + (BLOCKS_PER_FAST_LOOP * 6 + 2))];
+ let output_chunk =
+ &mut output[output_index..(output_index + BLOCKS_PER_FAST_LOOP * 8)];
+
+ // Hand-unrolling for 32 vs 16 or 8 bytes produces yields performance about equivalent
+ // to unsafe pointer code on a Xeon E5-1650v3. 64 byte unrolling was slightly better for
+ // large inputs but significantly worse for 50-byte input, unsurprisingly. I suspect
+ // that it's a not uncommon use case to encode smallish chunks of data (e.g. a 64-byte
+ // SHA-512 digest), so it would be nice if that fit in the unrolled loop at least once.
+ // Plus, single-digit percentage performance differences might well be quite different
+ // on different hardware.
+
+ let input_u64 = read_u64(&input_chunk[0..]);
+
+ output_chunk[0] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
+ output_chunk[1] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
+ output_chunk[2] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
+ output_chunk[3] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
+ output_chunk[4] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
+ output_chunk[5] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
+ output_chunk[6] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
+ output_chunk[7] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];
+
+ let input_u64 = read_u64(&input_chunk[6..]);
+
+ output_chunk[8] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
+ output_chunk[9] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
+ output_chunk[10] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
+ output_chunk[11] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
+ output_chunk[12] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
+ output_chunk[13] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
+ output_chunk[14] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
+ output_chunk[15] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];
+
+ let input_u64 = read_u64(&input_chunk[12..]);
+
+ output_chunk[16] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
+ output_chunk[17] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
+ output_chunk[18] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
+ output_chunk[19] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
+ output_chunk[20] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
+ output_chunk[21] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
+ output_chunk[22] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
+ output_chunk[23] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];
+
+ let input_u64 = read_u64(&input_chunk[18..]);
+
+ output_chunk[24] = self.encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize];
+ output_chunk[25] = self.encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize];
+ output_chunk[26] = self.encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize];
+ output_chunk[27] = self.encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize];
+ output_chunk[28] = self.encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize];
+ output_chunk[29] = self.encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize];
+ output_chunk[30] = self.encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize];
+ output_chunk[31] = self.encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize];
+
+ output_index += BLOCKS_PER_FAST_LOOP * 8;
+ input_index += BLOCKS_PER_FAST_LOOP * 6;
+ }
+ }
+
+ // Encode what's left after the fast loop.
+
+ const LOW_SIX_BITS_U8: u8 = 0x3F;
+
+ let rem = input.len() % 3;
+ let start_of_rem = input.len() - rem;
+
+ // start at the first index not handled by fast loop, which may be 0.
+
+ while input_index < start_of_rem {
+ let input_chunk = &input[input_index..(input_index + 3)];
+ let output_chunk = &mut output[output_index..(output_index + 4)];
+
+ output_chunk[0] = self.encode_table[(input_chunk[0] >> 2) as usize];
+ output_chunk[1] = self.encode_table
+ [((input_chunk[0] << 4 | input_chunk[1] >> 4) & LOW_SIX_BITS_U8) as usize];
+ output_chunk[2] = self.encode_table
+ [((input_chunk[1] << 2 | input_chunk[2] >> 6) & LOW_SIX_BITS_U8) as usize];
+ output_chunk[3] = self.encode_table[(input_chunk[2] & LOW_SIX_BITS_U8) as usize];
+
+ input_index += 3;
+ output_index += 4;
+ }
+
+ if rem == 2 {
+ output[output_index] = self.encode_table[(input[start_of_rem] >> 2) as usize];
+ output[output_index + 1] =
+ self.encode_table[((input[start_of_rem] << 4 | input[start_of_rem + 1] >> 4)
+ & LOW_SIX_BITS_U8) as usize];
+ output[output_index + 2] =
+ self.encode_table[((input[start_of_rem + 1] << 2) & LOW_SIX_BITS_U8) as usize];
+ output_index += 3;
+ } else if rem == 1 {
+ output[output_index] = self.encode_table[(input[start_of_rem] >> 2) as usize];
+ output[output_index + 1] =
+ self.encode_table[((input[start_of_rem] << 4) & LOW_SIX_BITS_U8) as usize];
+ output_index += 2;
+ }
+
+ output_index
+ }
+
+ fn internal_decoded_len_estimate(&self, input_len: usize) -> Self::DecodeEstimate {
+ GeneralPurposeEstimate::new(input_len)
+ }
+
+ fn internal_decode(
+ &self,
+ input: &[u8],
+ output: &mut [u8],
+ estimate: Self::DecodeEstimate,
+ ) -> Result<DecodeMetadata, DecodeSliceError> {
+ decode::decode_helper(
+ input,
+ estimate,
+ output,
+ &self.decode_table,
+ self.config.decode_allow_trailing_bits,
+ self.config.decode_padding_mode,
+ )
+ }
+
+ fn config(&self) -> &Self::Config {
+ &self.config
+ }
+}
+
+/// Returns a table mapping a 6-bit index to the ASCII byte encoding of the index
+pub(crate) const fn encode_table(alphabet: &Alphabet) -> [u8; 64] {
+ // the encode table is just the alphabet:
+ // 6-bit index lookup -> printable byte
+ let mut encode_table = [0_u8; 64];
+ {
+ let mut index = 0;
+ while index < 64 {
+ encode_table[index] = alphabet.symbols[index];
+ index += 1;
+ }
+ }
+
+ encode_table
+}
+
+/// Returns a table mapping base64 bytes as the lookup index to either:
+/// - [INVALID_VALUE] for bytes that aren't members of the alphabet
+/// - a byte whose lower 6 bits are the value that was encoded into the index byte
+pub(crate) const fn decode_table(alphabet: &Alphabet) -> [u8; 256] {
+ let mut decode_table = [INVALID_VALUE; 256];
+
+ // Since the table is full of `INVALID_VALUE` already, we only need to overwrite
+ // the parts that are valid.
+ let mut index = 0;
+ while index < 64 {
+ // The index in the alphabet is the 6-bit value we care about.
+ // Since the index is in 0-63, it is safe to cast to u8.
+ decode_table[alphabet.symbols[index] as usize] = index as u8;
+ index += 1;
+ }
+
+ decode_table
+}
+
+#[inline]
+fn read_u64(s: &[u8]) -> u64 {
+ u64::from_be_bytes(s[..8].try_into().unwrap())
+}
+
+/// Contains configuration parameters for base64 encoding and decoding.
+///
+/// ```
+/// # use base64::engine::GeneralPurposeConfig;
+/// let config = GeneralPurposeConfig::new()
+/// .with_encode_padding(false);
+/// // further customize using `.with_*` methods as needed
+/// ```
+///
+/// The constants [PAD] and [NO_PAD] cover most use cases.
+///
+/// To specify the characters used, see [Alphabet].
+#[derive(Clone, Copy, Debug)]
+pub struct GeneralPurposeConfig {
+ encode_padding: bool,
+ decode_allow_trailing_bits: bool,
+ decode_padding_mode: DecodePaddingMode,
+}
+
+impl GeneralPurposeConfig {
+ /// Create a new config with `padding` = `true`, `decode_allow_trailing_bits` = `false`, and
+ /// `decode_padding_mode = DecodePaddingMode::RequireCanonicalPadding`.
+ ///
+ /// This probably matches most people's expectations, but consider disabling padding to save
+ /// a few bytes unless you specifically need it for compatibility with some legacy system.
+ pub const fn new() -> Self {
+ Self {
+ // RFC states that padding must be applied by default
+ encode_padding: true,
+ decode_allow_trailing_bits: false,
+ decode_padding_mode: DecodePaddingMode::RequireCanonical,
+ }
+ }
+
+ /// Create a new config based on `self` with an updated `padding` setting.
+ ///
+ /// If `padding` is `true`, encoding will append either 1 or 2 `=` padding characters as needed
+ /// to produce an output whose length is a multiple of 4.
+ ///
+ /// Padding is not needed for correct decoding and only serves to waste bytes, but it's in the
+ /// [spec](https://datatracker.ietf.org/doc/html/rfc4648#section-3.2).
+ ///
+ /// For new applications, consider not using padding if the decoders you're using don't require
+ /// padding to be present.
+ pub const fn with_encode_padding(self, padding: bool) -> Self {
+ Self {
+ encode_padding: padding,
+ ..self
+ }
+ }
+
+ /// Create a new config based on `self` with an updated `decode_allow_trailing_bits` setting.
+ ///
+ /// Most users will not need to configure this. It's useful if you need to decode base64
+ /// produced by a buggy encoder that has bits set in the unused space on the last base64
+ /// character as per [forgiving-base64 decode](https://infra.spec.whatwg.org/#forgiving-base64-decode).
+ /// If invalid trailing bits are present and this is `true`, those bits will
+ /// be silently ignored, else `DecodeError::InvalidLastSymbol` will be emitted.
+ pub const fn with_decode_allow_trailing_bits(self, allow: bool) -> Self {
+ Self {
+ decode_allow_trailing_bits: allow,
+ ..self
+ }
+ }
+
+ /// Create a new config based on `self` with an updated `decode_padding_mode` setting.
+ ///
+ /// Padding is not useful in terms of representing encoded data -- it makes no difference to
+ /// the decoder if padding is present or not, so if you have some un-padded input to decode, it
+ /// is perfectly fine to use `DecodePaddingMode::Indifferent` to prevent errors from being
+ /// emitted.
+ ///
+ /// However, since in practice
+ /// [people who learned nothing from BER vs DER seem to expect base64 to have one canonical encoding](https://eprint.iacr.org/2022/361),
+ /// the default setting is the stricter `DecodePaddingMode::RequireCanonicalPadding`.
+ ///
+ /// Or, if "canonical" in your circumstance means _no_ padding rather than padding to the
+ /// next multiple of four, there's `DecodePaddingMode::RequireNoPadding`.
+ pub const fn with_decode_padding_mode(self, mode: DecodePaddingMode) -> Self {
+ Self {
+ decode_padding_mode: mode,
+ ..self
+ }
+ }
+}
+
+impl Default for GeneralPurposeConfig {
+ /// Delegates to [GeneralPurposeConfig::new].
+ fn default() -> Self {
+ Self::new()
+ }
+}
+
+impl Config for GeneralPurposeConfig {
+ fn encode_padding(&self) -> bool {
+ self.encode_padding
+ }
+}
+
+/// A [GeneralPurpose] engine using the [alphabet::STANDARD] base64 alphabet and [PAD] config.
+pub const STANDARD: GeneralPurpose = GeneralPurpose::new(&alphabet::STANDARD, PAD);
+
+/// A [GeneralPurpose] engine using the [alphabet::STANDARD] base64 alphabet and [NO_PAD] config.
+pub const STANDARD_NO_PAD: GeneralPurpose = GeneralPurpose::new(&alphabet::STANDARD, NO_PAD);
+
+/// A [GeneralPurpose] engine using the [alphabet::URL_SAFE] base64 alphabet and [PAD] config.
+pub const URL_SAFE: GeneralPurpose = GeneralPurpose::new(&alphabet::URL_SAFE, PAD);
+
+/// A [GeneralPurpose] engine using the [alphabet::URL_SAFE] base64 alphabet and [NO_PAD] config.
+pub const URL_SAFE_NO_PAD: GeneralPurpose = GeneralPurpose::new(&alphabet::URL_SAFE, NO_PAD);
+
+/// Include padding bytes when encoding, and require that they be present when decoding.
+///
+/// This is the standard per the base64 RFC, but consider using [NO_PAD] instead as padding serves
+/// little purpose in practice.
+pub const PAD: GeneralPurposeConfig = GeneralPurposeConfig::new();
+
+/// Don't add padding when encoding, and require no padding when decoding.
+pub const NO_PAD: GeneralPurposeConfig = GeneralPurposeConfig::new()
+ .with_encode_padding(false)
+ .with_decode_padding_mode(DecodePaddingMode::RequireNone);