diff options
| author | mo khan <mo@mokhan.ca> | 2025-07-02 18:36:06 -0600 |
|---|---|---|
| committer | mo khan <mo@mokhan.ca> | 2025-07-02 18:36:06 -0600 |
| commit | 8cdfa445d6629ffef4cb84967ff7017654045bc2 (patch) | |
| tree | 22f0b0907c024c78d26a731e2e1f5219407d8102 /vendor/time/src/duration.rs | |
| parent | 4351c74c7c5f97156bc94d3a8549b9940ac80e3f (diff) | |
chore: add vendor directory
Diffstat (limited to 'vendor/time/src/duration.rs')
| -rw-r--r-- | vendor/time/src/duration.rs | 1598 |
1 files changed, 1598 insertions, 0 deletions
diff --git a/vendor/time/src/duration.rs b/vendor/time/src/duration.rs new file mode 100644 index 00000000..b86bfe7c --- /dev/null +++ b/vendor/time/src/duration.rs @@ -0,0 +1,1598 @@ +//! The [`Duration`] struct and its associated `impl`s. + +use core::cmp::Ordering; +use core::fmt; +use core::iter::Sum; +use core::ops::{Add, AddAssign, Div, Mul, Neg, Sub, SubAssign}; +use core::time::Duration as StdDuration; +#[cfg(feature = "std")] +use std::time::SystemTime; + +use deranged::RangedI32; +use num_conv::prelude::*; + +use crate::convert::*; +use crate::error; +use crate::internal_macros::{ + const_try_opt, expect_opt, impl_add_assign, impl_div_assign, impl_mul_assign, impl_sub_assign, +}; +#[cfg(feature = "std")] +#[allow(deprecated)] +use crate::Instant; + +/// By explicitly inserting this enum where padding is expected, the compiler is able to better +/// perform niche value optimization. +#[repr(u32)] +#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)] +pub(crate) enum Padding { + #[allow(clippy::missing_docs_in_private_items)] + Optimize, +} + +/// The type of the `nanosecond` field of `Duration`. +type Nanoseconds = + RangedI32<{ -(Nanosecond::per(Second) as i32 - 1) }, { Nanosecond::per(Second) as i32 - 1 }>; + +/// A span of time with nanosecond precision. +/// +/// Each `Duration` is composed of a whole number of seconds and a fractional part represented in +/// nanoseconds. +/// +/// This implementation allows for negative durations, unlike [`core::time::Duration`]. +#[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord)] +pub struct Duration { + /// Number of whole seconds. + seconds: i64, + /// Number of nanoseconds within the second. The sign always matches the `seconds` field. + // Sign must match that of `seconds` (though this is not a safety requirement). + nanoseconds: Nanoseconds, + padding: Padding, +} + +impl fmt::Debug for Duration { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + f.debug_struct("Duration") + .field("seconds", &self.seconds) + .field("nanoseconds", &self.nanoseconds) + .finish() + } +} + +impl Default for Duration { + fn default() -> Self { + Self { + seconds: 0, + nanoseconds: Nanoseconds::new_static::<0>(), + padding: Padding::Optimize, + } + } +} + +/// This is adapted from the [`std` implementation][std], which uses mostly bit +/// operations to ensure the highest precision: +/// +/// Changes from `std` are marked and explained below. +/// +/// [std]: https://github.com/rust-lang/rust/blob/3a37c2f0523c87147b64f1b8099fc9df22e8c53e/library/core/src/time.rs#L1262-L1340 +#[rustfmt::skip] // Skip `rustfmt` because it reformats the arguments of the macro weirdly. +macro_rules! try_from_secs { + ( + secs = $secs: expr, + mantissa_bits = $mant_bits: literal, + exponent_bits = $exp_bits: literal, + offset = $offset: literal, + bits_ty = $bits_ty:ty, + bits_ty_signed = $bits_ty_signed:ty, + double_ty = $double_ty:ty, + float_ty = $float_ty:ty, + is_nan = $is_nan:expr, + is_overflow = $is_overflow:expr, + ) => {{ + 'value: { + const MIN_EXP: i16 = 1 - (1i16 << $exp_bits) / 2; + const MANT_MASK: $bits_ty = (1 << $mant_bits) - 1; + const EXP_MASK: $bits_ty = (1 << $exp_bits) - 1; + + // Change from std: No error check for negative values necessary. + + let bits = $secs.to_bits(); + let mant = (bits & MANT_MASK) | (MANT_MASK + 1); + let exp = ((bits >> $mant_bits) & EXP_MASK) as i16 + MIN_EXP; + + let (secs, nanos) = if exp < -31 { + // the input represents less than 1ns and can not be rounded to it + (0u64, 0u32) + } else if exp < 0 { + // the input is less than 1 second + let t = <$double_ty>::from(mant) << ($offset + exp); + let nanos_offset = $mant_bits + $offset; + let nanos_tmp = u128::from(Nanosecond::per(Second)) * u128::from(t); + let nanos = (nanos_tmp >> nanos_offset) as u32; + + let rem_mask = (1 << nanos_offset) - 1; + let rem_msb_mask = 1 << (nanos_offset - 1); + let rem = nanos_tmp & rem_mask; + let is_tie = rem == rem_msb_mask; + let is_even = (nanos & 1) == 0; + let rem_msb = nanos_tmp & rem_msb_mask == 0; + let add_ns = !(rem_msb || (is_even && is_tie)); + + // f32 does not have enough precision to trigger the second branch + // since it can not represent numbers between 0.999_999_940_395 and 1.0. + let nanos = nanos + add_ns as u32; + if ($mant_bits == 23) || (nanos != Nanosecond::per(Second)) { + (0, nanos) + } else { + (1, 0) + } + } else if exp < $mant_bits { + let secs = u64::from(mant >> ($mant_bits - exp)); + let t = <$double_ty>::from((mant << exp) & MANT_MASK); + let nanos_offset = $mant_bits; + let nanos_tmp = <$double_ty>::from(Nanosecond::per(Second)) * t; + let nanos = (nanos_tmp >> nanos_offset) as u32; + + let rem_mask = (1 << nanos_offset) - 1; + let rem_msb_mask = 1 << (nanos_offset - 1); + let rem = nanos_tmp & rem_mask; + let is_tie = rem == rem_msb_mask; + let is_even = (nanos & 1) == 0; + let rem_msb = nanos_tmp & rem_msb_mask == 0; + let add_ns = !(rem_msb || (is_even && is_tie)); + + // f32 does not have enough precision to trigger the second branch. + // For example, it can not represent numbers between 1.999_999_880... + // and 2.0. Bigger values result in even smaller precision of the + // fractional part. + let nanos = nanos + add_ns as u32; + if ($mant_bits == 23) || (nanos != Nanosecond::per(Second)) { + (secs, nanos) + } else { + (secs + 1, 0) + } + } else if exp < 63 { + // Change from std: The exponent here is 63 instead of 64, + // because i64::MAX + 1 is 2^63. + + // the input has no fractional part + let secs = u64::from(mant) << (exp - $mant_bits); + (secs, 0) + } else if bits == (i64::MIN as $float_ty).to_bits() { + // Change from std: Signed integers are asymmetrical in that + // iN::MIN is -iN::MAX - 1. So for example i8 covers the + // following numbers -128..=127. The check above (exp < 63) + // doesn't cover i64::MIN as that is -2^63, so we have this + // additional case to handle the asymmetry of iN::MIN. + break 'value Self::new_ranged_unchecked(i64::MIN, Nanoseconds::new_static::<0>()); + } else if $secs.is_nan() { + // Change from std: std doesn't differentiate between the error + // cases. + $is_nan + } else { + $is_overflow + }; + + // Change from std: All the code is mostly unmodified in that it + // simply calculates an unsigned integer. Here we extract the sign + // bit and assign it to the number. We basically manually do two's + // complement here, we could also use an if and just negate the + // numbers based on the sign, but it turns out to be quite a bit + // slower. + let mask = (bits as $bits_ty_signed) >> ($mant_bits + $exp_bits); + #[allow(trivial_numeric_casts)] + let secs_signed = ((secs as i64) ^ (mask as i64)) - (mask as i64); + #[allow(trivial_numeric_casts)] + let nanos_signed = ((nanos as i32) ^ (mask as i32)) - (mask as i32); + // Safety: `nanos_signed` is in range. + unsafe { Self::new_unchecked(secs_signed, nanos_signed) } + } + }}; +} + +impl Duration { + /// Equivalent to `0.seconds()`. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::ZERO, 0.seconds()); + /// ``` + pub const ZERO: Self = Self::seconds(0); + + /// Equivalent to `1.nanoseconds()`. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::NANOSECOND, 1.nanoseconds()); + /// ``` + pub const NANOSECOND: Self = Self::nanoseconds(1); + + /// Equivalent to `1.microseconds()`. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::MICROSECOND, 1.microseconds()); + /// ``` + pub const MICROSECOND: Self = Self::microseconds(1); + + /// Equivalent to `1.milliseconds()`. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::MILLISECOND, 1.milliseconds()); + /// ``` + pub const MILLISECOND: Self = Self::milliseconds(1); + + /// Equivalent to `1.seconds()`. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::SECOND, 1.seconds()); + /// ``` + pub const SECOND: Self = Self::seconds(1); + + /// Equivalent to `1.minutes()`. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::MINUTE, 1.minutes()); + /// ``` + pub const MINUTE: Self = Self::minutes(1); + + /// Equivalent to `1.hours()`. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::HOUR, 1.hours()); + /// ``` + pub const HOUR: Self = Self::hours(1); + + /// Equivalent to `1.days()`. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::DAY, 1.days()); + /// ``` + pub const DAY: Self = Self::days(1); + + /// Equivalent to `1.weeks()`. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::WEEK, 1.weeks()); + /// ``` + pub const WEEK: Self = Self::weeks(1); + + /// The minimum possible duration. Adding any negative duration to this will cause an overflow. + pub const MIN: Self = Self::new_ranged(i64::MIN, Nanoseconds::MIN); + + /// The maximum possible duration. Adding any positive duration to this will cause an overflow. + pub const MAX: Self = Self::new_ranged(i64::MAX, Nanoseconds::MAX); + + /// Check if a duration is exactly zero. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert!(0.seconds().is_zero()); + /// assert!(!1.nanoseconds().is_zero()); + /// ``` + pub const fn is_zero(self) -> bool { + self.seconds == 0 && self.nanoseconds.get() == 0 + } + + /// Check if a duration is negative. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert!((-1).seconds().is_negative()); + /// assert!(!0.seconds().is_negative()); + /// assert!(!1.seconds().is_negative()); + /// ``` + pub const fn is_negative(self) -> bool { + self.seconds < 0 || self.nanoseconds.get() < 0 + } + + /// Check if a duration is positive. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert!(1.seconds().is_positive()); + /// assert!(!0.seconds().is_positive()); + /// assert!(!(-1).seconds().is_positive()); + /// ``` + pub const fn is_positive(self) -> bool { + self.seconds > 0 || self.nanoseconds.get() > 0 + } + + /// Get the absolute value of the duration. + /// + /// This method saturates the returned value if it would otherwise overflow. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert_eq!(1.seconds().abs(), 1.seconds()); + /// assert_eq!(0.seconds().abs(), 0.seconds()); + /// assert_eq!((-1).seconds().abs(), 1.seconds()); + /// ``` + pub const fn abs(self) -> Self { + match self.seconds.checked_abs() { + Some(seconds) => Self::new_ranged_unchecked(seconds, self.nanoseconds.abs()), + None => Self::MAX, + } + } + + /// Convert the existing `Duration` to a `std::time::Duration` and its sign. This returns a + /// [`std::time::Duration`] and does not saturate the returned value (unlike [`Duration::abs`]). + /// + /// ```rust + /// # use time::ext::{NumericalDuration, NumericalStdDuration}; + /// assert_eq!(1.seconds().unsigned_abs(), 1.std_seconds()); + /// assert_eq!(0.seconds().unsigned_abs(), 0.std_seconds()); + /// assert_eq!((-1).seconds().unsigned_abs(), 1.std_seconds()); + /// ``` + pub const fn unsigned_abs(self) -> StdDuration { + StdDuration::new( + self.seconds.unsigned_abs(), + self.nanoseconds.get().unsigned_abs(), + ) + } + + /// Create a new `Duration` without checking the validity of the components. + /// + /// # Safety + /// + /// - `nanoseconds` must be in the range `-999_999_999..=999_999_999`. + /// + /// While the sign of `nanoseconds` is required to be the same as the sign of `seconds`, this is + /// not a safety invariant. + pub(crate) const unsafe fn new_unchecked(seconds: i64, nanoseconds: i32) -> Self { + Self::new_ranged_unchecked( + seconds, + // Safety: The caller must uphold the safety invariants. + unsafe { Nanoseconds::new_unchecked(nanoseconds) }, + ) + } + + /// Create a new `Duration` without checking the validity of the components. + pub(crate) const fn new_ranged_unchecked(seconds: i64, nanoseconds: Nanoseconds) -> Self { + if seconds < 0 { + debug_assert!(nanoseconds.get() <= 0); + } else if seconds > 0 { + debug_assert!(nanoseconds.get() >= 0); + } + + Self { + seconds, + nanoseconds, + padding: Padding::Optimize, + } + } + + /// Create a new `Duration` with the provided seconds and nanoseconds. If nanoseconds is at + /// least ±10<sup>9</sup>, it will wrap to the number of seconds. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::new(1, 0), 1.seconds()); + /// assert_eq!(Duration::new(-1, 0), (-1).seconds()); + /// assert_eq!(Duration::new(1, 2_000_000_000), 3.seconds()); + /// ``` + /// + /// # Panics + /// + /// This may panic if an overflow occurs. + pub const fn new(mut seconds: i64, mut nanoseconds: i32) -> Self { + seconds = expect_opt!( + seconds.checked_add(nanoseconds as i64 / Nanosecond::per(Second) as i64), + "overflow constructing `time::Duration`" + ); + nanoseconds %= Nanosecond::per(Second) as i32; + + if seconds > 0 && nanoseconds < 0 { + // `seconds` cannot overflow here because it is positive. + seconds -= 1; + nanoseconds += Nanosecond::per(Second) as i32; + } else if seconds < 0 && nanoseconds > 0 { + // `seconds` cannot overflow here because it is negative. + seconds += 1; + nanoseconds -= Nanosecond::per(Second) as i32; + } + + // Safety: `nanoseconds` is in range due to the modulus above. + unsafe { Self::new_unchecked(seconds, nanoseconds) } + } + + /// Create a new `Duration` with the provided seconds and nanoseconds. + pub(crate) const fn new_ranged(mut seconds: i64, mut nanoseconds: Nanoseconds) -> Self { + if seconds > 0 && nanoseconds.get() < 0 { + // `seconds` cannot overflow here because it is positive. + seconds -= 1; + // Safety: `nanoseconds` is negative with a maximum of 999,999,999, so adding a billion + // to it is guaranteed to result in an in-range value. + nanoseconds = unsafe { + Nanoseconds::new_unchecked(nanoseconds.get() + Nanosecond::per(Second) as i32) + }; + } else if seconds < 0 && nanoseconds.get() > 0 { + // `seconds` cannot overflow here because it is negative. + seconds += 1; + // Safety: `nanoseconds` is positive with a minimum of -999,999,999, so subtracting a + // billion from it is guaranteed to result in an in-range value. + nanoseconds = unsafe { + Nanoseconds::new_unchecked(nanoseconds.get() - Nanosecond::per(Second) as i32) + }; + } + + Self::new_ranged_unchecked(seconds, nanoseconds) + } + + /// Create a new `Duration` with the given number of weeks. Equivalent to + /// `Duration::seconds(weeks * 604_800)`. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::weeks(1), 604_800.seconds()); + /// ``` + /// + /// # Panics + /// + /// This may panic if an overflow occurs. + pub const fn weeks(weeks: i64) -> Self { + Self::seconds(expect_opt!( + weeks.checked_mul(Second::per(Week) as i64), + "overflow constructing `time::Duration`" + )) + } + + /// Create a new `Duration` with the given number of days. Equivalent to + /// `Duration::seconds(days * 86_400)`. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::days(1), 86_400.seconds()); + /// ``` + /// + /// # Panics + /// + /// This may panic if an overflow occurs. + pub const fn days(days: i64) -> Self { + Self::seconds(expect_opt!( + days.checked_mul(Second::per(Day) as i64), + "overflow constructing `time::Duration`" + )) + } + + /// Create a new `Duration` with the given number of hours. Equivalent to + /// `Duration::seconds(hours * 3_600)`. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::hours(1), 3_600.seconds()); + /// ``` + /// + /// # Panics + /// + /// This may panic if an overflow occurs. + pub const fn hours(hours: i64) -> Self { + Self::seconds(expect_opt!( + hours.checked_mul(Second::per(Hour) as i64), + "overflow constructing `time::Duration`" + )) + } + + /// Create a new `Duration` with the given number of minutes. Equivalent to + /// `Duration::seconds(minutes * 60)`. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::minutes(1), 60.seconds()); + /// ``` + /// + /// # Panics + /// + /// This may panic if an overflow occurs. + pub const fn minutes(minutes: i64) -> Self { + Self::seconds(expect_opt!( + minutes.checked_mul(Second::per(Minute) as i64), + "overflow constructing `time::Duration`" + )) + } + + /// Create a new `Duration` with the given number of seconds. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::seconds(1), 1_000.milliseconds()); + /// ``` + pub const fn seconds(seconds: i64) -> Self { + Self::new_ranged_unchecked(seconds, Nanoseconds::new_static::<0>()) + } + + /// Creates a new `Duration` from the specified number of seconds represented as `f64`. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::seconds_f64(0.5), 0.5.seconds()); + /// assert_eq!(Duration::seconds_f64(-0.5), (-0.5).seconds()); + /// ``` + pub fn seconds_f64(seconds: f64) -> Self { + try_from_secs!( + secs = seconds, + mantissa_bits = 52, + exponent_bits = 11, + offset = 44, + bits_ty = u64, + bits_ty_signed = i64, + double_ty = u128, + float_ty = f64, + is_nan = crate::expect_failed("passed NaN to `time::Duration::seconds_f64`"), + is_overflow = crate::expect_failed("overflow constructing `time::Duration`"), + ) + } + + /// Creates a new `Duration` from the specified number of seconds represented as `f32`. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::seconds_f32(0.5), 0.5.seconds()); + /// assert_eq!(Duration::seconds_f32(-0.5), (-0.5).seconds()); + /// ``` + pub fn seconds_f32(seconds: f32) -> Self { + try_from_secs!( + secs = seconds, + mantissa_bits = 23, + exponent_bits = 8, + offset = 41, + bits_ty = u32, + bits_ty_signed = i32, + double_ty = u64, + float_ty = f32, + is_nan = crate::expect_failed("passed NaN to `time::Duration::seconds_f32`"), + is_overflow = crate::expect_failed("overflow constructing `time::Duration`"), + ) + } + + /// Creates a new `Duration` from the specified number of seconds + /// represented as `f64`. Any values that are out of bounds are saturated at + /// the minimum or maximum respectively. `NaN` gets turned into a `Duration` + /// of 0 seconds. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::saturating_seconds_f64(0.5), 0.5.seconds()); + /// assert_eq!(Duration::saturating_seconds_f64(-0.5), (-0.5).seconds()); + /// assert_eq!( + /// Duration::saturating_seconds_f64(f64::NAN), + /// Duration::new(0, 0), + /// ); + /// assert_eq!( + /// Duration::saturating_seconds_f64(f64::NEG_INFINITY), + /// Duration::MIN, + /// ); + /// assert_eq!( + /// Duration::saturating_seconds_f64(f64::INFINITY), + /// Duration::MAX, + /// ); + /// ``` + pub fn saturating_seconds_f64(seconds: f64) -> Self { + try_from_secs!( + secs = seconds, + mantissa_bits = 52, + exponent_bits = 11, + offset = 44, + bits_ty = u64, + bits_ty_signed = i64, + double_ty = u128, + float_ty = f64, + is_nan = return Self::ZERO, + is_overflow = return if seconds < 0.0 { Self::MIN } else { Self::MAX }, + ) + } + + /// Creates a new `Duration` from the specified number of seconds + /// represented as `f32`. Any values that are out of bounds are saturated at + /// the minimum or maximum respectively. `NaN` gets turned into a `Duration` + /// of 0 seconds. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::saturating_seconds_f32(0.5), 0.5.seconds()); + /// assert_eq!(Duration::saturating_seconds_f32(-0.5), (-0.5).seconds()); + /// assert_eq!( + /// Duration::saturating_seconds_f32(f32::NAN), + /// Duration::new(0, 0), + /// ); + /// assert_eq!( + /// Duration::saturating_seconds_f32(f32::NEG_INFINITY), + /// Duration::MIN, + /// ); + /// assert_eq!( + /// Duration::saturating_seconds_f32(f32::INFINITY), + /// Duration::MAX, + /// ); + /// ``` + pub fn saturating_seconds_f32(seconds: f32) -> Self { + try_from_secs!( + secs = seconds, + mantissa_bits = 23, + exponent_bits = 8, + offset = 41, + bits_ty = u32, + bits_ty_signed = i32, + double_ty = u64, + float_ty = f32, + is_nan = return Self::ZERO, + is_overflow = return if seconds < 0.0 { Self::MIN } else { Self::MAX }, + ) + } + + /// Creates a new `Duration` from the specified number of seconds + /// represented as `f64`. Returns `None` if the `Duration` can't be + /// represented. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::checked_seconds_f64(0.5), Some(0.5.seconds())); + /// assert_eq!(Duration::checked_seconds_f64(-0.5), Some((-0.5).seconds())); + /// assert_eq!(Duration::checked_seconds_f64(f64::NAN), None); + /// assert_eq!(Duration::checked_seconds_f64(f64::NEG_INFINITY), None); + /// assert_eq!(Duration::checked_seconds_f64(f64::INFINITY), None); + /// ``` + pub fn checked_seconds_f64(seconds: f64) -> Option<Self> { + Some(try_from_secs!( + secs = seconds, + mantissa_bits = 52, + exponent_bits = 11, + offset = 44, + bits_ty = u64, + bits_ty_signed = i64, + double_ty = u128, + float_ty = f64, + is_nan = return None, + is_overflow = return None, + )) + } + + /// Creates a new `Duration` from the specified number of seconds + /// represented as `f32`. Returns `None` if the `Duration` can't be + /// represented. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::checked_seconds_f32(0.5), Some(0.5.seconds())); + /// assert_eq!(Duration::checked_seconds_f32(-0.5), Some((-0.5).seconds())); + /// assert_eq!(Duration::checked_seconds_f32(f32::NAN), None); + /// assert_eq!(Duration::checked_seconds_f32(f32::NEG_INFINITY), None); + /// assert_eq!(Duration::checked_seconds_f32(f32::INFINITY), None); + /// ``` + pub fn checked_seconds_f32(seconds: f32) -> Option<Self> { + Some(try_from_secs!( + secs = seconds, + mantissa_bits = 23, + exponent_bits = 8, + offset = 41, + bits_ty = u32, + bits_ty_signed = i32, + double_ty = u64, + float_ty = f32, + is_nan = return None, + is_overflow = return None, + )) + } + + /// Create a new `Duration` with the given number of milliseconds. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::milliseconds(1), 1_000.microseconds()); + /// assert_eq!(Duration::milliseconds(-1), (-1_000).microseconds()); + /// ``` + pub const fn milliseconds(milliseconds: i64) -> Self { + // Safety: `nanoseconds` is guaranteed to be in range because of the modulus. + unsafe { + Self::new_unchecked( + milliseconds / Millisecond::per(Second) as i64, + (milliseconds % Millisecond::per(Second) as i64 + * Nanosecond::per(Millisecond) as i64) as i32, + ) + } + } + + /// Create a new `Duration` with the given number of microseconds. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::microseconds(1), 1_000.nanoseconds()); + /// assert_eq!(Duration::microseconds(-1), (-1_000).nanoseconds()); + /// ``` + pub const fn microseconds(microseconds: i64) -> Self { + // Safety: `nanoseconds` is guaranteed to be in range because of the modulus. + unsafe { + Self::new_unchecked( + microseconds / Microsecond::per(Second) as i64, + (microseconds % Microsecond::per(Second) as i64 + * Nanosecond::per(Microsecond) as i64) as i32, + ) + } + } + + /// Create a new `Duration` with the given number of nanoseconds. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(Duration::nanoseconds(1), 1.microseconds() / 1_000); + /// assert_eq!(Duration::nanoseconds(-1), (-1).microseconds() / 1_000); + /// ``` + pub const fn nanoseconds(nanoseconds: i64) -> Self { + // Safety: `nanoseconds` is guaranteed to be in range because of the modulus. + unsafe { + Self::new_unchecked( + nanoseconds / Nanosecond::per(Second) as i64, + (nanoseconds % Nanosecond::per(Second) as i64) as i32, + ) + } + } + + /// Create a new `Duration` with the given number of nanoseconds. + /// + /// As the input range cannot be fully mapped to the output, this should only be used where it's + /// known to result in a valid value. + pub(crate) const fn nanoseconds_i128(nanoseconds: i128) -> Self { + let seconds = nanoseconds / Nanosecond::per(Second) as i128; + let nanoseconds = nanoseconds % Nanosecond::per(Second) as i128; + + if seconds > i64::MAX as i128 || seconds < i64::MIN as i128 { + crate::expect_failed("overflow constructing `time::Duration`"); + } + + // Safety: `nanoseconds` is guaranteed to be in range because of the modulus above. + unsafe { Self::new_unchecked(seconds as i64, nanoseconds as i32) } + } + + /// Get the number of whole weeks in the duration. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert_eq!(1.weeks().whole_weeks(), 1); + /// assert_eq!((-1).weeks().whole_weeks(), -1); + /// assert_eq!(6.days().whole_weeks(), 0); + /// assert_eq!((-6).days().whole_weeks(), 0); + /// ``` + pub const fn whole_weeks(self) -> i64 { + self.whole_seconds() / Second::per(Week) as i64 + } + + /// Get the number of whole days in the duration. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert_eq!(1.days().whole_days(), 1); + /// assert_eq!((-1).days().whole_days(), -1); + /// assert_eq!(23.hours().whole_days(), 0); + /// assert_eq!((-23).hours().whole_days(), 0); + /// ``` + pub const fn whole_days(self) -> i64 { + self.whole_seconds() / Second::per(Day) as i64 + } + + /// Get the number of whole hours in the duration. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert_eq!(1.hours().whole_hours(), 1); + /// assert_eq!((-1).hours().whole_hours(), -1); + /// assert_eq!(59.minutes().whole_hours(), 0); + /// assert_eq!((-59).minutes().whole_hours(), 0); + /// ``` + pub const fn whole_hours(self) -> i64 { + self.whole_seconds() / Second::per(Hour) as i64 + } + + /// Get the number of whole minutes in the duration. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert_eq!(1.minutes().whole_minutes(), 1); + /// assert_eq!((-1).minutes().whole_minutes(), -1); + /// assert_eq!(59.seconds().whole_minutes(), 0); + /// assert_eq!((-59).seconds().whole_minutes(), 0); + /// ``` + pub const fn whole_minutes(self) -> i64 { + self.whole_seconds() / Second::per(Minute) as i64 + } + + /// Get the number of whole seconds in the duration. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert_eq!(1.seconds().whole_seconds(), 1); + /// assert_eq!((-1).seconds().whole_seconds(), -1); + /// assert_eq!(1.minutes().whole_seconds(), 60); + /// assert_eq!((-1).minutes().whole_seconds(), -60); + /// ``` + pub const fn whole_seconds(self) -> i64 { + self.seconds + } + + /// Get the number of fractional seconds in the duration. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert_eq!(1.5.seconds().as_seconds_f64(), 1.5); + /// assert_eq!((-1.5).seconds().as_seconds_f64(), -1.5); + /// ``` + pub fn as_seconds_f64(self) -> f64 { + self.seconds as f64 + self.nanoseconds.get() as f64 / Nanosecond::per(Second) as f64 + } + + /// Get the number of fractional seconds in the duration. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert_eq!(1.5.seconds().as_seconds_f32(), 1.5); + /// assert_eq!((-1.5).seconds().as_seconds_f32(), -1.5); + /// ``` + pub fn as_seconds_f32(self) -> f32 { + self.seconds as f32 + self.nanoseconds.get() as f32 / Nanosecond::per(Second) as f32 + } + + /// Get the number of whole milliseconds in the duration. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert_eq!(1.seconds().whole_milliseconds(), 1_000); + /// assert_eq!((-1).seconds().whole_milliseconds(), -1_000); + /// assert_eq!(1.milliseconds().whole_milliseconds(), 1); + /// assert_eq!((-1).milliseconds().whole_milliseconds(), -1); + /// ``` + pub const fn whole_milliseconds(self) -> i128 { + self.seconds as i128 * Millisecond::per(Second) as i128 + + self.nanoseconds.get() as i128 / Nanosecond::per(Millisecond) as i128 + } + + /// Get the number of milliseconds past the number of whole seconds. + /// + /// Always in the range `-999..=999`. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert_eq!(1.4.seconds().subsec_milliseconds(), 400); + /// assert_eq!((-1.4).seconds().subsec_milliseconds(), -400); + /// ``` + // Allow the lint, as the value is guaranteed to be less than 1000. + pub const fn subsec_milliseconds(self) -> i16 { + (self.nanoseconds.get() / Nanosecond::per(Millisecond) as i32) as i16 + } + + /// Get the number of whole microseconds in the duration. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert_eq!(1.milliseconds().whole_microseconds(), 1_000); + /// assert_eq!((-1).milliseconds().whole_microseconds(), -1_000); + /// assert_eq!(1.microseconds().whole_microseconds(), 1); + /// assert_eq!((-1).microseconds().whole_microseconds(), -1); + /// ``` + pub const fn whole_microseconds(self) -> i128 { + self.seconds as i128 * Microsecond::per(Second) as i128 + + self.nanoseconds.get() as i128 / Nanosecond::per(Microsecond) as i128 + } + + /// Get the number of microseconds past the number of whole seconds. + /// + /// Always in the range `-999_999..=999_999`. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert_eq!(1.0004.seconds().subsec_microseconds(), 400); + /// assert_eq!((-1.0004).seconds().subsec_microseconds(), -400); + /// ``` + pub const fn subsec_microseconds(self) -> i32 { + self.nanoseconds.get() / Nanosecond::per(Microsecond) as i32 + } + + /// Get the number of nanoseconds in the duration. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert_eq!(1.microseconds().whole_nanoseconds(), 1_000); + /// assert_eq!((-1).microseconds().whole_nanoseconds(), -1_000); + /// assert_eq!(1.nanoseconds().whole_nanoseconds(), 1); + /// assert_eq!((-1).nanoseconds().whole_nanoseconds(), -1); + /// ``` + pub const fn whole_nanoseconds(self) -> i128 { + self.seconds as i128 * Nanosecond::per(Second) as i128 + self.nanoseconds.get() as i128 + } + + /// Get the number of nanoseconds past the number of whole seconds. + /// + /// The returned value will always be in the range `-999_999_999..=999_999_999`. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert_eq!(1.000_000_400.seconds().subsec_nanoseconds(), 400); + /// assert_eq!((-1.000_000_400).seconds().subsec_nanoseconds(), -400); + /// ``` + pub const fn subsec_nanoseconds(self) -> i32 { + self.nanoseconds.get() + } + + /// Get the number of nanoseconds past the number of whole seconds. + #[cfg(feature = "quickcheck")] + pub(crate) const fn subsec_nanoseconds_ranged(self) -> Nanoseconds { + self.nanoseconds + } + + /// Computes `self + rhs`, returning `None` if an overflow occurred. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(5.seconds().checked_add(5.seconds()), Some(10.seconds())); + /// assert_eq!(Duration::MAX.checked_add(1.nanoseconds()), None); + /// assert_eq!((-5).seconds().checked_add(5.seconds()), Some(0.seconds())); + /// ``` + pub const fn checked_add(self, rhs: Self) -> Option<Self> { + let mut seconds = const_try_opt!(self.seconds.checked_add(rhs.seconds)); + let mut nanoseconds = self.nanoseconds.get() + rhs.nanoseconds.get(); + + if nanoseconds >= Nanosecond::per(Second) as i32 || seconds < 0 && nanoseconds > 0 { + nanoseconds -= Nanosecond::per(Second) as i32; + seconds = const_try_opt!(seconds.checked_add(1)); + } else if nanoseconds <= -(Nanosecond::per(Second) as i32) || seconds > 0 && nanoseconds < 0 + { + nanoseconds += Nanosecond::per(Second) as i32; + seconds = const_try_opt!(seconds.checked_sub(1)); + } + + // Safety: `nanoseconds` is guaranteed to be in range because of the overflow handling. + unsafe { Some(Self::new_unchecked(seconds, nanoseconds)) } + } + + /// Computes `self - rhs`, returning `None` if an overflow occurred. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(5.seconds().checked_sub(5.seconds()), Some(Duration::ZERO)); + /// assert_eq!(Duration::MIN.checked_sub(1.nanoseconds()), None); + /// assert_eq!(5.seconds().checked_sub(10.seconds()), Some((-5).seconds())); + /// ``` + pub const fn checked_sub(self, rhs: Self) -> Option<Self> { + let mut seconds = const_try_opt!(self.seconds.checked_sub(rhs.seconds)); + let mut nanoseconds = self.nanoseconds.get() - rhs.nanoseconds.get(); + + if nanoseconds >= Nanosecond::per(Second) as i32 || seconds < 0 && nanoseconds > 0 { + nanoseconds -= Nanosecond::per(Second) as i32; + seconds = const_try_opt!(seconds.checked_add(1)); + } else if nanoseconds <= -(Nanosecond::per(Second) as i32) || seconds > 0 && nanoseconds < 0 + { + nanoseconds += Nanosecond::per(Second) as i32; + seconds = const_try_opt!(seconds.checked_sub(1)); + } + + // Safety: `nanoseconds` is guaranteed to be in range because of the overflow handling. + unsafe { Some(Self::new_unchecked(seconds, nanoseconds)) } + } + + /// Computes `self * rhs`, returning `None` if an overflow occurred. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(5.seconds().checked_mul(2), Some(10.seconds())); + /// assert_eq!(5.seconds().checked_mul(-2), Some((-10).seconds())); + /// assert_eq!(5.seconds().checked_mul(0), Some(0.seconds())); + /// assert_eq!(Duration::MAX.checked_mul(2), None); + /// assert_eq!(Duration::MIN.checked_mul(2), None); + /// ``` + pub const fn checked_mul(self, rhs: i32) -> Option<Self> { + // Multiply nanoseconds as i64, because it cannot overflow that way. + let total_nanos = self.nanoseconds.get() as i64 * rhs as i64; + let extra_secs = total_nanos / Nanosecond::per(Second) as i64; + let nanoseconds = (total_nanos % Nanosecond::per(Second) as i64) as i32; + let seconds = const_try_opt!( + const_try_opt!(self.seconds.checked_mul(rhs as i64)).checked_add(extra_secs) + ); + + // Safety: `nanoseconds` is guaranteed to be in range because of the modulus above. + unsafe { Some(Self::new_unchecked(seconds, nanoseconds)) } + } + + /// Computes `self / rhs`, returning `None` if `rhs == 0` or if the result would overflow. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// assert_eq!(10.seconds().checked_div(2), Some(5.seconds())); + /// assert_eq!(10.seconds().checked_div(-2), Some((-5).seconds())); + /// assert_eq!(1.seconds().checked_div(0), None); + /// ``` + pub const fn checked_div(self, rhs: i32) -> Option<Self> { + let (secs, extra_secs) = ( + const_try_opt!(self.seconds.checked_div(rhs as i64)), + self.seconds % (rhs as i64), + ); + let (mut nanos, extra_nanos) = (self.nanoseconds.get() / rhs, self.nanoseconds.get() % rhs); + nanos += ((extra_secs * (Nanosecond::per(Second) as i64) + extra_nanos as i64) + / (rhs as i64)) as i32; + + // Safety: `nanoseconds` is in range. + unsafe { Some(Self::new_unchecked(secs, nanos)) } + } + + /// Computes `-self`, returning `None` if the result would overflow. + /// + /// ```rust + /// # use time::ext::NumericalDuration; + /// # use time::Duration; + /// assert_eq!(5.seconds().checked_neg(), Some((-5).seconds())); + /// assert_eq!(Duration::MIN.checked_neg(), None); + /// ``` + pub const fn checked_neg(self) -> Option<Self> { + if self.seconds == i64::MIN { + None + } else { + Some(Self::new_ranged_unchecked( + -self.seconds, + self.nanoseconds.neg(), + )) + } + } + + /// Computes `self + rhs`, saturating if an overflow occurred. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(5.seconds().saturating_add(5.seconds()), 10.seconds()); + /// assert_eq!(Duration::MAX.saturating_add(1.nanoseconds()), Duration::MAX); + /// assert_eq!( + /// Duration::MIN.saturating_add((-1).nanoseconds()), + /// Duration::MIN + /// ); + /// assert_eq!((-5).seconds().saturating_add(5.seconds()), Duration::ZERO); + /// ``` + pub const fn saturating_add(self, rhs: Self) -> Self { + let (mut seconds, overflow) = self.seconds.overflowing_add(rhs.seconds); + if overflow { + if self.seconds > 0 { + return Self::MAX; + } + return Self::MIN; + } + let mut nanoseconds = self.nanoseconds.get() + rhs.nanoseconds.get(); + + if nanoseconds >= Nanosecond::per(Second) as i32 || seconds < 0 && nanoseconds > 0 { + nanoseconds -= Nanosecond::per(Second) as i32; + seconds = match seconds.checked_add(1) { + Some(seconds) => seconds, + None => return Self::MAX, + }; + } else if nanoseconds <= -(Nanosecond::per(Second) as i32) || seconds > 0 && nanoseconds < 0 + { + nanoseconds += Nanosecond::per(Second) as i32; + seconds = match seconds.checked_sub(1) { + Some(seconds) => seconds, + None => return Self::MIN, + }; + } + + // Safety: `nanoseconds` is guaranteed to be in range because of the overflow handling. + unsafe { Self::new_unchecked(seconds, nanoseconds) } + } + + /// Computes `self - rhs`, saturating if an overflow occurred. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(5.seconds().saturating_sub(5.seconds()), Duration::ZERO); + /// assert_eq!(Duration::MIN.saturating_sub(1.nanoseconds()), Duration::MIN); + /// assert_eq!( + /// Duration::MAX.saturating_sub((-1).nanoseconds()), + /// Duration::MAX + /// ); + /// assert_eq!(5.seconds().saturating_sub(10.seconds()), (-5).seconds()); + /// ``` + pub const fn saturating_sub(self, rhs: Self) -> Self { + let (mut seconds, overflow) = self.seconds.overflowing_sub(rhs.seconds); + if overflow { + if self.seconds > 0 { + return Self::MAX; + } + return Self::MIN; + } + let mut nanoseconds = self.nanoseconds.get() - rhs.nanoseconds.get(); + + if nanoseconds >= Nanosecond::per(Second) as i32 || seconds < 0 && nanoseconds > 0 { + nanoseconds -= Nanosecond::per(Second) as i32; + seconds = match seconds.checked_add(1) { + Some(seconds) => seconds, + None => return Self::MAX, + }; + } else if nanoseconds <= -(Nanosecond::per(Second) as i32) || seconds > 0 && nanoseconds < 0 + { + nanoseconds += Nanosecond::per(Second) as i32; + seconds = match seconds.checked_sub(1) { + Some(seconds) => seconds, + None => return Self::MIN, + }; + } + + // Safety: `nanoseconds` is guaranteed to be in range because of the overflow handling. + unsafe { Self::new_unchecked(seconds, nanoseconds) } + } + + /// Computes `self * rhs`, saturating if an overflow occurred. + /// + /// ```rust + /// # use time::{Duration, ext::NumericalDuration}; + /// assert_eq!(5.seconds().saturating_mul(2), 10.seconds()); + /// assert_eq!(5.seconds().saturating_mul(-2), (-10).seconds()); + /// assert_eq!(5.seconds().saturating_mul(0), Duration::ZERO); + /// assert_eq!(Duration::MAX.saturating_mul(2), Duration::MAX); + /// assert_eq!(Duration::MIN.saturating_mul(2), Duration::MIN); + /// assert_eq!(Duration::MAX.saturating_mul(-2), Duration::MIN); + /// assert_eq!(Duration::MIN.saturating_mul(-2), Duration::MAX); + /// ``` + pub const fn saturating_mul(self, rhs: i32) -> Self { + // Multiply nanoseconds as i64, because it cannot overflow that way. + let total_nanos = self.nanoseconds.get() as i64 * rhs as i64; + let extra_secs = total_nanos / Nanosecond::per(Second) as i64; + let nanoseconds = (total_nanos % Nanosecond::per(Second) as i64) as i32; + let (seconds, overflow1) = self.seconds.overflowing_mul(rhs as i64); + if overflow1 { + if self.seconds > 0 && rhs > 0 || self.seconds < 0 && rhs < 0 { + return Self::MAX; + } + return Self::MIN; + } + let (seconds, overflow2) = seconds.overflowing_add(extra_secs); + if overflow2 { + if self.seconds > 0 && rhs > 0 { + return Self::MAX; + } + return Self::MIN; + } + + // Safety: `nanoseconds` is guaranteed to be in range because of to the modulus above. + unsafe { Self::new_unchecked(seconds, nanoseconds) } + } + + /// Runs a closure, returning the duration of time it took to run. The return value of the + /// closure is provided in the second part of the tuple. + #[doc(hidden)] + #[cfg(feature = "std")] + #[deprecated( + since = "0.3.32", + note = "extremely limited use case, not intended for benchmarking" + )] + #[allow(deprecated)] + pub fn time_fn<T>(f: impl FnOnce() -> T) -> (Self, T) { + let start = Instant::now(); + let return_value = f(); + let end = Instant::now(); + + (end - start, return_value) + } +} + +/// The format returned by this implementation is not stable and must not be relied upon. +/// +/// By default this produces an exact, full-precision printout of the duration. +/// For a concise, rounded printout instead, you can use the `.N` format specifier: +/// +/// ``` +/// # use time::Duration; +/// # +/// let duration = Duration::new(123456, 789011223); +/// println!("{duration:.3}"); +/// ``` +/// +/// For the purposes of this implementation, a day is exactly 24 hours and a minute is exactly 60 +/// seconds. +impl fmt::Display for Duration { + fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { + if self.is_negative() { + f.write_str("-")?; + } + + if let Some(_precision) = f.precision() { + // Concise, rounded representation. + + if self.is_zero() { + // Write a zero value with the requested precision. + return (0.).fmt(f).and_then(|_| f.write_str("s")); + } + + /// Format the first item that produces a value greater than 1 and then break. + macro_rules! item { + ($name:literal, $value:expr) => { + let value = $value; + if value >= 1.0 { + return value.fmt(f).and_then(|_| f.write_str($name)); + } + }; + } + + // Even if this produces a de-normal float, because we're rounding we don't really care. + let seconds = self.unsigned_abs().as_secs_f64(); + + item!("d", seconds / Second::per(Day) as f64); + item!("h", seconds / Second::per(Hour) as f64); + item!("m", seconds / Second::per(Minute) as f64); + item!("s", seconds); + item!("ms", seconds * Millisecond::per(Second) as f64); + item!("µs", seconds * Microsecond::per(Second) as f64); + item!("ns", seconds * Nanosecond::per(Second) as f64); + } else { + // Precise, but verbose representation. + + if self.is_zero() { + return f.write_str("0s"); + } + + /// Format a single item. + macro_rules! item { + ($name:literal, $value:expr) => { + match $value { + 0 => Ok(()), + value => value.fmt(f).and_then(|_| f.write_str($name)), + } + }; + } + + let seconds = self.seconds.unsigned_abs(); + let nanoseconds = self.nanoseconds.get().unsigned_abs(); + + item!("d", seconds / Second::per(Day).extend::<u64>())?; + item!( + "h", + seconds / Second::per(Hour).extend::<u64>() % Hour::per(Day).extend::<u64>() + )?; + item!( + "m", + seconds / Second::per(Minute).extend::<u64>() % Minute::per(Hour).extend::<u64>() + )?; + item!("s", seconds % Second::per(Minute).extend::<u64>())?; + item!("ms", nanoseconds / Nanosecond::per(Millisecond))?; + item!( + "µs", + nanoseconds / Nanosecond::per(Microsecond).extend::<u32>() + % Microsecond::per(Millisecond).extend::<u32>() + )?; + item!( + "ns", + nanoseconds % Nanosecond::per(Microsecond).extend::<u32>() + )?; + } + + Ok(()) + } +} + +impl TryFrom<StdDuration> for Duration { + type Error = error::ConversionRange; + + fn try_from(original: StdDuration) -> Result<Self, error::ConversionRange> { + Ok(Self::new( + original + .as_secs() + .try_into() + .map_err(|_| error::ConversionRange)?, + original.subsec_nanos().cast_signed(), + )) + } +} + +impl TryFrom<Duration> for StdDuration { + type Error = error::ConversionRange; + + fn try_from(duration: Duration) -> Result<Self, error::ConversionRange> { + Ok(Self::new( + duration + .seconds + .try_into() + .map_err(|_| error::ConversionRange)?, + duration + .nanoseconds + .get() + .try_into() + .map_err(|_| error::ConversionRange)?, + )) + } +} + +impl Add for Duration { + type Output = Self; + + /// # Panics + /// + /// This may panic if an overflow occurs. + fn add(self, rhs: Self) -> Self::Output { + self.checked_add(rhs) + .expect("overflow when adding durations") + } +} + +impl Add<StdDuration> for Duration { + type Output = Self; + + /// # Panics + /// + /// This may panic if an overflow occurs. + fn add(self, std_duration: StdDuration) -> Self::Output { + self + Self::try_from(std_duration) + .expect("overflow converting `std::time::Duration` to `time::Duration`") + } +} + +impl Add<Duration> for StdDuration { + type Output = Duration; + + fn add(self, rhs: Duration) -> Self::Output { + rhs + self + } +} + +impl_add_assign!(Duration: Self, StdDuration); + +impl AddAssign<Duration> for StdDuration { + /// # Panics + /// + /// This may panic if the resulting addition cannot be represented. + fn add_assign(&mut self, rhs: Duration) { + *self = (*self + rhs).try_into().expect( + "Cannot represent a resulting duration in std. Try `let x = x + rhs;`, which will \ + change the type.", + ); + } +} + +impl Neg for Duration { + type Output = Self; + + fn neg(self) -> Self::Output { + self.checked_neg().expect("overflow when negating duration") + } +} + +impl Sub for Duration { + type Output = Self; + + /// # Panics + /// + /// This may panic if an overflow occurs. + fn sub(self, rhs: Self) -> Self::Output { + self.checked_sub(rhs) + .expect("overflow when subtracting durations") + } +} + +impl Sub<StdDuration> for Duration { + type Output = Self; + + /// # Panics + /// + /// This may panic if an overflow occurs. + fn sub(self, rhs: StdDuration) -> Self::Output { + self - Self::try_from(rhs) + .expect("overflow converting `std::time::Duration` to `time::Duration`") + } +} + +impl Sub<Duration> for StdDuration { + type Output = Duration; + + /// # Panics + /// + /// This may panic if an overflow occurs. + fn sub(self, rhs: Duration) -> Self::Output { + Duration::try_from(self) + .expect("overflow converting `std::time::Duration` to `time::Duration`") + - rhs + } +} + +impl_sub_assign!(Duration: Self, StdDuration); + +impl SubAssign<Duration> for StdDuration { + /// # Panics + /// + /// This may panic if the resulting subtraction can not be represented. + fn sub_assign(&mut self, rhs: Duration) { + *self = (*self - rhs).try_into().expect( + "Cannot represent a resulting duration in std. Try `let x = x - rhs;`, which will \ + change the type.", + ); + } +} + +/// Implement `Mul` (reflexively) and `Div` for `Duration` for various types. +macro_rules! duration_mul_div_int { + ($($type:ty),+) => {$( + impl Mul<$type> for Duration { + type Output = Self; + + fn mul(self, rhs: $type) -> Self::Output { + Self::nanoseconds_i128( + self.whole_nanoseconds() + .checked_mul(rhs.cast_signed().extend::<i128>()) + .expect("overflow when multiplying duration") + ) + } + } + + impl Mul<Duration> for $type { + type Output = Duration; + + fn mul(self, rhs: Duration) -> Self::Output { + rhs * self + } + } + + impl Div<$type> for Duration { + type Output = Self; + + fn div(self, rhs: $type) -> Self::Output { + Self::nanoseconds_i128( + self.whole_nanoseconds() / rhs.cast_signed().extend::<i128>() + ) + } + } + )+}; +} +duration_mul_div_int![i8, i16, i32, u8, u16, u32]; + +impl Mul<f32> for Duration { + type Output = Self; + + fn mul(self, rhs: f32) -> Self::Output { + Self::seconds_f32(self.as_seconds_f32() * rhs) + } +} + +impl Mul<Duration> for f32 { + type Output = Duration; + + fn mul(self, rhs: Duration) -> Self::Output { + rhs * self + } +} + +impl Mul<f64> for Duration { + type Output = Self; + + fn mul(self, rhs: f64) -> Self::Output { + Self::seconds_f64(self.as_seconds_f64() * rhs) + } +} + +impl Mul<Duration> for f64 { + type Output = Duration; + + fn mul(self, rhs: Duration) -> Self::Output { + rhs * self + } +} + +impl_mul_assign!(Duration: i8, i16, i32, u8, u16, u32, f32, f64); + +impl Div<f32> for Duration { + type Output = Self; + + fn div(self, rhs: f32) -> Self::Output { + Self::seconds_f32(self.as_seconds_f32() / rhs) + } +} + +impl Div<f64> for Duration { + type Output = Self; + + fn div(self, rhs: f64) -> Self::Output { + Self::seconds_f64(self.as_seconds_f64() / rhs) + } +} + +impl_div_assign!(Duration: i8, i16, i32, u8, u16, u32, f32, f64); + +impl Div for Duration { + type Output = f64; + + fn div(self, rhs: Self) -> Self::Output { + self.as_seconds_f64() / rhs.as_seconds_f64() + } +} + +impl Div<StdDuration> for Duration { + type Output = f64; + + fn div(self, rhs: StdDuration) -> Self::Output { + self.as_seconds_f64() / rhs.as_secs_f64() + } +} + +impl Div<Duration> for StdDuration { + type Output = f64; + + fn div(self, rhs: Duration) -> Self::Output { + self.as_secs_f64() / rhs.as_seconds_f64() + } +} + +impl PartialEq<StdDuration> for Duration { + fn eq(&self, rhs: &StdDuration) -> bool { + Ok(*self) == Self::try_from(*rhs) + } +} + +impl PartialEq<Duration> for StdDuration { + fn eq(&self, rhs: &Duration) -> bool { + rhs == self + } +} + +impl PartialOrd<StdDuration> for Duration { + fn partial_cmp(&self, rhs: &StdDuration) -> Option<Ordering> { + if rhs.as_secs() > i64::MAX.cast_unsigned() { + return Some(Ordering::Less); + } + + Some( + self.seconds + .cmp(&rhs.as_secs().cast_signed()) + .then_with(|| { + self.nanoseconds + .get() + .cmp(&rhs.subsec_nanos().cast_signed()) + }), + ) + } +} + +impl PartialOrd<Duration> for StdDuration { + fn partial_cmp(&self, rhs: &Duration) -> Option<Ordering> { + rhs.partial_cmp(self).map(Ordering::reverse) + } +} + +impl Sum for Duration { + fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { + iter.reduce(|a, b| a + b).unwrap_or_default() + } +} + +impl<'a> Sum<&'a Self> for Duration { + fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self { + iter.copied().sum() + } +} + +#[cfg(feature = "std")] +impl Add<Duration> for SystemTime { + type Output = Self; + + fn add(self, duration: Duration) -> Self::Output { + if duration.is_zero() { + self + } else if duration.is_positive() { + self + duration.unsigned_abs() + } else { + debug_assert!(duration.is_negative()); + self - duration.unsigned_abs() + } + } +} + +impl_add_assign!(SystemTime: #[cfg(feature = "std")] Duration); + +#[cfg(feature = "std")] +impl Sub<Duration> for SystemTime { + type Output = Self; + + fn sub(self, duration: Duration) -> Self::Output { + if duration.is_zero() { + self + } else if duration.is_positive() { + self - duration.unsigned_abs() + } else { + debug_assert!(duration.is_negative()); + self + duration.unsigned_abs() + } + } +} + +impl_sub_assign!(SystemTime: #[cfg(feature = "std")] Duration); |
