diff options
| author | mo khan <mo@mokhan.ca> | 2025-07-02 18:36:06 -0600 |
|---|---|---|
| committer | mo khan <mo@mokhan.ca> | 2025-07-02 18:36:06 -0600 |
| commit | 8cdfa445d6629ffef4cb84967ff7017654045bc2 (patch) | |
| tree | 22f0b0907c024c78d26a731e2e1f5219407d8102 /vendor/itertools/tests | |
| parent | 4351c74c7c5f97156bc94d3a8549b9940ac80e3f (diff) | |
chore: add vendor directory
Diffstat (limited to 'vendor/itertools/tests')
| -rw-r--r-- | vendor/itertools/tests/adaptors_no_collect.rs | 51 | ||||
| -rw-r--r-- | vendor/itertools/tests/flatten_ok.rs | 76 | ||||
| -rw-r--r-- | vendor/itertools/tests/laziness.rs | 283 | ||||
| -rw-r--r-- | vendor/itertools/tests/macros_hygiene.rs | 27 | ||||
| -rw-r--r-- | vendor/itertools/tests/merge_join.rs | 101 | ||||
| -rw-r--r-- | vendor/itertools/tests/peeking_take_while.rs | 69 | ||||
| -rw-r--r-- | vendor/itertools/tests/quick.rs | 1969 | ||||
| -rw-r--r-- | vendor/itertools/tests/specializations.rs | 603 | ||||
| -rw-r--r-- | vendor/itertools/tests/test_core.rs | 399 | ||||
| -rw-r--r-- | vendor/itertools/tests/test_std.rs | 1569 | ||||
| -rw-r--r-- | vendor/itertools/tests/tuples.rs | 86 | ||||
| -rw-r--r-- | vendor/itertools/tests/zip.rs | 56 |
12 files changed, 5289 insertions, 0 deletions
diff --git a/vendor/itertools/tests/adaptors_no_collect.rs b/vendor/itertools/tests/adaptors_no_collect.rs new file mode 100644 index 00000000..977224af --- /dev/null +++ b/vendor/itertools/tests/adaptors_no_collect.rs @@ -0,0 +1,51 @@ +use itertools::Itertools; + +struct PanickingCounter { + curr: usize, + max: usize, +} + +impl Iterator for PanickingCounter { + type Item = (); + + fn next(&mut self) -> Option<Self::Item> { + self.curr += 1; + + assert_ne!( + self.curr, self.max, + "Input iterator reached maximum of {} suggesting collection by adaptor", + self.max + ); + + Some(()) + } +} + +fn no_collect_test<A, T>(to_adaptor: T) +where + A: Iterator, + T: Fn(PanickingCounter) -> A, +{ + let counter = PanickingCounter { + curr: 0, + max: 10_000, + }; + let adaptor = to_adaptor(counter); + + for _ in adaptor.take(5) {} +} + +#[test] +fn permutations_no_collect() { + no_collect_test(|iter| iter.permutations(5)) +} + +#[test] +fn combinations_no_collect() { + no_collect_test(|iter| iter.combinations(5)) +} + +#[test] +fn combinations_with_replacement_no_collect() { + no_collect_test(|iter| iter.combinations_with_replacement(5)) +} diff --git a/vendor/itertools/tests/flatten_ok.rs b/vendor/itertools/tests/flatten_ok.rs new file mode 100644 index 00000000..bf835b5d --- /dev/null +++ b/vendor/itertools/tests/flatten_ok.rs @@ -0,0 +1,76 @@ +use itertools::{assert_equal, Itertools}; +use std::{ops::Range, vec::IntoIter}; + +fn mix_data() -> IntoIter<Result<Range<i32>, bool>> { + vec![Ok(0..2), Err(false), Ok(2..4), Err(true), Ok(4..6)].into_iter() +} + +fn ok_data() -> IntoIter<Result<Range<i32>, bool>> { + vec![Ok(0..2), Ok(2..4), Ok(4..6)].into_iter() +} + +#[test] +fn flatten_ok_mixed_expected_forward() { + assert_equal( + mix_data().flatten_ok(), + vec![ + Ok(0), + Ok(1), + Err(false), + Ok(2), + Ok(3), + Err(true), + Ok(4), + Ok(5), + ], + ); +} + +#[test] +fn flatten_ok_mixed_expected_reverse() { + assert_equal( + mix_data().flatten_ok().rev(), + vec![ + Ok(5), + Ok(4), + Err(true), + Ok(3), + Ok(2), + Err(false), + Ok(1), + Ok(0), + ], + ); +} + +#[test] +fn flatten_ok_collect_mixed_forward() { + assert_eq!( + mix_data().flatten_ok().collect::<Result<Vec<_>, _>>(), + Err(false) + ); +} + +#[test] +fn flatten_ok_collect_mixed_reverse() { + assert_eq!( + mix_data().flatten_ok().rev().collect::<Result<Vec<_>, _>>(), + Err(true) + ); +} + +#[test] +fn flatten_ok_collect_ok_forward() { + assert_eq!( + ok_data().flatten_ok().collect::<Result<Vec<_>, _>>(), + Ok((0..6).collect()) + ); +} + +#[test] +fn flatten_ok_collect_ok_reverse() { + assert_eq!( + ok_data().flatten_ok().rev().collect::<Result<Vec<_>, _>>(), + Ok((0..6).rev().collect()) + ); +} diff --git a/vendor/itertools/tests/laziness.rs b/vendor/itertools/tests/laziness.rs new file mode 100644 index 00000000..c559d33a --- /dev/null +++ b/vendor/itertools/tests/laziness.rs @@ -0,0 +1,283 @@ +#![allow(unstable_name_collisions)] + +use itertools::Itertools; + +#[derive(Debug, Clone)] +#[must_use = "iterators are lazy and do nothing unless consumed"] +struct Panicking; + +impl Iterator for Panicking { + type Item = u8; + + fn next(&mut self) -> Option<u8> { + panic!("iterator adaptor is not lazy") + } + + fn size_hint(&self) -> (usize, Option<usize>) { + (0, Some(0)) + } +} + +impl ExactSizeIterator for Panicking {} + +/// ## Usage example +/// ```compile_fail +/// must_use_tests! { +/// name { +/// Panicking.name(); // Add `let _ =` only if required (encountered error). +/// } +/// // ... +/// } +/// ``` +/// +/// **TODO:** test missing `must_use` attributes better, maybe with a new lint. +macro_rules! must_use_tests { + ($($(#[$attr:meta])* $name:ident $body:block)*) => { + $( + /// `#[deny(unused_must_use)]` should force us to ignore the resulting iterators + /// by adding `let _ = ...;` on every iterator. + /// If it does not, then a `must_use` attribute is missing on the associated struct. + /// + /// However, it's only helpful if we don't add `let _ =` before seeing if there is an error or not. + /// And it does not protect us against removed `must_use` attributes. + /// There is no simple way to test this yet. + #[deny(unused_must_use)] + #[test] + $(#[$attr])* + fn $name() $body + )* + }; +} + +must_use_tests! { + // Itertools trait: + interleave { + let _ = Panicking.interleave(Panicking); + } + interleave_shortest { + let _ = Panicking.interleave_shortest(Panicking); + } + intersperse { + let _ = Panicking.intersperse(0); + } + intersperse_with { + let _ = Panicking.intersperse_with(|| 0); + } + get { + let _ = Panicking.get(1..4); + let _ = Panicking.get(1..=4); + let _ = Panicking.get(1..); + let _ = Panicking.get(..4); + let _ = Panicking.get(..=4); + let _ = Panicking.get(..); + } + zip_longest { + let _ = Panicking.zip_longest(Panicking); + } + zip_eq { + let _ = Panicking.zip_eq(Panicking); + } + batching { + let _ = Panicking.batching(Iterator::next); + } + chunk_by { + // ChunkBy + let _ = Panicking.chunk_by(|x| *x); + // Groups + let _ = Panicking.chunk_by(|x| *x).into_iter(); + } + chunks { + // IntoChunks + let _ = Panicking.chunks(1); + let _ = Panicking.chunks(2); + // Chunks + let _ = Panicking.chunks(1).into_iter(); + let _ = Panicking.chunks(2).into_iter(); + } + tuple_windows { + let _ = Panicking.tuple_windows::<(_,)>(); + let _ = Panicking.tuple_windows::<(_, _)>(); + let _ = Panicking.tuple_windows::<(_, _, _)>(); + } + circular_tuple_windows { + let _ = Panicking.circular_tuple_windows::<(_,)>(); + let _ = Panicking.circular_tuple_windows::<(_, _)>(); + let _ = Panicking.circular_tuple_windows::<(_, _, _)>(); + } + tuples { + let _ = Panicking.tuples::<(_,)>(); + let _ = Panicking.tuples::<(_, _)>(); + let _ = Panicking.tuples::<(_, _, _)>(); + } + tee { + let _ = Panicking.tee(); + } + map_into { + let _ = Panicking.map_into::<u16>(); + } + map_ok { + let _ = Panicking.map(Ok::<u8, ()>).map_ok(|x| x + 1); + } + filter_ok { + let _ = Panicking.map(Ok::<u8, ()>).filter_ok(|x| x % 2 == 0); + } + filter_map_ok { + let _ = Panicking.map(Ok::<u8, ()>).filter_map_ok(|x| { + if x % 2 == 0 { + Some(x + 1) + } else { + None + } + }); + } + flatten_ok { + let _ = Panicking.map(|x| Ok::<_, ()>([x])).flatten_ok(); + } + merge { + let _ = Panicking.merge(Panicking); + } + merge_by { + let _ = Panicking.merge_by(Panicking, |_, _| true); + } + merge_join_by { + let _ = Panicking.merge_join_by(Panicking, |_, _| true); + let _ = Panicking.merge_join_by(Panicking, Ord::cmp); + } + #[should_panic] + kmerge { + let _ = Panicking.map(|_| Panicking).kmerge(); + } + #[should_panic] + kmerge_by { + let _ = Panicking.map(|_| Panicking).kmerge_by(|_, _| true); + } + cartesian_product { + let _ = Panicking.cartesian_product(Panicking); + } + multi_cartesian_product { + let _ = vec![Panicking, Panicking, Panicking].into_iter().multi_cartesian_product(); + } + coalesce { + let _ = Panicking.coalesce(|x, y| if x == y { Ok(x) } else { Err((x, y)) }); + } + dedup { + let _ = Panicking.dedup(); + } + dedup_by { + let _ = Panicking.dedup_by(|_, _| true); + } + dedup_with_count { + let _ = Panicking.dedup_with_count(); + } + dedup_by_with_count { + let _ = Panicking.dedup_by_with_count(|_, _| true); + } + duplicates { + let _ = Panicking.duplicates(); + } + duplicates_by { + let _ = Panicking.duplicates_by(|x| *x); + } + unique { + let _ = Panicking.unique(); + } + unique_by { + let _ = Panicking.unique_by(|x| *x); + } + peeking_take_while { + let _ = Panicking.peekable().peeking_take_while(|x| x % 2 == 0); + } + take_while_ref { + let _ = Panicking.take_while_ref(|x| x % 2 == 0); + } + take_while_inclusive { + let _ = Panicking.take_while_inclusive(|x| x % 2 == 0); + } + while_some { + let _ = Panicking.map(Some).while_some(); + } + tuple_combinations1 { + let _ = Panicking.tuple_combinations::<(_,)>(); + } + #[should_panic] + tuple_combinations2 { + let _ = Panicking.tuple_combinations::<(_, _)>(); + } + #[should_panic] + tuple_combinations3 { + let _ = Panicking.tuple_combinations::<(_, _, _)>(); + } + combinations { + let _ = Panicking.combinations(0); + let _ = Panicking.combinations(1); + let _ = Panicking.combinations(2); + } + combinations_with_replacement { + let _ = Panicking.combinations_with_replacement(0); + let _ = Panicking.combinations_with_replacement(1); + let _ = Panicking.combinations_with_replacement(2); + } + permutations { + let _ = Panicking.permutations(0); + let _ = Panicking.permutations(1); + let _ = Panicking.permutations(2); + } + powerset { + let _ = Panicking.powerset(); + } + pad_using { + let _ = Panicking.pad_using(25, |_| 10); + } + with_position { + let _ = Panicking.with_position(); + } + positions { + let _ = Panicking.positions(|v| v % 2 == 0); + } + update { + let _ = Panicking.update(|n| *n += 1); + } + multipeek { + let _ = Panicking.multipeek(); + } + // Not iterator themselves but still lazy. + into_grouping_map { + let _ = Panicking.map(|x| (x, x + 1)).into_grouping_map(); + } + into_grouping_map_by { + let _ = Panicking.into_grouping_map_by(|x| *x); + } + // Macros: + iproduct { + let _ = itertools::iproduct!(Panicking); + let _ = itertools::iproduct!(Panicking, Panicking); + let _ = itertools::iproduct!(Panicking, Panicking, Panicking); + } + izip { + let _ = itertools::izip!(Panicking); + let _ = itertools::izip!(Panicking, Panicking); + let _ = itertools::izip!(Panicking, Panicking, Panicking); + } + chain { + let _ = itertools::chain!(Panicking); + let _ = itertools::chain!(Panicking, Panicking); + let _ = itertools::chain!(Panicking, Panicking, Panicking); + } + // Free functions: + multizip { + let _ = itertools::multizip((Panicking, Panicking)); + } + put_back { + let _ = itertools::put_back(Panicking); + let _ = itertools::put_back(Panicking).with_value(15); + } + peek_nth { + let _ = itertools::peek_nth(Panicking); + } + put_back_n { + let _ = itertools::put_back_n(Panicking); + } + rciter { + let _ = itertools::rciter(Panicking); + } +} diff --git a/vendor/itertools/tests/macros_hygiene.rs b/vendor/itertools/tests/macros_hygiene.rs new file mode 100644 index 00000000..e6e89555 --- /dev/null +++ b/vendor/itertools/tests/macros_hygiene.rs @@ -0,0 +1,27 @@ +mod alloc {} +mod core {} +mod either {} +mod std {} + +#[test] +fn iproduct_hygiene() { + let _ = itertools::iproduct!(); + let _ = itertools::iproduct!(0..6); + let _ = itertools::iproduct!(0..6, 0..9); + let _ = itertools::iproduct!(0..6, 0..9, 0..12); +} + +#[test] +fn izip_hygiene() { + let _ = itertools::izip!(0..6); + let _ = itertools::izip!(0..6, 0..9); + let _ = itertools::izip!(0..6, 0..9, 0..12); +} + +#[test] +fn chain_hygiene() { + let _: ::std::iter::Empty<i32> = itertools::chain!(); + let _ = itertools::chain!(0..6); + let _ = itertools::chain!(0..6, 0..9); + let _ = itertools::chain!(0..6, 0..9, 0..12); +} diff --git a/vendor/itertools/tests/merge_join.rs b/vendor/itertools/tests/merge_join.rs new file mode 100644 index 00000000..776252fc --- /dev/null +++ b/vendor/itertools/tests/merge_join.rs @@ -0,0 +1,101 @@ +use itertools::free::merge_join_by; +use itertools::EitherOrBoth; + +#[test] +fn empty() { + let left: Vec<u32> = vec![]; + let right: Vec<u32> = vec![]; + let expected_result: Vec<EitherOrBoth<u32>> = vec![]; + let actual_result = merge_join_by(left, right, |l, r| l.cmp(r)).collect::<Vec<_>>(); + assert_eq!(expected_result, actual_result); +} + +#[test] +fn left_only() { + let left: Vec<u32> = vec![1, 2, 3]; + let right: Vec<u32> = vec![]; + let expected_result: Vec<EitherOrBoth<u32>> = vec![ + EitherOrBoth::Left(1), + EitherOrBoth::Left(2), + EitherOrBoth::Left(3), + ]; + let actual_result = merge_join_by(left, right, |l, r| l.cmp(r)).collect::<Vec<_>>(); + assert_eq!(expected_result, actual_result); +} + +#[test] +fn right_only() { + let left: Vec<u32> = vec![]; + let right: Vec<u32> = vec![1, 2, 3]; + let expected_result: Vec<EitherOrBoth<u32>> = vec![ + EitherOrBoth::Right(1), + EitherOrBoth::Right(2), + EitherOrBoth::Right(3), + ]; + let actual_result = merge_join_by(left, right, |l, r| l.cmp(r)).collect::<Vec<_>>(); + assert_eq!(expected_result, actual_result); +} + +#[test] +fn first_left_then_right() { + let left: Vec<u32> = vec![1, 2, 3]; + let right: Vec<u32> = vec![4, 5, 6]; + let expected_result: Vec<EitherOrBoth<u32>> = vec![ + EitherOrBoth::Left(1), + EitherOrBoth::Left(2), + EitherOrBoth::Left(3), + EitherOrBoth::Right(4), + EitherOrBoth::Right(5), + EitherOrBoth::Right(6), + ]; + let actual_result = merge_join_by(left, right, |l, r| l.cmp(r)).collect::<Vec<_>>(); + assert_eq!(expected_result, actual_result); +} + +#[test] +fn first_right_then_left() { + let left: Vec<u32> = vec![4, 5, 6]; + let right: Vec<u32> = vec![1, 2, 3]; + let expected_result: Vec<EitherOrBoth<u32>> = vec![ + EitherOrBoth::Right(1), + EitherOrBoth::Right(2), + EitherOrBoth::Right(3), + EitherOrBoth::Left(4), + EitherOrBoth::Left(5), + EitherOrBoth::Left(6), + ]; + let actual_result = merge_join_by(left, right, |l, r| l.cmp(r)).collect::<Vec<_>>(); + assert_eq!(expected_result, actual_result); +} + +#[test] +fn interspersed_left_and_right() { + let left: Vec<u32> = vec![1, 3, 5]; + let right: Vec<u32> = vec![2, 4, 6]; + let expected_result: Vec<EitherOrBoth<u32>> = vec![ + EitherOrBoth::Left(1), + EitherOrBoth::Right(2), + EitherOrBoth::Left(3), + EitherOrBoth::Right(4), + EitherOrBoth::Left(5), + EitherOrBoth::Right(6), + ]; + let actual_result = merge_join_by(left, right, |l, r| l.cmp(r)).collect::<Vec<_>>(); + assert_eq!(expected_result, actual_result); +} + +#[test] +fn overlapping_left_and_right() { + let left: Vec<u32> = vec![1, 3, 4, 6]; + let right: Vec<u32> = vec![2, 3, 4, 5]; + let expected_result: Vec<EitherOrBoth<u32>> = vec![ + EitherOrBoth::Left(1), + EitherOrBoth::Right(2), + EitherOrBoth::Both(3, 3), + EitherOrBoth::Both(4, 4), + EitherOrBoth::Right(5), + EitherOrBoth::Left(6), + ]; + let actual_result = merge_join_by(left, right, |l, r| l.cmp(r)).collect::<Vec<_>>(); + assert_eq!(expected_result, actual_result); +} diff --git a/vendor/itertools/tests/peeking_take_while.rs b/vendor/itertools/tests/peeking_take_while.rs new file mode 100644 index 00000000..5be97271 --- /dev/null +++ b/vendor/itertools/tests/peeking_take_while.rs @@ -0,0 +1,69 @@ +use itertools::Itertools; +use itertools::{put_back, put_back_n}; + +#[test] +fn peeking_take_while_peekable() { + let mut r = (0..10).peekable(); + r.peeking_take_while(|x| *x <= 3).count(); + assert_eq!(r.next(), Some(4)); +} + +#[test] +fn peeking_take_while_put_back() { + let mut r = put_back(0..10); + r.peeking_take_while(|x| *x <= 3).count(); + assert_eq!(r.next(), Some(4)); + r.peeking_take_while(|_| true).count(); + assert_eq!(r.next(), None); +} + +#[test] +fn peeking_take_while_put_back_n() { + let mut r = put_back_n(6..10); + for elt in (0..6).rev() { + r.put_back(elt); + } + r.peeking_take_while(|x| *x <= 3).count(); + assert_eq!(r.next(), Some(4)); + r.peeking_take_while(|_| true).count(); + assert_eq!(r.next(), None); +} + +#[test] +fn peeking_take_while_slice_iter() { + let v = [1, 2, 3, 4, 5, 6]; + let mut r = v.iter(); + r.peeking_take_while(|x| **x <= 3).count(); + assert_eq!(r.next(), Some(&4)); + r.peeking_take_while(|_| true).count(); + assert_eq!(r.next(), None); +} + +#[test] +fn peeking_take_while_slice_iter_rev() { + let v = [1, 2, 3, 4, 5, 6]; + let mut r = v.iter().rev(); + r.peeking_take_while(|x| **x >= 3).count(); + assert_eq!(r.next(), Some(&2)); + r.peeking_take_while(|_| true).count(); + assert_eq!(r.next(), None); +} + +#[test] +fn peeking_take_while_nested() { + let mut xs = (0..10).peekable(); + let ys: Vec<_> = xs + .peeking_take_while(|x| *x < 6) + .peeking_take_while(|x| *x != 3) + .collect(); + assert_eq!(ys, vec![0, 1, 2]); + assert_eq!(xs.next(), Some(3)); + + let mut xs = (4..10).peekable(); + let ys: Vec<_> = xs + .peeking_take_while(|x| *x != 3) + .peeking_take_while(|x| *x < 6) + .collect(); + assert_eq!(ys, vec![4, 5]); + assert_eq!(xs.next(), Some(6)); +} diff --git a/vendor/itertools/tests/quick.rs b/vendor/itertools/tests/quick.rs new file mode 100644 index 00000000..672901e7 --- /dev/null +++ b/vendor/itertools/tests/quick.rs @@ -0,0 +1,1969 @@ +//! The purpose of these tests is to cover corner cases of iterators +//! and adaptors. +//! +//! In particular we test the tedious size_hint and exact size correctness. +//! +//! **NOTE:** Due to performance limitations, these tests are not run with miri! +//! They cannot be relied upon to discover soundness issues. + +#![cfg(not(miri))] +#![allow(deprecated, unstable_name_collisions)] + +use itertools::free::{ + cloned, enumerate, multipeek, peek_nth, put_back, put_back_n, rciter, zip, zip_eq, +}; +use itertools::Itertools; +use itertools::{iproduct, izip, multizip, EitherOrBoth}; +use quickcheck as qc; +use std::cmp::{max, min, Ordering}; +use std::collections::{HashMap, HashSet}; +use std::default::Default; +use std::num::Wrapping; +use std::ops::Range; + +use quickcheck::TestResult; +use rand::seq::SliceRandom; +use rand::Rng; + +/// Trait for size hint modifier types +trait HintKind: Copy + Send + qc::Arbitrary { + fn loosen_bounds(&self, org_hint: (usize, Option<usize>)) -> (usize, Option<usize>); +} + +/// Exact size hint variant that leaves hints unchanged +#[derive(Clone, Copy, Debug)] +struct Exact {} + +impl HintKind for Exact { + fn loosen_bounds(&self, org_hint: (usize, Option<usize>)) -> (usize, Option<usize>) { + org_hint + } +} + +impl qc::Arbitrary for Exact { + fn arbitrary<G: qc::Gen>(_: &mut G) -> Self { + Self {} + } +} + +/// Inexact size hint variant to simulate imprecise (but valid) size hints +/// +/// Will always decrease the lower bound and increase the upper bound +/// of the size hint by set amounts. +#[derive(Clone, Copy, Debug)] +struct Inexact { + underestimate: usize, + overestimate: usize, +} + +impl HintKind for Inexact { + fn loosen_bounds(&self, org_hint: (usize, Option<usize>)) -> (usize, Option<usize>) { + let (org_lower, org_upper) = org_hint; + ( + org_lower.saturating_sub(self.underestimate), + org_upper.and_then(move |x| x.checked_add(self.overestimate)), + ) + } +} + +impl qc::Arbitrary for Inexact { + fn arbitrary<G: qc::Gen>(g: &mut G) -> Self { + let ue_value = usize::arbitrary(g); + let oe_value = usize::arbitrary(g); + // Compensate for quickcheck using extreme values too rarely + let ue_choices = &[0, ue_value, usize::MAX]; + let oe_choices = &[0, oe_value, usize::MAX]; + Self { + underestimate: *ue_choices.choose(g).unwrap(), + overestimate: *oe_choices.choose(g).unwrap(), + } + } + + fn shrink(&self) -> Box<dyn Iterator<Item = Self>> { + let underestimate_value = self.underestimate; + let overestimate_value = self.overestimate; + Box::new(underestimate_value.shrink().flat_map(move |ue_value| { + overestimate_value.shrink().map(move |oe_value| Self { + underestimate: ue_value, + overestimate: oe_value, + }) + })) + } +} + +/// Our base iterator that we can impl Arbitrary for +/// +/// By default we'll return inexact bounds estimates for size_hint +/// to make tests harder to pass. +/// +/// NOTE: Iter is tricky and is not fused, to help catch bugs. +/// At the end it will return None once, then return Some(0), +/// then return None again. +#[derive(Clone, Debug)] +struct Iter<T, SK: HintKind = Inexact> { + iterator: Range<T>, + // fuse/done flag + fuse_flag: i32, + hint_kind: SK, +} + +impl<T, HK> Iter<T, HK> +where + HK: HintKind, +{ + fn new(it: Range<T>, hint_kind: HK) -> Self { + Self { + iterator: it, + fuse_flag: 0, + hint_kind, + } + } +} + +impl<T, HK> Iterator for Iter<T, HK> +where + Range<T>: Iterator, + <Range<T> as Iterator>::Item: Default, + HK: HintKind, +{ + type Item = <Range<T> as Iterator>::Item; + + fn next(&mut self) -> Option<Self::Item> { + let elt = self.iterator.next(); + if elt.is_none() { + self.fuse_flag += 1; + // check fuse flag + if self.fuse_flag == 2 { + return Some(Default::default()); + } + } + elt + } + + fn size_hint(&self) -> (usize, Option<usize>) { + let org_hint = self.iterator.size_hint(); + self.hint_kind.loosen_bounds(org_hint) + } +} + +impl<T, HK> DoubleEndedIterator for Iter<T, HK> +where + Range<T>: DoubleEndedIterator, + <Range<T> as Iterator>::Item: Default, + HK: HintKind, +{ + fn next_back(&mut self) -> Option<Self::Item> { + self.iterator.next_back() + } +} + +impl<T> ExactSizeIterator for Iter<T, Exact> +where + Range<T>: ExactSizeIterator, + <Range<T> as Iterator>::Item: Default, +{ +} + +impl<T, HK> qc::Arbitrary for Iter<T, HK> +where + T: qc::Arbitrary, + HK: HintKind, +{ + fn arbitrary<G: qc::Gen>(g: &mut G) -> Self { + Self::new(T::arbitrary(g)..T::arbitrary(g), HK::arbitrary(g)) + } + + fn shrink(&self) -> Box<dyn Iterator<Item = Self>> { + let r = self.iterator.clone(); + let hint_kind = self.hint_kind; + Box::new(r.start.shrink().flat_map(move |a| { + r.end + .shrink() + .map(move |b| Self::new(a.clone()..b, hint_kind)) + })) + } +} + +/// A meta-iterator which yields `Iter<i32>`s whose start/endpoints are +/// increased or decreased linearly on each iteration. +#[derive(Clone, Debug)] +struct ShiftRange<HK = Inexact> { + range_start: i32, + range_end: i32, + start_step: i32, + end_step: i32, + iter_count: u32, + hint_kind: HK, +} + +impl<HK> Iterator for ShiftRange<HK> +where + HK: HintKind, +{ + type Item = Iter<i32, HK>; + + fn next(&mut self) -> Option<Self::Item> { + if self.iter_count == 0 { + return None; + } + + let iter = Iter::new(self.range_start..self.range_end, self.hint_kind); + + self.range_start += self.start_step; + self.range_end += self.end_step; + self.iter_count -= 1; + + Some(iter) + } +} + +impl ExactSizeIterator for ShiftRange<Exact> {} + +impl<HK> qc::Arbitrary for ShiftRange<HK> +where + HK: HintKind, +{ + fn arbitrary<G: qc::Gen>(g: &mut G) -> Self { + const MAX_STARTING_RANGE_DIFF: i32 = 32; + const MAX_STEP_MODULO: i32 = 8; + const MAX_ITER_COUNT: u32 = 3; + + let range_start = qc::Arbitrary::arbitrary(g); + let range_end = range_start + g.gen_range(0, MAX_STARTING_RANGE_DIFF + 1); + let start_step = g.gen_range(-MAX_STEP_MODULO, MAX_STEP_MODULO + 1); + let end_step = g.gen_range(-MAX_STEP_MODULO, MAX_STEP_MODULO + 1); + let iter_count = g.gen_range(0, MAX_ITER_COUNT + 1); + let hint_kind = qc::Arbitrary::arbitrary(g); + + Self { + range_start, + range_end, + start_step, + end_step, + iter_count, + hint_kind, + } + } +} + +fn correct_count<I, F>(get_it: F) -> bool +where + I: Iterator, + F: Fn() -> I, +{ + let mut counts = vec![get_it().count()]; + + 'outer: loop { + let mut it = get_it(); + + for _ in 0..(counts.len() - 1) { + if it.next().is_none() { + panic!("Iterator shouldn't be finished, may not be deterministic"); + } + } + + if it.next().is_none() { + break 'outer; + } + + counts.push(it.count()); + } + + let total_actual_count = counts.len() - 1; + + for (i, returned_count) in counts.into_iter().enumerate() { + let actual_count = total_actual_count - i; + if actual_count != returned_count { + println!( + "Total iterations: {} True count: {} returned count: {}", + i, actual_count, returned_count + ); + + return false; + } + } + + true +} + +fn correct_size_hint<I: Iterator>(mut it: I) -> bool { + // record size hint at each iteration + let initial_hint = it.size_hint(); + let mut hints = Vec::with_capacity(initial_hint.0 + 1); + hints.push(initial_hint); + while let Some(_) = it.next() { + hints.push(it.size_hint()) + } + + let mut true_count = hints.len(); // start off +1 too much + + // check all the size hints + for &(low, hi) in &hints { + true_count -= 1; + if low > true_count || (hi.is_some() && hi.unwrap() < true_count) { + println!("True size: {:?}, size hint: {:?}", true_count, (low, hi)); + //println!("All hints: {:?}", hints); + return false; + } + } + true +} + +fn exact_size<I: ExactSizeIterator>(mut it: I) -> bool { + // check every iteration + let (mut low, mut hi) = it.size_hint(); + if Some(low) != hi { + return false; + } + while let Some(_) = it.next() { + let (xlow, xhi) = it.size_hint(); + if low != xlow + 1 { + return false; + } + low = xlow; + hi = xhi; + if Some(low) != hi { + return false; + } + } + let (low, hi) = it.size_hint(); + low == 0 && hi == Some(0) +} + +// Exact size for this case, without ExactSizeIterator +fn exact_size_for_this<I: Iterator>(mut it: I) -> bool { + // check every iteration + let (mut low, mut hi) = it.size_hint(); + if Some(low) != hi { + return false; + } + while let Some(_) = it.next() { + let (xlow, xhi) = it.size_hint(); + if low != xlow + 1 { + return false; + } + low = xlow; + hi = xhi; + if Some(low) != hi { + return false; + } + } + let (low, hi) = it.size_hint(); + low == 0 && hi == Some(0) +} + +/* + * NOTE: Range<i8> is broken! + * (all signed ranges are) +#[quickcheck] +fn size_range_i8(a: Iter<i8>) -> bool { + exact_size(a) +} + +#[quickcheck] +fn size_range_i16(a: Iter<i16>) -> bool { + exact_size(a) +} + +#[quickcheck] +fn size_range_u8(a: Iter<u8>) -> bool { + exact_size(a) +} + */ + +macro_rules! quickcheck { + // accept several property function definitions + // The property functions can use pattern matching and `mut` as usual + // in the function arguments, but the functions can not be generic. + {$($(#$attr:tt)* fn $fn_name:ident($($arg:tt)*) -> $ret:ty { $($code:tt)* })*} => ( + $( + #[test] + $(#$attr)* + fn $fn_name() { + fn prop($($arg)*) -> $ret { + $($code)* + } + ::quickcheck::quickcheck(quickcheck!(@fn prop [] $($arg)*)); + } + )* + ); + // parse argument list (with patterns allowed) into prop as fn(_, _) -> _ + (@fn $f:ident [$($t:tt)*]) => { + $f as fn($($t),*) -> _ + }; + (@fn $f:ident [$($p:tt)*] : $($tail:tt)*) => { + quickcheck!(@fn $f [$($p)* _] $($tail)*) + }; + (@fn $f:ident [$($p:tt)*] $t:tt $($tail:tt)*) => { + quickcheck!(@fn $f [$($p)*] $($tail)*) + }; +} + +quickcheck! { + + fn size_product(a: Iter<u16>, b: Iter<u16>) -> bool { + correct_size_hint(a.cartesian_product(b)) + } + fn size_product3(a: Iter<u16>, b: Iter<u16>, c: Iter<u16>) -> bool { + correct_size_hint(iproduct!(a, b, c)) + } + + fn correct_cartesian_product3(a: Iter<u16>, b: Iter<u16>, c: Iter<u16>, + take_manual: usize) -> () + { + // test correctness of iproduct through regular iteration (take) + // and through fold. + let ac = a.clone(); + let br = &b.clone(); + let cr = &c.clone(); + let answer: Vec<_> = ac.flat_map(move |ea| br.clone().flat_map(move |eb| cr.clone().map(move |ec| (ea, eb, ec)))).collect(); + let mut product_iter = iproduct!(a, b, c); + let mut actual = Vec::new(); + + actual.extend((&mut product_iter).take(take_manual)); + if actual.len() == take_manual { + product_iter.fold((), |(), elt| actual.push(elt)); + } + assert_eq!(answer, actual); + } + + fn size_multi_product(a: ShiftRange) -> bool { + correct_size_hint(a.multi_cartesian_product()) + } + fn correct_multi_product3(a: ShiftRange, take_manual: usize) -> () { + // Fix no. of iterators at 3 + let a = ShiftRange { iter_count: 3, ..a }; + + // test correctness of MultiProduct through regular iteration (take) + // and through fold. + let mut iters = a.clone(); + let i0 = iters.next().unwrap(); + let i1r = &iters.next().unwrap(); + let i2r = &iters.next().unwrap(); + let answer: Vec<_> = i0.flat_map(move |ei0| i1r.clone().flat_map(move |ei1| i2r.clone().map(move |ei2| vec![ei0, ei1, ei2]))).collect(); + let mut multi_product = a.clone().multi_cartesian_product(); + let mut actual = Vec::new(); + + actual.extend((&mut multi_product).take(take_manual)); + if actual.len() == take_manual { + multi_product.fold((), |(), elt| actual.push(elt)); + } + assert_eq!(answer, actual); + + assert_eq!(answer.into_iter().last(), a.multi_cartesian_product().last()); + } + + fn correct_empty_multi_product() -> () { + let empty = Vec::<std::vec::IntoIter<i32>>::new().into_iter().multi_cartesian_product(); + assert!(correct_size_hint(empty.clone())); + itertools::assert_equal(empty, std::iter::once(Vec::new())) + } + + fn size_multipeek(a: Iter<u16, Exact>, s: u8) -> bool { + let mut it = multipeek(a); + // peek a few times + for _ in 0..s { + it.peek(); + } + exact_size(it) + } + + fn size_peek_nth(a: Iter<u16, Exact>, s: u8) -> bool { + let mut it = peek_nth(a); + // peek a few times + for n in 0..s { + it.peek_nth(n as usize); + } + exact_size(it) + } + + fn equal_merge(mut a: Vec<i16>, mut b: Vec<i16>) -> bool { + a.sort(); + b.sort(); + let mut merged = a.clone(); + merged.extend(b.iter().cloned()); + merged.sort(); + itertools::equal(&merged, a.iter().merge(&b)) + } + fn size_merge(a: Iter<u16>, b: Iter<u16>) -> bool { + correct_size_hint(a.merge(b)) + } + fn size_zip(a: Iter<i16, Exact>, b: Iter<i16, Exact>, c: Iter<i16, Exact>) -> bool { + let filt = a.clone().dedup(); + correct_size_hint(multizip((filt, b.clone(), c.clone()))) && + exact_size(multizip((a, b, c))) + } + fn size_zip_rc(a: Iter<i16>, b: Iter<i16>) -> bool { + let rc = rciter(a); + correct_size_hint(multizip((&rc, &rc, b))) + } + + fn size_zip_macro(a: Iter<i16, Exact>, b: Iter<i16, Exact>, c: Iter<i16, Exact>) -> bool { + let filt = a.clone().dedup(); + correct_size_hint(izip!(filt, b.clone(), c.clone())) && + exact_size(izip!(a, b, c)) + } + fn equal_kmerge(mut a: Vec<i16>, mut b: Vec<i16>, mut c: Vec<i16>) -> bool { + use itertools::free::kmerge; + a.sort(); + b.sort(); + c.sort(); + let mut merged = a.clone(); + merged.extend(b.iter().cloned()); + merged.extend(c.iter().cloned()); + merged.sort(); + itertools::equal(merged.into_iter(), kmerge(vec![a, b, c])) + } + + // Any number of input iterators + fn equal_kmerge_2(mut inputs: Vec<Vec<i16>>) -> bool { + use itertools::free::kmerge; + // sort the inputs + for input in &mut inputs { + input.sort(); + } + let mut merged = inputs.concat(); + merged.sort(); + itertools::equal(merged.into_iter(), kmerge(inputs)) + } + + // Any number of input iterators + fn equal_kmerge_by_ge(mut inputs: Vec<Vec<i16>>) -> bool { + // sort the inputs + for input in &mut inputs { + input.sort(); + input.reverse(); + } + let mut merged = inputs.concat(); + merged.sort(); + merged.reverse(); + itertools::equal(merged.into_iter(), + inputs.into_iter().kmerge_by(|x, y| x >= y)) + } + + // Any number of input iterators + fn equal_kmerge_by_lt(mut inputs: Vec<Vec<i16>>) -> bool { + // sort the inputs + for input in &mut inputs { + input.sort(); + } + let mut merged = inputs.concat(); + merged.sort(); + itertools::equal(merged.into_iter(), + inputs.into_iter().kmerge_by(|x, y| x < y)) + } + + // Any number of input iterators + fn equal_kmerge_by_le(mut inputs: Vec<Vec<i16>>) -> bool { + // sort the inputs + for input in &mut inputs { + input.sort(); + } + let mut merged = inputs.concat(); + merged.sort(); + itertools::equal(merged.into_iter(), + inputs.into_iter().kmerge_by(|x, y| x <= y)) + } + fn size_kmerge(a: Iter<i16>, b: Iter<i16>, c: Iter<i16>) -> bool { + use itertools::free::kmerge; + correct_size_hint(kmerge(vec![a, b, c])) + } + fn equal_zip_eq(a: Vec<i32>, b: Vec<i32>) -> bool { + let len = std::cmp::min(a.len(), b.len()); + let a = &a[..len]; + let b = &b[..len]; + itertools::equal(zip_eq(a, b), zip(a, b)) + } + + #[should_panic] + fn zip_eq_panics(a: Vec<u8>, b: Vec<u8>) -> TestResult { + if a.len() == b.len() { return TestResult::discard(); } + zip_eq(a.iter(), b.iter()).for_each(|_| {}); + TestResult::passed() // won't come here + } + + fn equal_positions(a: Vec<i32>) -> bool { + let with_pos = a.iter().positions(|v| v % 2 == 0); + let without = a.iter().enumerate().filter(|(_, v)| *v % 2 == 0).map(|(i, _)| i); + itertools::equal(with_pos.clone(), without.clone()) + && itertools::equal(with_pos.rev(), without.rev()) + } + fn size_zip_longest(a: Iter<i16, Exact>, b: Iter<i16, Exact>) -> bool { + let filt = a.clone().dedup(); + let filt2 = b.clone().dedup(); + correct_size_hint(filt.zip_longest(b.clone())) && + correct_size_hint(a.clone().zip_longest(filt2)) && + exact_size(a.zip_longest(b)) + } + fn size_2_zip_longest(a: Iter<i16>, b: Iter<i16>) -> bool { + let it = a.clone().zip_longest(b.clone()); + let jt = a.clone().zip_longest(b.clone()); + itertools::equal(a, + it.filter_map(|elt| match elt { + EitherOrBoth::Both(x, _) => Some(x), + EitherOrBoth::Left(x) => Some(x), + _ => None, + } + )) + && + itertools::equal(b, + jt.filter_map(|elt| match elt { + EitherOrBoth::Both(_, y) => Some(y), + EitherOrBoth::Right(y) => Some(y), + _ => None, + } + )) + } + fn size_interleave(a: Iter<i16>, b: Iter<i16>) -> bool { + correct_size_hint(a.interleave(b)) + } + fn exact_interleave(a: Iter<i16, Exact>, b: Iter<i16, Exact>) -> bool { + exact_size_for_this(a.interleave(b)) + } + fn size_interleave_shortest(a: Iter<i16>, b: Iter<i16>) -> bool { + correct_size_hint(a.interleave_shortest(b)) + } + fn exact_interleave_shortest(a: Vec<()>, b: Vec<()>) -> bool { + exact_size_for_this(a.iter().interleave_shortest(&b)) + } + fn size_intersperse(a: Iter<i16>, x: i16) -> bool { + correct_size_hint(a.intersperse(x)) + } + fn equal_intersperse(a: Vec<i32>, x: i32) -> bool { + let mut inter = false; + let mut i = 0; + for elt in a.iter().cloned().intersperse(x) { + if inter { + if elt != x { return false } + } else { + if elt != a[i] { return false } + i += 1; + } + inter = !inter; + } + true + } + + fn equal_combinations_2(a: Vec<u8>) -> bool { + let mut v = Vec::new(); + for (i, x) in enumerate(&a) { + for y in &a[i + 1..] { + v.push((x, y)); + } + } + itertools::equal(a.iter().tuple_combinations::<(_, _)>(), v) + } + + fn collect_tuple_matches_size(a: Iter<i16>) -> bool { + let size = a.clone().count(); + a.collect_tuple::<(_, _, _)>().is_some() == (size == 3) + } + + fn correct_permutations(vals: HashSet<i32>, k: usize) -> () { + // Test permutations only on iterators of distinct integers, to prevent + // false positives. + + const MAX_N: usize = 5; + + let n = min(vals.len(), MAX_N); + let vals: HashSet<i32> = vals.into_iter().take(n).collect(); + + let perms = vals.iter().permutations(k); + + let mut actual = HashSet::new(); + + for perm in perms { + assert_eq!(perm.len(), k); + + let all_items_valid = perm.iter().all(|p| vals.contains(p)); + assert!(all_items_valid, "perm contains value not from input: {:?}", perm); + + // Check that all perm items are distinct + let distinct_len = { + let perm_set: HashSet<_> = perm.iter().collect(); + perm_set.len() + }; + assert_eq!(perm.len(), distinct_len); + + // Check that the perm is new + assert!(actual.insert(perm.clone()), "perm already encountered: {:?}", perm); + } + } + + fn permutations_lexic_order(a: usize, b: usize) -> () { + let a = a % 6; + let b = b % 6; + + let n = max(a, b); + let k = min (a, b); + + let expected_first: Vec<usize> = (0..k).collect(); + let expected_last: Vec<usize> = ((n - k)..n).rev().collect(); + + let mut perms = (0..n).permutations(k); + + let mut curr_perm = match perms.next() { + Some(p) => p, + None => { return; } + }; + + assert_eq!(expected_first, curr_perm); + + for next_perm in perms { + assert!( + next_perm > curr_perm, + "next perm isn't greater-than current; next_perm={:?} curr_perm={:?} n={}", + next_perm, curr_perm, n + ); + + curr_perm = next_perm; + } + + assert_eq!(expected_last, curr_perm); + + } + + fn permutations_count(n: usize, k: usize) -> bool { + let n = n % 6; + + correct_count(|| (0..n).permutations(k)) + } + + fn permutations_size(a: Iter<i32>, k: usize) -> bool { + correct_size_hint(a.take(5).permutations(k)) + } + + fn permutations_k0_yields_once(n: usize) -> () { + let k = 0; + let expected: Vec<Vec<usize>> = vec![vec![]]; + let actual = (0..n).permutations(k).collect_vec(); + + assert_eq!(expected, actual); + } +} + +quickcheck! { + fn correct_peek_nth(mut a: Vec<u16>) -> () { + let mut it = peek_nth(a.clone()); + for start_pos in 0..a.len() + 2 { + for real_idx in start_pos..a.len() + 2 { + let peek_idx = real_idx - start_pos; + assert_eq!(it.peek_nth(peek_idx), a.get(real_idx)); + assert_eq!(it.peek_nth_mut(peek_idx), a.get_mut(real_idx)); + } + assert_eq!(it.next(), a.get(start_pos).copied()); + } + } + + fn peek_nth_mut_replace(a: Vec<u16>, b: Vec<u16>) -> () { + let mut it = peek_nth(a.iter()); + for (i, m) in b.iter().enumerate().take(a.len().min(b.len())) { + *it.peek_nth_mut(i).unwrap() = m; + } + for (i, m) in a.iter().enumerate() { + assert_eq!(it.next().unwrap(), b.get(i).unwrap_or(m)); + } + assert_eq!(it.next(), None); + assert_eq!(it.next(), None); + } + + fn peek_nth_next_if(a: Vec<u8>) -> () { + let mut it = peek_nth(a.clone()); + for (idx, mut value) in a.iter().copied().enumerate() { + let should_be_none = it.next_if(|x| x != &value); + assert_eq!(should_be_none, None); + if value % 5 == 0 { + // Sometimes, peek up to 3 further. + let n = value as usize % 3; + let nth = it.peek_nth(n); + assert_eq!(nth, a.get(idx + n)); + } else if value % 5 == 1 { + // Sometimes, peek next element mutably. + if let Some(v) = it.peek_mut() { + *v = v.wrapping_sub(1); + let should_be_none = it.next_if_eq(&value); + assert_eq!(should_be_none, None); + value = value.wrapping_sub(1); + } + } + let eq = it.next_if_eq(&value); + assert_eq!(eq, Some(value)); + } + } +} + +quickcheck! { + fn dedup_via_coalesce(a: Vec<i32>) -> bool { + let mut b = a.clone(); + b.dedup(); + itertools::equal( + &b, + a + .iter() + .coalesce(|x, y| { + if x==y { + Ok(x) + } else { + Err((x, y)) + } + }) + .fold(vec![], |mut v, n| { + v.push(n); + v + }) + ) + } +} + +quickcheck! { + fn equal_dedup(a: Vec<i32>) -> bool { + let mut b = a.clone(); + b.dedup(); + itertools::equal(&b, a.iter().dedup()) + } +} + +quickcheck! { + fn equal_dedup_by(a: Vec<(i32, i32)>) -> bool { + let mut b = a.clone(); + b.dedup_by(|x, y| x.0==y.0); + itertools::equal(&b, a.iter().dedup_by(|x, y| x.0==y.0)) + } +} + +quickcheck! { + fn size_dedup(a: Vec<i32>) -> bool { + correct_size_hint(a.iter().dedup()) + } +} + +quickcheck! { + fn size_dedup_by(a: Vec<(i32, i32)>) -> bool { + correct_size_hint(a.iter().dedup_by(|x, y| x.0==y.0)) + } +} + +quickcheck! { + fn exact_repeatn((n, x): (usize, i32)) -> bool { + let it = itertools::repeat_n(x, n); + exact_size(it) + } +} + +quickcheck! { + fn size_put_back(a: Vec<u8>, x: Option<u8>) -> bool { + let mut it = put_back(a.into_iter()); + if let Some(t) = x { + it.put_back(t); + } + correct_size_hint(it) + } +} + +quickcheck! { + fn size_put_backn(a: Vec<u8>, b: Vec<u8>) -> bool { + let mut it = put_back_n(a.into_iter()); + for elt in b { + it.put_back(elt) + } + correct_size_hint(it) + } +} + +quickcheck! { + fn merge_join_by_ordering_vs_bool(a: Vec<u8>, b: Vec<u8>) -> bool { + use either::Either; + use itertools::free::merge_join_by; + let mut has_equal = false; + let it_ord = merge_join_by(a.clone(), b.clone(), Ord::cmp).flat_map(|v| match v { + EitherOrBoth::Both(l, r) => { + has_equal = true; + vec![Either::Left(l), Either::Right(r)] + } + EitherOrBoth::Left(l) => vec![Either::Left(l)], + EitherOrBoth::Right(r) => vec![Either::Right(r)], + }); + let it_bool = merge_join_by(a, b, PartialOrd::le); + itertools::equal(it_ord, it_bool) || has_equal + } + fn merge_join_by_bool_unwrapped_is_merge_by(a: Vec<u8>, b: Vec<u8>) -> bool { + use either::Either; + use itertools::free::merge_join_by; + let it = a.clone().into_iter().merge_by(b.clone(), PartialOrd::ge); + let it_join = merge_join_by(a, b, PartialOrd::ge).map(Either::into_inner); + itertools::equal(it, it_join) + } +} + +quickcheck! { + fn size_tee(a: Vec<u8>) -> bool { + let (mut t1, mut t2) = a.iter().tee(); + t1.next(); + t1.next(); + t2.next(); + exact_size(t1) && exact_size(t2) + } +} + +quickcheck! { + fn size_tee_2(a: Vec<u8>) -> bool { + let (mut t1, mut t2) = a.iter().dedup().tee(); + t1.next(); + t1.next(); + t2.next(); + correct_size_hint(t1) && correct_size_hint(t2) + } +} + +quickcheck! { + fn size_take_while_ref(a: Vec<u8>, stop: u8) -> bool { + correct_size_hint(a.iter().take_while_ref(|x| **x != stop)) + } +} + +quickcheck! { + fn equal_partition(a: Vec<i32>) -> bool { + let mut a = a; + let mut ap = a.clone(); + let split_index = itertools::partition(&mut ap, |x| *x >= 0); + let parted = (0..split_index).all(|i| ap[i] >= 0) && + (split_index..a.len()).all(|i| ap[i] < 0); + + a.sort(); + ap.sort(); + parted && (a == ap) + } +} + +quickcheck! { + fn size_combinations(a: Iter<i16>) -> bool { + let it = a.clone().tuple_combinations::<(_, _)>(); + correct_size_hint(it.clone()) && it.count() == binomial(a.count(), 2) + } + + fn exact_size_combinations_1(a: Vec<u8>) -> bool { + let it = a.iter().tuple_combinations::<(_,)>(); + exact_size_for_this(it.clone()) && it.count() == binomial(a.len(), 1) + } + fn exact_size_combinations_2(a: Vec<u8>) -> bool { + let it = a.iter().tuple_combinations::<(_, _)>(); + exact_size_for_this(it.clone()) && it.count() == binomial(a.len(), 2) + } + fn exact_size_combinations_3(mut a: Vec<u8>) -> bool { + a.truncate(15); + let it = a.iter().tuple_combinations::<(_, _, _)>(); + exact_size_for_this(it.clone()) && it.count() == binomial(a.len(), 3) + } +} + +fn binomial(n: usize, k: usize) -> usize { + if k > n { + 0 + } else { + (n - k + 1..=n).product::<usize>() / (1..=k).product::<usize>() + } +} + +quickcheck! { + fn equal_combinations(it: Iter<i16>) -> bool { + let values = it.clone().collect_vec(); + let mut cmb = it.tuple_combinations(); + for i in 0..values.len() { + for j in i+1..values.len() { + let pair = (values[i], values[j]); + if pair != cmb.next().unwrap() { + return false; + } + } + } + cmb.next().is_none() + } +} + +quickcheck! { + fn size_pad_tail(it: Iter<i8>, pad: u8) -> bool { + correct_size_hint(it.clone().pad_using(pad as usize, |_| 0)) && + correct_size_hint(it.dropping(1).rev().pad_using(pad as usize, |_| 0)) + } +} + +quickcheck! { + fn size_pad_tail2(it: Iter<i8, Exact>, pad: u8) -> bool { + exact_size(it.pad_using(pad as usize, |_| 0)) + } +} + +quickcheck! { + fn size_powerset(it: Iter<u8, Exact>) -> bool { + // Powerset cardinality gets large very quickly, limit input to keep test fast. + correct_size_hint(it.take(12).powerset()) + } +} + +quickcheck! { + fn size_duplicates(it: Iter<i8>) -> bool { + correct_size_hint(it.duplicates()) + } +} + +quickcheck! { + fn size_unique(it: Iter<i8>) -> bool { + correct_size_hint(it.unique()) + } + + fn count_unique(it: Vec<i8>, take_first: u8) -> () { + let answer = { + let mut v = it.clone(); + v.sort(); v.dedup(); + v.len() + }; + let mut iter = cloned(&it).unique(); + let first_count = (&mut iter).take(take_first as usize).count(); + let rest_count = iter.count(); + assert_eq!(answer, first_count + rest_count); + } +} + +quickcheck! { + fn fuzz_chunk_by_lazy_1(it: Iter<u8>) -> bool { + let jt = it.clone(); + let chunks = it.chunk_by(|k| *k); + itertools::equal(jt, chunks.into_iter().flat_map(|(_, x)| x)) + } +} + +quickcheck! { + fn fuzz_chunk_by_lazy_2(data: Vec<u8>) -> bool { + let chunks = data.iter().chunk_by(|k| *k / 10); + let res = itertools::equal(data.iter(), chunks.into_iter().flat_map(|(_, x)| x)); + res + } +} + +quickcheck! { + fn fuzz_chunk_by_lazy_3(data: Vec<u8>) -> bool { + let grouper = data.iter().chunk_by(|k| *k / 10); + let chunks = grouper.into_iter().collect_vec(); + let res = itertools::equal(data.iter(), chunks.into_iter().flat_map(|(_, x)| x)); + res + } +} + +quickcheck! { + fn fuzz_chunk_by_lazy_duo(data: Vec<u8>, order: Vec<(bool, bool)>) -> bool { + let grouper = data.iter().chunk_by(|k| *k / 3); + let mut chunks1 = grouper.into_iter(); + let mut chunks2 = grouper.into_iter(); + let mut elts = Vec::<&u8>::new(); + let mut old_chunks = Vec::new(); + + let tup1 = |(_, b)| b; + for &(ord, consume_now) in &order { + let iter = &mut [&mut chunks1, &mut chunks2][ord as usize]; + match iter.next() { + Some((_, gr)) => if consume_now { + for og in old_chunks.drain(..) { + elts.extend(og); + } + elts.extend(gr); + } else { + old_chunks.push(gr); + }, + None => break, + } + } + for og in old_chunks.drain(..) { + elts.extend(og); + } + for gr in chunks1.map(&tup1) { elts.extend(gr); } + for gr in chunks2.map(&tup1) { elts.extend(gr); } + itertools::assert_equal(&data, elts); + true + } +} + +quickcheck! { + fn chunk_clone_equal(a: Vec<u8>, size: u8) -> () { + let mut size = size; + if size == 0 { + size += 1; + } + let it = a.chunks(size as usize); + itertools::assert_equal(it.clone(), it); + } +} + +quickcheck! { + fn equal_chunks_lazy(a: Vec<u8>, size: u8) -> bool { + let mut size = size; + if size == 0 { + size += 1; + } + let chunks = a.iter().chunks(size as usize); + let it = a.chunks(size as usize); + for (a, b) in chunks.into_iter().zip(it) { + if !itertools::equal(a, b) { + return false; + } + } + true + } +} + +// tuple iterators +quickcheck! { + fn equal_circular_tuple_windows_1(a: Vec<u8>) -> bool { + let x = a.iter().map(|e| (e,) ); + let y = a.iter().circular_tuple_windows::<(_,)>(); + itertools::assert_equal(x,y); + true + } + + fn equal_circular_tuple_windows_2(a: Vec<u8>) -> bool { + let x = (0..a.len()).map(|start_idx| ( + &a[start_idx], + &a[(start_idx + 1) % a.len()], + )); + let y = a.iter().circular_tuple_windows::<(_, _)>(); + itertools::assert_equal(x,y); + true + } + + fn equal_circular_tuple_windows_3(a: Vec<u8>) -> bool { + let x = (0..a.len()).map(|start_idx| ( + &a[start_idx], + &a[(start_idx + 1) % a.len()], + &a[(start_idx + 2) % a.len()], + )); + let y = a.iter().circular_tuple_windows::<(_, _, _)>(); + itertools::assert_equal(x,y); + true + } + + fn equal_circular_tuple_windows_4(a: Vec<u8>) -> bool { + let x = (0..a.len()).map(|start_idx| ( + &a[start_idx], + &a[(start_idx + 1) % a.len()], + &a[(start_idx + 2) % a.len()], + &a[(start_idx + 3) % a.len()], + )); + let y = a.iter().circular_tuple_windows::<(_, _, _, _)>(); + itertools::assert_equal(x,y); + true + } + + fn equal_cloned_circular_tuple_windows(a: Vec<u8>) -> bool { + let x = a.iter().circular_tuple_windows::<(_, _, _, _)>(); + let y = x.clone(); + itertools::assert_equal(x,y); + true + } + + fn equal_cloned_circular_tuple_windows_noninitial(a: Vec<u8>) -> bool { + let mut x = a.iter().circular_tuple_windows::<(_, _, _, _)>(); + let _ = x.next(); + let y = x.clone(); + itertools::assert_equal(x,y); + true + } + + fn equal_cloned_circular_tuple_windows_complete(a: Vec<u8>) -> bool { + let mut x = a.iter().circular_tuple_windows::<(_, _, _, _)>(); + for _ in x.by_ref() {} + let y = x.clone(); + itertools::assert_equal(x,y); + true + } + + fn circular_tuple_windows_exact_size(a: Vec<u8>) -> bool { + exact_size(a.iter().circular_tuple_windows::<(_, _, _, _)>()) + } + + fn equal_tuple_windows_1(a: Vec<u8>) -> bool { + let x = a.windows(1).map(|s| (&s[0], )); + let y = a.iter().tuple_windows::<(_,)>(); + itertools::equal(x, y) + } + + fn equal_tuple_windows_2(a: Vec<u8>) -> bool { + let x = a.windows(2).map(|s| (&s[0], &s[1])); + let y = a.iter().tuple_windows::<(_, _)>(); + itertools::equal(x, y) + } + + fn equal_tuple_windows_3(a: Vec<u8>) -> bool { + let x = a.windows(3).map(|s| (&s[0], &s[1], &s[2])); + let y = a.iter().tuple_windows::<(_, _, _)>(); + itertools::equal(x, y) + } + + fn equal_tuple_windows_4(a: Vec<u8>) -> bool { + let x = a.windows(4).map(|s| (&s[0], &s[1], &s[2], &s[3])); + let y = a.iter().tuple_windows::<(_, _, _, _)>(); + itertools::equal(x, y) + } + + fn tuple_windows_exact_size_1(a: Vec<u8>) -> bool { + exact_size(a.iter().tuple_windows::<(_,)>()) + } + + fn tuple_windows_exact_size_4(a: Vec<u8>) -> bool { + exact_size(a.iter().tuple_windows::<(_, _, _, _)>()) + } + + fn equal_tuples_1(a: Vec<u8>) -> bool { + let x = a.chunks(1).map(|s| (&s[0], )); + let y = a.iter().tuples::<(_,)>(); + itertools::equal(x, y) + } + + fn equal_tuples_2(a: Vec<u8>) -> bool { + let x = a.chunks(2).filter(|s| s.len() == 2).map(|s| (&s[0], &s[1])); + let y = a.iter().tuples::<(_, _)>(); + itertools::equal(x, y) + } + + fn equal_tuples_3(a: Vec<u8>) -> bool { + let x = a.chunks(3).filter(|s| s.len() == 3).map(|s| (&s[0], &s[1], &s[2])); + let y = a.iter().tuples::<(_, _, _)>(); + itertools::equal(x, y) + } + + fn equal_tuples_4(a: Vec<u8>) -> bool { + let x = a.chunks(4).filter(|s| s.len() == 4).map(|s| (&s[0], &s[1], &s[2], &s[3])); + let y = a.iter().tuples::<(_, _, _, _)>(); + itertools::equal(x, y) + } + + fn exact_tuple_buffer(a: Vec<u8>) -> bool { + let mut iter = a.iter().tuples::<(_, _, _, _)>(); + (&mut iter).last(); + let buffer = iter.into_buffer(); + assert_eq!(buffer.len(), a.len() % 4); + exact_size(buffer) + } + + fn tuples_size_hint_inexact(a: Iter<u8>) -> bool { + correct_size_hint(a.clone().tuples::<(_,)>()) + && correct_size_hint(a.clone().tuples::<(_, _)>()) + && correct_size_hint(a.tuples::<(_, _, _, _)>()) + } + + fn tuples_size_hint_exact(a: Iter<u8, Exact>) -> bool { + exact_size(a.clone().tuples::<(_,)>()) + && exact_size(a.clone().tuples::<(_, _)>()) + && exact_size(a.tuples::<(_, _, _, _)>()) + } +} + +// with_position +quickcheck! { + fn with_position_exact_size_1(a: Vec<u8>) -> bool { + exact_size_for_this(a.iter().with_position()) + } + fn with_position_exact_size_2(a: Iter<u8, Exact>) -> bool { + exact_size_for_this(a.with_position()) + } +} + +quickcheck! { + fn correct_group_map_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo == 0 { 1 } else { modulo }; // Avoid `% 0` + let count = a.len(); + let lookup = a.into_iter().map(|i| (i % modulo, i)).into_group_map(); + + assert_eq!(lookup.values().flat_map(|vals| vals.iter()).count(), count); + + for (&key, vals) in lookup.iter() { + assert!(vals.iter().all(|&val| val % modulo == key)); + } + } +} + +/// A peculiar type: Equality compares both tuple items, but ordering only the +/// first item. This is so we can check the stability property easily. +#[derive(Clone, Debug, PartialEq, Eq)] +struct Val(u32, u32); + +impl PartialOrd<Self> for Val { + fn partial_cmp(&self, other: &Self) -> Option<Ordering> { + Some(self.cmp(other)) + } +} + +impl Ord for Val { + fn cmp(&self, other: &Self) -> Ordering { + self.0.cmp(&other.0) + } +} + +impl qc::Arbitrary for Val { + fn arbitrary<G: qc::Gen>(g: &mut G) -> Self { + let (x, y) = <(u32, u32)>::arbitrary(g); + Self(x, y) + } + fn shrink(&self) -> Box<dyn Iterator<Item = Self>> { + Box::new((self.0, self.1).shrink().map(|(x, y)| Self(x, y))) + } +} + +quickcheck! { + fn minmax(a: Vec<Val>) -> bool { + use itertools::MinMaxResult; + + + let minmax = a.iter().minmax(); + let expected = match a.len() { + 0 => MinMaxResult::NoElements, + 1 => MinMaxResult::OneElement(&a[0]), + _ => MinMaxResult::MinMax(a.iter().min().unwrap(), + a.iter().max().unwrap()), + }; + minmax == expected + } +} + +quickcheck! { + fn minmax_f64(a: Vec<f64>) -> TestResult { + use itertools::MinMaxResult; + + if a.iter().any(|x| x.is_nan()) { + return TestResult::discard(); + } + + let min = cloned(&a).fold1(f64::min); + let max = cloned(&a).fold1(f64::max); + + let minmax = cloned(&a).minmax(); + let expected = match a.len() { + 0 => MinMaxResult::NoElements, + 1 => MinMaxResult::OneElement(min.unwrap()), + _ => MinMaxResult::MinMax(min.unwrap(), max.unwrap()), + }; + TestResult::from_bool(minmax == expected) + } +} + +quickcheck! { + fn tree_reduce_f64(mut a: Vec<f64>) -> TestResult { + fn collapse_adjacent<F>(x: Vec<f64>, mut f: F) -> Vec<f64> + where F: FnMut(f64, f64) -> f64 + { + let mut out = Vec::new(); + for i in (0..x.len()).step_by(2) { + if i == x.len()-1 { + out.push(x[i]) + } else { + out.push(f(x[i], x[i+1])); + } + } + out + } + + if a.iter().any(|x| x.is_nan()) { + return TestResult::discard(); + } + + let actual = a.iter().cloned().tree_reduce(f64::atan2); + + while a.len() > 1 { + a = collapse_adjacent(a, f64::atan2); + } + let expected = a.pop(); + + TestResult::from_bool(actual == expected) + } +} + +quickcheck! { + fn exactly_one_i32(a: Vec<i32>) -> TestResult { + let ret = a.iter().cloned().exactly_one(); + match a.len() { + 1 => TestResult::from_bool(ret.unwrap() == a[0]), + _ => TestResult::from_bool(ret.unwrap_err().eq(a.iter().cloned())), + } + } +} + +quickcheck! { + fn at_most_one_i32(a: Vec<i32>) -> TestResult { + let ret = a.iter().cloned().at_most_one(); + match a.len() { + 0 => TestResult::from_bool(ret.unwrap().is_none()), + 1 => TestResult::from_bool(ret.unwrap() == Some(a[0])), + _ => TestResult::from_bool(ret.unwrap_err().eq(a.iter().cloned())), + } + } +} + +quickcheck! { + fn consistent_grouping_map_with_by(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo == 0 { 1 } else { modulo }; // Avoid `% 0` + + let lookup_grouping_map = a.iter().copied().map(|i| (i % modulo, i)).into_grouping_map().collect::<Vec<_>>(); + let lookup_grouping_map_by = a.iter().copied().into_grouping_map_by(|i| i % modulo).collect::<Vec<_>>(); + + assert_eq!(lookup_grouping_map, lookup_grouping_map_by); + } + + fn correct_grouping_map_by_aggregate_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo < 2 { 2 } else { modulo } as u64; // Avoid `% 0` + let lookup = a.iter() + .map(|&b| b as u64) // Avoid overflows + .into_grouping_map_by(|i| i % modulo) + .aggregate(|acc, &key, val| { + assert!(val % modulo == key); + if val % (modulo - 1) == 0 { + None + } else { + Some(acc.unwrap_or(0) + val) + } + }); + + let group_map_lookup = a.iter() + .map(|&b| b as u64) + .map(|i| (i % modulo, i)) + .into_group_map() + .into_iter() + .filter_map(|(key, vals)| { + vals.into_iter().fold(None, |acc, val| { + if val % (modulo - 1) == 0 { + None + } else { + Some(acc.unwrap_or(0) + val) + } + }).map(|new_val| (key, new_val)) + }) + .collect::<HashMap<_,_>>(); + assert_eq!(lookup, group_map_lookup); + + for m in 0..modulo { + assert_eq!( + lookup.get(&m).copied(), + a.iter() + .map(|&b| b as u64) + .filter(|&val| val % modulo == m) + .fold(None, |acc, val| { + if val % (modulo - 1) == 0 { + None + } else { + Some(acc.unwrap_or(0) + val) + } + }) + ); + } + } + + fn correct_grouping_map_by_fold_with_modulo_key(a: Vec<u8>, modulo: u8) -> () { + #[derive(Debug, Default, PartialEq)] + struct Accumulator { + acc: u64, + } + + let modulo = if modulo == 0 { 1 } else { modulo } as u64; // Avoid `% 0` + let lookup = a.iter().map(|&b| b as u64) // Avoid overflows + .into_grouping_map_by(|i| i % modulo) + .fold_with(|_key, _val| Default::default(), |Accumulator { acc }, &key, val| { + assert!(val % modulo == key); + let acc = acc + val; + Accumulator { acc } + }); + + let group_map_lookup = a.iter() + .map(|&b| b as u64) + .map(|i| (i % modulo, i)) + .into_group_map() + .into_iter() + .map(|(key, vals)| (key, vals.into_iter().sum())).map(|(key, acc)| (key,Accumulator { acc })) + .collect::<HashMap<_,_>>(); + assert_eq!(lookup, group_map_lookup); + + for (&key, &Accumulator { acc: sum }) in lookup.iter() { + assert_eq!(sum, a.iter().map(|&b| b as u64).filter(|&val| val % modulo == key).sum::<u64>()); + } + } + + fn correct_grouping_map_by_fold_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo == 0 { 1 } else { modulo } as u64; // Avoid `% 0` + let lookup = a.iter().map(|&b| b as u64) // Avoid overflows + .into_grouping_map_by(|i| i % modulo) + .fold(0u64, |acc, &key, val| { + assert!(val % modulo == key); + acc + val + }); + + let group_map_lookup = a.iter() + .map(|&b| b as u64) + .map(|i| (i % modulo, i)) + .into_group_map() + .into_iter() + .map(|(key, vals)| (key, vals.into_iter().sum())) + .collect::<HashMap<_,_>>(); + assert_eq!(lookup, group_map_lookup); + + for (&key, &sum) in lookup.iter() { + assert_eq!(sum, a.iter().map(|&b| b as u64).filter(|&val| val % modulo == key).sum::<u64>()); + } + } + + fn correct_grouping_map_by_reduce_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo == 0 { 1 } else { modulo } as u64; // Avoid `% 0` + let lookup = a.iter().map(|&b| b as u64) // Avoid overflows + .into_grouping_map_by(|i| i % modulo) + .reduce(|acc, &key, val| { + assert!(val % modulo == key); + acc + val + }); + + let group_map_lookup = a.iter() + .map(|&b| b as u64) + .map(|i| (i % modulo, i)) + .into_group_map() + .into_iter() + .map(|(key, vals)| (key, vals.into_iter().reduce(|acc, val| acc + val).unwrap())) + .collect::<HashMap<_,_>>(); + assert_eq!(lookup, group_map_lookup); + + for (&key, &sum) in lookup.iter() { + assert_eq!(sum, a.iter().map(|&b| b as u64).filter(|&val| val % modulo == key).sum::<u64>()); + } + } + + fn correct_grouping_map_by_collect_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo == 0 { 1 } else { modulo }; // Avoid `% 0` + let lookup_grouping_map = a.iter().copied().into_grouping_map_by(|i| i % modulo).collect::<Vec<_>>(); + let lookup_group_map = a.iter().copied().map(|i| (i % modulo, i)).into_group_map(); + + assert_eq!(lookup_grouping_map, lookup_group_map); + } + + fn correct_grouping_map_by_max_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo == 0 { 1 } else { modulo }; // Avoid `% 0` + let lookup = a.iter().copied().into_grouping_map_by(|i| i % modulo).max(); + + let group_map_lookup = a.iter().copied() + .map(|i| (i % modulo, i)) + .into_group_map() + .into_iter() + .map(|(key, vals)| (key, vals.into_iter().max().unwrap())) + .collect::<HashMap<_,_>>(); + assert_eq!(lookup, group_map_lookup); + + for (&key, &max) in lookup.iter() { + assert_eq!(Some(max), a.iter().copied().filter(|&val| val % modulo == key).max()); + } + } + + fn correct_grouping_map_by_max_by_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo == 0 { 1 } else { modulo }; // Avoid `% 0` + let lookup = a.iter().copied().into_grouping_map_by(|i| i % modulo).max_by(|_, v1, v2| v1.cmp(v2)); + + let group_map_lookup = a.iter().copied() + .map(|i| (i % modulo, i)) + .into_group_map() + .into_iter() + .map(|(key, vals)| (key, vals.into_iter().max_by(|v1, v2| v1.cmp(v2)).unwrap())) + .collect::<HashMap<_,_>>(); + assert_eq!(lookup, group_map_lookup); + + for (&key, &max) in lookup.iter() { + assert_eq!(Some(max), a.iter().copied().filter(|&val| val % modulo == key).max_by(|v1, v2| v1.cmp(v2))); + } + } + + fn correct_grouping_map_by_max_by_key_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo == 0 { 1 } else { modulo }; // Avoid `% 0` + let lookup = a.iter().copied().into_grouping_map_by(|i| i % modulo).max_by_key(|_, &val| val); + + let group_map_lookup = a.iter().copied() + .map(|i| (i % modulo, i)) + .into_group_map() + .into_iter() + .map(|(key, vals)| (key, vals.into_iter().max_by_key(|&val| val).unwrap())) + .collect::<HashMap<_,_>>(); + assert_eq!(lookup, group_map_lookup); + + for (&key, &max) in lookup.iter() { + assert_eq!(Some(max), a.iter().copied().filter(|&val| val % modulo == key).max_by_key(|&val| val)); + } + } + + fn correct_grouping_map_by_min_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo == 0 { 1 } else { modulo }; // Avoid `% 0` + let lookup = a.iter().copied().into_grouping_map_by(|i| i % modulo).min(); + + let group_map_lookup = a.iter().copied() + .map(|i| (i % modulo, i)) + .into_group_map() + .into_iter() + .map(|(key, vals)| (key, vals.into_iter().min().unwrap())) + .collect::<HashMap<_,_>>(); + assert_eq!(lookup, group_map_lookup); + + for (&key, &min) in lookup.iter() { + assert_eq!(Some(min), a.iter().copied().filter(|&val| val % modulo == key).min()); + } + } + + fn correct_grouping_map_by_min_by_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo == 0 { 1 } else { modulo }; // Avoid `% 0` + let lookup = a.iter().copied().into_grouping_map_by(|i| i % modulo).min_by(|_, v1, v2| v1.cmp(v2)); + + let group_map_lookup = a.iter().copied() + .map(|i| (i % modulo, i)) + .into_group_map() + .into_iter() + .map(|(key, vals)| (key, vals.into_iter().min_by(|v1, v2| v1.cmp(v2)).unwrap())) + .collect::<HashMap<_,_>>(); + assert_eq!(lookup, group_map_lookup); + + for (&key, &min) in lookup.iter() { + assert_eq!(Some(min), a.iter().copied().filter(|&val| val % modulo == key).min_by(|v1, v2| v1.cmp(v2))); + } + } + + fn correct_grouping_map_by_min_by_key_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo == 0 { 1 } else { modulo }; // Avoid `% 0` + let lookup = a.iter().copied().into_grouping_map_by(|i| i % modulo).min_by_key(|_, &val| val); + + let group_map_lookup = a.iter().copied() + .map(|i| (i % modulo, i)) + .into_group_map() + .into_iter() + .map(|(key, vals)| (key, vals.into_iter().min_by_key(|&val| val).unwrap())) + .collect::<HashMap<_,_>>(); + assert_eq!(lookup, group_map_lookup); + + for (&key, &min) in lookup.iter() { + assert_eq!(Some(min), a.iter().copied().filter(|&val| val % modulo == key).min_by_key(|&val| val)); + } + } + + fn correct_grouping_map_by_minmax_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo == 0 { 1 } else { modulo }; // Avoid `% 0` + let lookup = a.iter().copied().into_grouping_map_by(|i| i % modulo).minmax(); + + let group_map_lookup = a.iter().copied() + .map(|i| (i % modulo, i)) + .into_group_map() + .into_iter() + .map(|(key, vals)| (key, vals.into_iter().minmax())) + .collect::<HashMap<_,_>>(); + assert_eq!(lookup, group_map_lookup); + + for (&key, &minmax) in lookup.iter() { + assert_eq!(minmax, a.iter().copied().filter(|&val| val % modulo == key).minmax()); + } + } + + fn correct_grouping_map_by_minmax_by_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo == 0 { 1 } else { modulo }; // Avoid `% 0` + let lookup = a.iter().copied().into_grouping_map_by(|i| i % modulo).minmax_by(|_, v1, v2| v1.cmp(v2)); + + let group_map_lookup = a.iter().copied() + .map(|i| (i % modulo, i)) + .into_group_map() + .into_iter() + .map(|(key, vals)| (key, vals.into_iter().minmax_by(|v1, v2| v1.cmp(v2)))) + .collect::<HashMap<_,_>>(); + assert_eq!(lookup, group_map_lookup); + + for (&key, &minmax) in lookup.iter() { + assert_eq!(minmax, a.iter().copied().filter(|&val| val % modulo == key).minmax_by(|v1, v2| v1.cmp(v2))); + } + } + + fn correct_grouping_map_by_minmax_by_key_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo == 0 { 1 } else { modulo }; // Avoid `% 0` + let lookup = a.iter().copied().into_grouping_map_by(|i| i % modulo).minmax_by_key(|_, &val| val); + + let group_map_lookup = a.iter().copied() + .map(|i| (i % modulo, i)) + .into_group_map() + .into_iter() + .map(|(key, vals)| (key, vals.into_iter().minmax_by_key(|&val| val))) + .collect::<HashMap<_,_>>(); + assert_eq!(lookup, group_map_lookup); + + for (&key, &minmax) in lookup.iter() { + assert_eq!(minmax, a.iter().copied().filter(|&val| val % modulo == key).minmax_by_key(|&val| val)); + } + } + + fn correct_grouping_map_by_sum_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = if modulo == 0 { 1 } else { modulo } as u64; // Avoid `% 0` + let lookup = a.iter().map(|&b| b as u64) // Avoid overflows + .into_grouping_map_by(|i| i % modulo) + .sum(); + + let group_map_lookup = a.iter().map(|&b| b as u64) + .map(|i| (i % modulo, i)) + .into_group_map() + .into_iter() + .map(|(key, vals)| (key, vals.into_iter().sum())) + .collect::<HashMap<_,_>>(); + assert_eq!(lookup, group_map_lookup); + + for (&key, &sum) in lookup.iter() { + assert_eq!(sum, a.iter().map(|&b| b as u64).filter(|&val| val % modulo == key).sum::<u64>()); + } + } + + fn correct_grouping_map_by_product_modulo_key(a: Vec<u8>, modulo: u8) -> () { + let modulo = Wrapping(if modulo == 0 { 1 } else { modulo } as u64); // Avoid `% 0` + let lookup = a.iter().map(|&b| Wrapping(b as u64)) // Avoid overflows + .into_grouping_map_by(|i| i % modulo) + .product(); + + let group_map_lookup = a.iter().map(|&b| Wrapping(b as u64)) + .map(|i| (i % modulo, i)) + .into_group_map() + .into_iter() + .map(|(key, vals)| (key, vals.into_iter().product::<Wrapping<u64>>())) + .collect::<HashMap<_,_>>(); + assert_eq!(lookup, group_map_lookup); + + for (&key, &prod) in lookup.iter() { + assert_eq!( + prod, + a.iter() + .map(|&b| Wrapping(b as u64)) + .filter(|&val| val % modulo == key) + .product::<Wrapping<u64>>() + ); + } + } + + // This should check that if multiple elements are equally minimum or maximum + // then `max`, `min` and `minmax` pick the first minimum and the last maximum. + // This is to be consistent with `std::iter::max` and `std::iter::min`. + fn correct_grouping_map_by_min_max_minmax_order_modulo_key() -> () { + use itertools::MinMaxResult; + + let lookup = (0..=10) + .into_grouping_map_by(|_| 0) + .max_by(|_, _, _| Ordering::Equal); + + assert_eq!(lookup[&0], 10); + + let lookup = (0..=10) + .into_grouping_map_by(|_| 0) + .min_by(|_, _, _| Ordering::Equal); + + assert_eq!(lookup[&0], 0); + + let lookup = (0..=10) + .into_grouping_map_by(|_| 0) + .minmax_by(|_, _, _| Ordering::Equal); + + assert_eq!(lookup[&0], MinMaxResult::MinMax(0, 10)); + } +} + +quickcheck! { + fn counts(nums: Vec<isize>) -> TestResult { + let counts = nums.iter().counts(); + for (&item, &count) in counts.iter() { + #[allow(clippy::absurd_extreme_comparisons)] + if count <= 0 { + return TestResult::failed(); + } + if count != nums.iter().filter(|&x| x == item).count() { + return TestResult::failed(); + } + } + for item in nums.iter() { + if !counts.contains_key(item) { + return TestResult::failed(); + } + } + TestResult::passed() + } +} + +quickcheck! { + fn test_double_ended_zip_2(a: Vec<u8>, b: Vec<u8>) -> TestResult { + let mut x = + multizip((a.clone().into_iter(), b.clone().into_iter())) + .collect_vec(); + x.reverse(); + + let y = + multizip((a.into_iter(), b.into_iter())) + .rfold(Vec::new(), |mut vec, e| { vec.push(e); vec }); + + TestResult::from_bool(itertools::equal(x, y)) + } + + fn test_double_ended_zip_3(a: Vec<u8>, b: Vec<u8>, c: Vec<u8>) -> TestResult { + let mut x = + multizip((a.clone().into_iter(), b.clone().into_iter(), c.clone().into_iter())) + .collect_vec(); + x.reverse(); + + let y = + multizip((a.into_iter(), b.into_iter(), c.into_iter())) + .rfold(Vec::new(), |mut vec, e| { vec.push(e); vec }); + + TestResult::from_bool(itertools::equal(x, y)) + } +} + +fn is_fused<I: Iterator>(mut it: I) -> bool { + for _ in it.by_ref() {} + for _ in 0..10 { + if it.next().is_some() { + return false; + } + } + true +} + +quickcheck! { + fn fused_combination(a: Iter<i16>) -> bool + { + is_fused(a.clone().combinations(1)) && + is_fused(a.combinations(3)) + } + + fn fused_combination_with_replacement(a: Iter<i16>) -> bool + { + is_fused(a.clone().combinations_with_replacement(1)) && + is_fused(a.combinations_with_replacement(3)) + } + + fn fused_tuple_combination(a: Iter<i16>) -> bool + { + is_fused(a.clone().fuse().tuple_combinations::<(_,)>()) && + is_fused(a.fuse().tuple_combinations::<(_,_,_)>()) + } + + fn fused_unique(a: Iter<i16>) -> bool + { + is_fused(a.fuse().unique()) + } + + fn fused_unique_by(a: Iter<i16>) -> bool + { + is_fused(a.fuse().unique_by(|x| x % 100)) + } + + fn fused_interleave_shortest(a: Iter<i16>, b: Iter<i16>) -> bool + { + !is_fused(a.clone().interleave_shortest(b.clone())) && + is_fused(a.fuse().interleave_shortest(b.fuse())) + } + + fn fused_product(a: Iter<i16>, b: Iter<i16>) -> bool + { + is_fused(a.fuse().cartesian_product(b.fuse())) + } + + fn fused_merge(a: Iter<i16>, b: Iter<i16>) -> bool + { + is_fused(a.fuse().merge(b.fuse())) + } + + fn fused_filter_ok(a: Iter<i16>) -> bool + { + is_fused(a.map(|x| if x % 2 == 0 {Ok(x)} else {Err(x)} ) + .filter_ok(|x| x % 3 == 0) + .fuse()) + } + + fn fused_filter_map_ok(a: Iter<i16>) -> bool + { + is_fused(a.map(|x| if x % 2 == 0 {Ok(x)} else {Err(x)} ) + .filter_map_ok(|x| if x % 3 == 0 {Some(x / 3)} else {None}) + .fuse()) + } + + fn fused_positions(a: Iter<i16>) -> bool + { + !is_fused(a.clone().positions(|x|x%2==0)) && + is_fused(a.fuse().positions(|x|x%2==0)) + } + + fn fused_update(a: Iter<i16>) -> bool + { + !is_fused(a.clone().update(|x|*x+=1)) && + is_fused(a.fuse().update(|x|*x+=1)) + } + + fn fused_tuple_windows(a: Iter<i16>) -> bool + { + is_fused(a.fuse().tuple_windows::<(_,_)>()) + } + + fn fused_pad_using(a: Iter<i16>) -> bool + { + is_fused(a.fuse().pad_using(100,|_|0)) + } +} + +quickcheck! { + fn min_set_contains_min(a: Vec<(usize, char)>) -> bool { + let result_set = a.iter().min_set(); + if let Some(result_element) = a.iter().min() { + result_set.contains(&result_element) + } else { + result_set.is_empty() + } + } + + fn min_set_by_contains_min(a: Vec<(usize, char)>) -> bool { + let compare = |x: &&(usize, char), y: &&(usize, char)| x.1.cmp(&y.1); + let result_set = a.iter().min_set_by(compare); + if let Some(result_element) = a.iter().min_by(compare) { + result_set.contains(&result_element) + } else { + result_set.is_empty() + } + } + + fn min_set_by_key_contains_min(a: Vec<(usize, char)>) -> bool { + let key = |x: &&(usize, char)| x.1; + let result_set = a.iter().min_set_by_key(&key); + if let Some(result_element) = a.iter().min_by_key(&key) { + result_set.contains(&result_element) + } else { + result_set.is_empty() + } + } + + fn max_set_contains_max(a: Vec<(usize, char)>) -> bool { + let result_set = a.iter().max_set(); + if let Some(result_element) = a.iter().max() { + result_set.contains(&result_element) + } else { + result_set.is_empty() + } + } + + fn max_set_by_contains_max(a: Vec<(usize, char)>) -> bool { + let compare = |x: &&(usize, char), y: &&(usize, char)| x.1.cmp(&y.1); + let result_set = a.iter().max_set_by(compare); + if let Some(result_element) = a.iter().max_by(compare) { + result_set.contains(&result_element) + } else { + result_set.is_empty() + } + } + + fn max_set_by_key_contains_max(a: Vec<(usize, char)>) -> bool { + let key = |x: &&(usize, char)| x.1; + let result_set = a.iter().max_set_by_key(&key); + if let Some(result_element) = a.iter().max_by_key(&key) { + result_set.contains(&result_element) + } else { + result_set.is_empty() + } + } + + fn tail(v: Vec<i32>, n: u8) -> bool { + let n = n as usize; + let result = &v[v.len().saturating_sub(n)..]; + itertools::equal(v.iter().tail(n), result) + && itertools::equal(v.iter().filter(|_| true).tail(n), result) + } +} diff --git a/vendor/itertools/tests/specializations.rs b/vendor/itertools/tests/specializations.rs new file mode 100644 index 00000000..e6694c8e --- /dev/null +++ b/vendor/itertools/tests/specializations.rs @@ -0,0 +1,603 @@ +//! Test specializations of methods with default impls match the behavior of the +//! default impls. +//! +//! **NOTE:** Due to performance limitations, these tests are not run with miri! +//! They cannot be relied upon to discover soundness issues. + +#![cfg(not(miri))] +#![allow(unstable_name_collisions)] + +use itertools::Itertools; +use quickcheck::Arbitrary; +use quickcheck::{quickcheck, TestResult}; +use rand::Rng; +use std::fmt::Debug; + +struct Unspecialized<I>(I); + +impl<I> Iterator for Unspecialized<I> +where + I: Iterator, +{ + type Item = I::Item; + + #[inline(always)] + fn next(&mut self) -> Option<Self::Item> { + self.0.next() + } +} + +impl<I> DoubleEndedIterator for Unspecialized<I> +where + I: DoubleEndedIterator, +{ + #[inline(always)] + fn next_back(&mut self) -> Option<Self::Item> { + self.0.next_back() + } +} + +fn test_specializations<I>(it: &I) +where + I::Item: Eq + Debug + Clone, + I: Iterator + Clone, +{ + macro_rules! check_specialized { + ($src:expr, |$it:pat| $closure:expr) => { + // Many iterators special-case the first elements, so we test specializations for iterators that have already been advanced. + let mut src = $src.clone(); + for _ in 0..5 { + let $it = src.clone(); + let v1 = $closure; + let $it = Unspecialized(src.clone()); + let v2 = $closure; + assert_eq!(v1, v2); + src.next(); + } + } + } + check_specialized!(it, |i| i.count()); + check_specialized!(it, |i| i.last()); + check_specialized!(it, |i| i.collect::<Vec<_>>()); + check_specialized!(it, |i| { + let mut parameters_from_fold = vec![]; + let fold_result = i.fold(vec![], |mut acc, v: I::Item| { + parameters_from_fold.push((acc.clone(), v.clone())); + acc.push(v); + acc + }); + (parameters_from_fold, fold_result) + }); + check_specialized!(it, |mut i| { + let mut parameters_from_all = vec![]; + let first = i.next(); + let all_result = i.all(|x| { + parameters_from_all.push(x.clone()); + Some(x) == first + }); + (parameters_from_all, all_result) + }); + let size = it.clone().count(); + for n in 0..size + 2 { + check_specialized!(it, |mut i| i.nth(n)); + } + // size_hint is a bit harder to check + let mut it_sh = it.clone(); + for n in 0..size + 2 { + let len = it_sh.clone().count(); + let (min, max) = it_sh.size_hint(); + assert_eq!(size - n.min(size), len); + assert!(min <= len); + if let Some(max) = max { + assert!(len <= max); + } + it_sh.next(); + } +} + +fn test_double_ended_specializations<I>(it: &I) +where + I::Item: Eq + Debug + Clone, + I: DoubleEndedIterator + Clone, +{ + macro_rules! check_specialized { + ($src:expr, |$it:pat| $closure:expr) => { + // Many iterators special-case the first elements, so we test specializations for iterators that have already been advanced. + let mut src = $src.clone(); + for step in 0..8 { + let $it = src.clone(); + let v1 = $closure; + let $it = Unspecialized(src.clone()); + let v2 = $closure; + assert_eq!(v1, v2); + if step % 2 == 0 { + src.next(); + } else { + src.next_back(); + } + } + } + } + check_specialized!(it, |i| { + let mut parameters_from_rfold = vec![]; + let rfold_result = i.rfold(vec![], |mut acc, v: I::Item| { + parameters_from_rfold.push((acc.clone(), v.clone())); + acc.push(v); + acc + }); + (parameters_from_rfold, rfold_result) + }); + let size = it.clone().count(); + for n in 0..size + 2 { + check_specialized!(it, |mut i| i.nth_back(n)); + } +} + +quickcheck! { + fn interleave(v: Vec<u8>, w: Vec<u8>) -> () { + test_specializations(&v.iter().interleave(w.iter())); + } + + fn interleave_shortest(v: Vec<u8>, w: Vec<u8>) -> () { + test_specializations(&v.iter().interleave_shortest(w.iter())); + } + + fn batching(v: Vec<u8>) -> () { + test_specializations(&v.iter().batching(Iterator::next)); + } + + fn tuple_windows(v: Vec<u8>) -> () { + test_specializations(&v.iter().tuple_windows::<(_,)>()); + test_specializations(&v.iter().tuple_windows::<(_, _)>()); + test_specializations(&v.iter().tuple_windows::<(_, _, _)>()); + } + + fn circular_tuple_windows(v: Vec<u8>) -> () { + test_specializations(&v.iter().circular_tuple_windows::<(_,)>()); + test_specializations(&v.iter().circular_tuple_windows::<(_, _)>()); + test_specializations(&v.iter().circular_tuple_windows::<(_, _, _)>()); + } + + fn tuples(v: Vec<u8>) -> () { + test_specializations(&v.iter().tuples::<(_,)>()); + test_specializations(&v.iter().tuples::<(_, _)>()); + test_specializations(&v.iter().tuples::<(_, _, _)>()); + } + + fn cartesian_product(a: Vec<u8>, b: Vec<u8>) -> TestResult { + if a.len() * b.len() > 100 { + return TestResult::discard(); + } + test_specializations(&a.iter().cartesian_product(&b)); + TestResult::passed() + } + + fn multi_cartesian_product(a: Vec<u8>, b: Vec<u8>, c: Vec<u8>) -> TestResult { + if a.len() * b.len() * c.len() > 100 { + return TestResult::discard(); + } + test_specializations(&vec![a, b, c].into_iter().multi_cartesian_product()); + TestResult::passed() + } + + fn coalesce(v: Vec<u8>) -> () { + test_specializations(&v.iter().coalesce(|x, y| if x == y { Ok(x) } else { Err((x, y)) })) + } + + fn dedup(v: Vec<u8>) -> () { + test_specializations(&v.iter().dedup()) + } + + fn dedup_by(v: Vec<u8>) -> () { + test_specializations(&v.iter().dedup_by(PartialOrd::ge)) + } + + fn dedup_with_count(v: Vec<u8>) -> () { + test_specializations(&v.iter().dedup_with_count()) + } + + fn dedup_by_with_count(v: Vec<u8>) -> () { + test_specializations(&v.iter().dedup_by_with_count(PartialOrd::ge)) + } + + fn duplicates(v: Vec<u8>) -> () { + let it = v.iter().duplicates(); + test_specializations(&it); + test_double_ended_specializations(&it); + } + + fn duplicates_by(v: Vec<u8>) -> () { + let it = v.iter().duplicates_by(|x| *x % 10); + test_specializations(&it); + test_double_ended_specializations(&it); + } + + fn unique(v: Vec<u8>) -> () { + let it = v.iter().unique(); + test_specializations(&it); + test_double_ended_specializations(&it); + } + + fn unique_by(v: Vec<u8>) -> () { + let it = v.iter().unique_by(|x| *x % 50); + test_specializations(&it); + test_double_ended_specializations(&it); + } + + fn take_while_inclusive(v: Vec<u8>) -> () { + test_specializations(&v.iter().copied().take_while_inclusive(|&x| x < 100)); + } + + fn while_some(v: Vec<u8>) -> () { + test_specializations(&v.iter().map(|&x| if x < 100 { Some(2 * x) } else { None }).while_some()); + } + + fn pad_using(v: Vec<u8>) -> () { + use std::convert::TryFrom; + let it = v.iter().copied().pad_using(10, |i| u8::try_from(5 * i).unwrap_or(u8::MAX)); + test_specializations(&it); + test_double_ended_specializations(&it); + } + + fn with_position(v: Vec<u8>) -> () { + test_specializations(&v.iter().with_position()); + } + + fn positions(v: Vec<u8>) -> () { + let it = v.iter().positions(|x| x % 5 == 0); + test_specializations(&it); + test_double_ended_specializations(&it); + } + + fn update(v: Vec<u8>) -> () { + let it = v.iter().copied().update(|x| *x = x.wrapping_mul(7)); + test_specializations(&it); + test_double_ended_specializations(&it); + } + + fn tuple_combinations(v: Vec<u8>) -> TestResult { + if v.len() > 10 { + return TestResult::discard(); + } + test_specializations(&v.iter().tuple_combinations::<(_,)>()); + test_specializations(&v.iter().tuple_combinations::<(_, _)>()); + test_specializations(&v.iter().tuple_combinations::<(_, _, _)>()); + TestResult::passed() + } + + fn intersperse(v: Vec<u8>) -> () { + test_specializations(&v.into_iter().intersperse(0)); + } + + fn intersperse_with(v: Vec<u8>) -> () { + test_specializations(&v.into_iter().intersperse_with(|| 0)); + } + + fn array_combinations(v: Vec<u8>) -> TestResult { + if v.len() > 10 { + return TestResult::discard(); + } + test_specializations(&v.iter().array_combinations::<1>()); + test_specializations(&v.iter().array_combinations::<2>()); + test_specializations(&v.iter().array_combinations::<3>()); + TestResult::passed() + } + + fn combinations(a: Vec<u8>, n: u8) -> TestResult { + if n > 3 || a.len() > 8 { + return TestResult::discard(); + } + test_specializations(&a.iter().combinations(n as usize)); + TestResult::passed() + } + + fn combinations_with_replacement(a: Vec<u8>, n: u8) -> TestResult { + if n > 3 || a.len() > 7 { + return TestResult::discard(); + } + test_specializations(&a.iter().combinations_with_replacement(n as usize)); + TestResult::passed() + } + + fn permutations(a: Vec<u8>, n: u8) -> TestResult { + if n > 3 || a.len() > 8 { + return TestResult::discard(); + } + test_specializations(&a.iter().permutations(n as usize)); + TestResult::passed() + } + + fn powerset(a: Vec<u8>) -> TestResult { + if a.len() > 6 { + return TestResult::discard(); + } + test_specializations(&a.iter().powerset()); + TestResult::passed() + } + + fn zip_longest(a: Vec<u8>, b: Vec<u8>) -> () { + let it = a.into_iter().zip_longest(b); + test_specializations(&it); + test_double_ended_specializations(&it); + } + + fn zip_eq(a: Vec<u8>) -> () { + test_specializations(&a.iter().zip_eq(a.iter().rev())) + } + + fn multizip(a: Vec<u8>) -> () { + let it = itertools::multizip((a.iter(), a.iter().rev(), a.iter().take(50))); + test_specializations(&it); + test_double_ended_specializations(&it); + } + + fn izip(a: Vec<u8>, b: Vec<u8>) -> () { + test_specializations(&itertools::izip!(b.iter(), a, b.iter().rev())); + } + + fn iproduct(a: Vec<u8>, b: Vec<u8>, c: Vec<u8>) -> TestResult { + if a.len() * b.len() * c.len() > 200 { + return TestResult::discard(); + } + test_specializations(&itertools::iproduct!(a, b.iter(), c)); + TestResult::passed() + } + + fn repeat_n(element: i8, n: u8) -> () { + let it = itertools::repeat_n(element, n as usize); + test_specializations(&it); + test_double_ended_specializations(&it); + } + + fn exactly_one_error(v: Vec<u8>) -> TestResult { + // Use `at_most_one` would be similar. + match v.iter().exactly_one() { + Ok(_) => TestResult::discard(), + Err(it) => { + test_specializations(&it); + TestResult::passed() + } + } + } +} + +quickcheck! { + fn put_back_qc(test_vec: Vec<i32>) -> () { + test_specializations(&itertools::put_back(test_vec.iter())); + let mut pb = itertools::put_back(test_vec.into_iter()); + pb.put_back(1); + test_specializations(&pb); + } + + fn put_back_n(v: Vec<u8>, n: u8) -> () { + let mut it = itertools::put_back_n(v); + for k in 0..n { + it.put_back(k); + } + test_specializations(&it); + } + + fn multipeek(v: Vec<u8>, n: u8) -> () { + let mut it = v.into_iter().multipeek(); + for _ in 0..n { + it.peek(); + } + test_specializations(&it); + } + + fn peek_nth_with_peek(v: Vec<u8>, n: u8) -> () { + let mut it = itertools::peek_nth(v); + for _ in 0..n { + it.peek(); + } + test_specializations(&it); + } + + fn peek_nth_with_peek_nth(v: Vec<u8>, n: u8) -> () { + let mut it = itertools::peek_nth(v); + it.peek_nth(n as usize); + test_specializations(&it); + } + + fn peek_nth_with_peek_mut(v: Vec<u8>, n: u8) -> () { + let mut it = itertools::peek_nth(v); + for _ in 0..n { + if let Some(x) = it.peek_mut() { + *x = x.wrapping_add(50); + } + } + test_specializations(&it); + } + + fn peek_nth_with_peek_nth_mut(v: Vec<u8>, n: u8) -> () { + let mut it = itertools::peek_nth(v); + if let Some(x) = it.peek_nth_mut(n as usize) { + *x = x.wrapping_add(50); + } + test_specializations(&it); + } +} + +quickcheck! { + fn merge(a: Vec<u8>, b: Vec<u8>) -> () { + test_specializations(&a.into_iter().merge(b)) + } + + fn merge_by(a: Vec<u8>, b: Vec<u8>) -> () { + test_specializations(&a.into_iter().merge_by(b, PartialOrd::ge)) + } + + fn merge_join_by_ordering(i1: Vec<u8>, i2: Vec<u8>) -> () { + test_specializations(&i1.into_iter().merge_join_by(i2, Ord::cmp)); + } + + fn merge_join_by_bool(i1: Vec<u8>, i2: Vec<u8>) -> () { + test_specializations(&i1.into_iter().merge_join_by(i2, PartialOrd::ge)); + } + + fn kmerge(a: Vec<i8>, b: Vec<i8>, c: Vec<i8>) -> () { + test_specializations(&vec![a, b, c] + .into_iter() + .map(|v| v.into_iter().sorted()) + .kmerge()); + } + + fn kmerge_by(a: Vec<i8>, b: Vec<i8>, c: Vec<i8>) -> () { + test_specializations(&vec![a, b, c] + .into_iter() + .map(|v| v.into_iter().sorted_by_key(|a| a.abs())) + .kmerge_by(|a, b| a.abs() < b.abs())); + } +} + +quickcheck! { + fn map_into(v: Vec<u8>) -> () { + let it = v.into_iter().map_into::<u32>(); + test_specializations(&it); + test_double_ended_specializations(&it); + } + + fn map_ok(v: Vec<Result<u8, char>>) -> () { + let it = v.into_iter().map_ok(|u| u.checked_add(1)); + test_specializations(&it); + test_double_ended_specializations(&it); + } + + fn filter_ok(v: Vec<Result<u8, char>>) -> () { + let it = v.into_iter().filter_ok(|&i| i < 20); + test_specializations(&it); + test_double_ended_specializations(&it); + } + + fn filter_map_ok(v: Vec<Result<u8, char>>) -> () { + let it = v.into_iter().filter_map_ok(|i| if i < 20 { Some(i * 2) } else { None }); + test_specializations(&it); + test_double_ended_specializations(&it); + } + + // `SmallIter2<u8>` because `Vec<u8>` is too slow and we get bad coverage from a singleton like Option<u8> + fn flatten_ok(v: Vec<Result<SmallIter2<u8>, char>>) -> () { + let it = v.into_iter().flatten_ok(); + test_specializations(&it); + test_double_ended_specializations(&it); + } +} + +quickcheck! { + // TODO Replace this function by a normal call to test_specializations + fn process_results(v: Vec<Result<u8, u8>>) -> () { + helper(v.iter().copied()); + helper(v.iter().copied().filter(Result::is_ok)); + + fn helper(it: impl DoubleEndedIterator<Item = Result<u8, u8>> + Clone) { + macro_rules! check_results_specialized { + ($src:expr, |$it:pat| $closure:expr) => { + assert_eq!( + itertools::process_results($src.clone(), |$it| $closure), + itertools::process_results($src.clone(), |i| { + let $it = Unspecialized(i); + $closure + }), + ) + } + } + + check_results_specialized!(it, |i| i.count()); + check_results_specialized!(it, |i| i.last()); + check_results_specialized!(it, |i| i.collect::<Vec<_>>()); + check_results_specialized!(it, |i| i.rev().collect::<Vec<_>>()); + check_results_specialized!(it, |i| { + let mut parameters_from_fold = vec![]; + let fold_result = i.fold(vec![], |mut acc, v| { + parameters_from_fold.push((acc.clone(), v)); + acc.push(v); + acc + }); + (parameters_from_fold, fold_result) + }); + check_results_specialized!(it, |i| { + let mut parameters_from_rfold = vec![]; + let rfold_result = i.rfold(vec![], |mut acc, v| { + parameters_from_rfold.push((acc.clone(), v)); + acc.push(v); + acc + }); + (parameters_from_rfold, rfold_result) + }); + check_results_specialized!(it, |mut i| { + let mut parameters_from_all = vec![]; + let first = i.next(); + let all_result = i.all(|x| { + parameters_from_all.push(x); + Some(x)==first + }); + (parameters_from_all, all_result) + }); + let size = it.clone().count(); + for n in 0..size + 2 { + check_results_specialized!(it, |mut i| i.nth(n)); + } + for n in 0..size + 2 { + check_results_specialized!(it, |mut i| i.nth_back(n)); + } + } + } +} + +/// Like `VecIntoIter<T>` with maximum 2 elements. +#[derive(Debug, Clone, Default)] +enum SmallIter2<T> { + #[default] + Zero, + One(T), + Two(T, T), +} + +impl<T: Arbitrary> Arbitrary for SmallIter2<T> { + fn arbitrary<G: quickcheck::Gen>(g: &mut G) -> Self { + match g.gen_range(0u8, 3) { + 0 => Self::Zero, + 1 => Self::One(T::arbitrary(g)), + 2 => Self::Two(T::arbitrary(g), T::arbitrary(g)), + _ => unreachable!(), + } + } + // maybe implement shrink too, maybe not +} + +impl<T> Iterator for SmallIter2<T> { + type Item = T; + + fn next(&mut self) -> Option<Self::Item> { + match std::mem::take(self) { + Self::Zero => None, + Self::One(val) => Some(val), + Self::Two(val, second) => { + *self = Self::One(second); + Some(val) + } + } + } + + fn size_hint(&self) -> (usize, Option<usize>) { + let len = match self { + Self::Zero => 0, + Self::One(_) => 1, + Self::Two(_, _) => 2, + }; + (len, Some(len)) + } +} + +impl<T> DoubleEndedIterator for SmallIter2<T> { + fn next_back(&mut self) -> Option<Self::Item> { + match std::mem::take(self) { + Self::Zero => None, + Self::One(val) => Some(val), + Self::Two(first, val) => { + *self = Self::One(first); + Some(val) + } + } + } +} diff --git a/vendor/itertools/tests/test_core.rs b/vendor/itertools/tests/test_core.rs new file mode 100644 index 00000000..49361608 --- /dev/null +++ b/vendor/itertools/tests/test_core.rs @@ -0,0 +1,399 @@ +//! Licensed under the Apache License, Version 2.0 +//! https://www.apache.org/licenses/LICENSE-2.0 or the MIT license +//! https://opensource.org/licenses/MIT, at your +//! option. This file may not be copied, modified, or distributed +//! except according to those terms. +#![no_std] +#![allow(deprecated)] + +use crate::it::chain; +use crate::it::free::put_back; +use crate::it::interleave; +use crate::it::intersperse; +use crate::it::intersperse_with; +use crate::it::iproduct; +use crate::it::izip; +use crate::it::multizip; +use crate::it::Itertools; +use core::iter; +use itertools as it; + +#[allow(dead_code)] +fn get_esi_then_esi<I: ExactSizeIterator + Clone>(it: I) { + fn is_esi(_: impl ExactSizeIterator) {} + is_esi(it.clone().get(1..4)); + is_esi(it.clone().get(1..=4)); + is_esi(it.clone().get(1..)); + is_esi(it.clone().get(..4)); + is_esi(it.clone().get(..=4)); + is_esi(it.get(..)); +} + +#[allow(dead_code)] +fn get_dei_esi_then_dei_esi<I: DoubleEndedIterator + ExactSizeIterator + Clone>(it: I) { + fn is_dei_esi(_: impl DoubleEndedIterator + ExactSizeIterator) {} + is_dei_esi(it.clone().get(1..4)); + is_dei_esi(it.clone().get(1..=4)); + is_dei_esi(it.clone().get(1..)); + is_dei_esi(it.clone().get(..4)); + is_dei_esi(it.clone().get(..=4)); + is_dei_esi(it.get(..)); +} + +#[test] +fn get_1_max() { + let mut it = (0..5).get(1..=usize::MAX); + assert_eq!(it.next(), Some(1)); + assert_eq!(it.next_back(), Some(4)); +} + +#[test] +#[should_panic] +fn get_full_range_inclusive() { + let _it = (0..5).get(0..=usize::MAX); +} + +#[test] +fn product0() { + let mut prod = iproduct!(); + assert_eq!(prod.next(), Some(())); + assert!(prod.next().is_none()); +} + +#[test] +fn iproduct1() { + let s = "αβ"; + + let mut prod = iproduct!(s.chars()); + assert_eq!(prod.next(), Some(('α',))); + assert_eq!(prod.next(), Some(('β',))); + assert!(prod.next().is_none()); +} + +#[test] +fn product2() { + let s = "αβ"; + + let mut prod = iproduct!(s.chars(), 0..2); + assert!(prod.next() == Some(('α', 0))); + assert!(prod.next() == Some(('α', 1))); + assert!(prod.next() == Some(('β', 0))); + assert!(prod.next() == Some(('β', 1))); + assert!(prod.next().is_none()); +} + +#[test] +fn product_temporary() { + for (_x, _y, _z) in iproduct!( + [0, 1, 2].iter().cloned(), + [0, 1, 2].iter().cloned(), + [0, 1, 2].iter().cloned() + ) { + // ok + } +} + +#[test] +fn izip_macro() { + let mut zip = izip!(2..3); + assert!(zip.next() == Some(2)); + assert!(zip.next().is_none()); + + let mut zip = izip!(0..3, 0..2, 0..2i8); + for i in 0..2 { + assert!((i as usize, i, i as i8) == zip.next().unwrap()); + } + assert!(zip.next().is_none()); + + let xs: [isize; 0] = []; + let mut zip = izip!(0..3, 0..2, 0..2i8, &xs); + assert!(zip.next().is_none()); +} + +#[test] +fn izip2() { + let _zip1: iter::Zip<_, _> = izip!(1.., 2..); + let _zip2: iter::Zip<_, _> = izip!(1.., 2..,); +} + +#[test] +fn izip3() { + let mut zip: iter::Map<iter::Zip<_, _>, _> = izip!(0..3, 0..2, 0..2i8); + for i in 0..2 { + assert!((i as usize, i, i as i8) == zip.next().unwrap()); + } + assert!(zip.next().is_none()); +} + +#[test] +fn multizip3() { + let mut zip = multizip((0..3, 0..2, 0..2i8)); + for i in 0..2 { + assert!((i as usize, i, i as i8) == zip.next().unwrap()); + } + assert!(zip.next().is_none()); + + let xs: [isize; 0] = []; + let mut zip = multizip((0..3, 0..2, 0..2i8, xs.iter())); + assert!(zip.next().is_none()); + + for (_, _, _, _, _) in multizip((0..3, 0..2, xs.iter(), &xs, xs.to_vec())) { + /* test compiles */ + } +} + +#[test] +fn chain_macro() { + let mut chain = chain!(2..3); + assert!(chain.next() == Some(2)); + assert!(chain.next().is_none()); + + let mut chain = chain!(0..2, 2..3, 3..5i8); + for i in 0..5i8 { + assert_eq!(Some(i), chain.next()); + } + assert!(chain.next().is_none()); + + let mut chain = chain!(); + assert_eq!(chain.next(), Option::<()>::None); +} + +#[test] +fn chain2() { + let _ = chain!(1.., 2..); + let _ = chain!(1.., 2..,); +} + +#[test] +fn write_to() { + let xs = [7, 9, 8]; + let mut ys = [0; 5]; + let cnt = ys.iter_mut().set_from(xs.iter().copied()); + assert!(cnt == xs.len()); + assert!(ys == [7, 9, 8, 0, 0]); + + let cnt = ys.iter_mut().set_from(0..10); + assert!(cnt == ys.len()); + assert!(ys == [0, 1, 2, 3, 4]); +} + +#[test] +fn test_interleave() { + let xs: [u8; 0] = []; + let ys = [7u8, 9, 8, 10]; + let zs = [2u8, 77]; + let it = interleave(xs.iter(), ys.iter()); + it::assert_equal(it, ys.iter()); + + let rs = [7u8, 2, 9, 77, 8, 10]; + let it = interleave(ys.iter(), zs.iter()); + it::assert_equal(it, rs.iter()); +} + +#[test] +fn test_intersperse() { + let xs = [1u8, 2, 3]; + let ys = [1u8, 0, 2, 0, 3]; + let it = intersperse(&xs, &0); + it::assert_equal(it, ys.iter()); +} + +#[test] +fn test_intersperse_with() { + let xs = [1u8, 2, 3]; + let ys = [1u8, 10, 2, 10, 3]; + let i = 10; + let it = intersperse_with(&xs, || &i); + it::assert_equal(it, ys.iter()); +} + +#[test] +fn dropping() { + let xs = [1, 2, 3]; + let mut it = xs.iter().dropping(2); + assert_eq!(it.next(), Some(&3)); + assert!(it.next().is_none()); + let mut it = xs.iter().dropping(5); + assert!(it.next().is_none()); +} + +#[test] +fn batching() { + let xs = [0, 1, 2, 1, 3]; + let ys = [(0, 1), (2, 1)]; + + // An iterator that gathers elements up in pairs + let pit = xs + .iter() + .cloned() + .batching(|it| it.next().and_then(|x| it.next().map(|y| (x, y)))); + it::assert_equal(pit, ys.iter().cloned()); +} + +#[test] +fn test_put_back() { + let xs = [0, 1, 1, 1, 2, 1, 3, 3]; + let mut pb = put_back(xs.iter().cloned()); + pb.next(); + pb.put_back(1); + pb.put_back(0); + it::assert_equal(pb, xs.iter().cloned()); +} + +#[test] +fn merge() { + it::assert_equal((0..10).step_by(2).merge((1..10).step_by(2)), 0..10); +} + +#[test] +fn repeatn() { + let s = "α"; + let mut it = it::repeat_n(s, 3); + assert_eq!(it.len(), 3); + assert_eq!(it.next(), Some(s)); + assert_eq!(it.next(), Some(s)); + assert_eq!(it.next(), Some(s)); + assert_eq!(it.next(), None); + assert_eq!(it.next(), None); +} + +#[test] +fn count_clones() { + // Check that RepeatN only clones N - 1 times. + + use core::cell::Cell; + #[derive(PartialEq, Debug)] + struct Foo { + n: Cell<usize>, + } + + impl Clone for Foo { + fn clone(&self) -> Self { + let n = self.n.get(); + self.n.set(n + 1); + Self { + n: Cell::new(n + 1), + } + } + } + + for n in 0..10 { + let f = Foo { n: Cell::new(0) }; + let it = it::repeat_n(f, n); + // drain it + let last = it.last(); + if n == 0 { + assert_eq!(last, None); + } else { + assert_eq!( + last, + Some(Foo { + n: Cell::new(n - 1) + }) + ); + } + } +} + +#[test] +fn part() { + let mut data = [7, 1, 1, 9, 1, 1, 3]; + let i = it::partition(&mut data, |elt| *elt >= 3); + assert_eq!(i, 3); + assert_eq!(data, [7, 3, 9, 1, 1, 1, 1]); + + let i = it::partition(&mut data, |elt| *elt == 1); + assert_eq!(i, 4); + assert_eq!(data, [1, 1, 1, 1, 9, 3, 7]); + + let mut data = [1, 2, 3, 4, 5, 6, 7, 8, 9]; + let i = it::partition(&mut data, |elt| *elt % 3 == 0); + assert_eq!(i, 3); + assert_eq!(data, [9, 6, 3, 4, 5, 2, 7, 8, 1]); +} + +#[test] +fn tree_reduce() { + for i in 0..100 { + assert_eq!((0..i).tree_reduce(|x, y| x + y), (0..i).fold1(|x, y| x + y)); + } +} + +#[test] +fn exactly_one() { + assert_eq!((0..10).filter(|&x| x == 2).exactly_one().unwrap(), 2); + assert!((0..10) + .filter(|&x| x > 1 && x < 4) + .exactly_one() + .unwrap_err() + .eq(2..4)); + assert!((0..10) + .filter(|&x| x > 1 && x < 5) + .exactly_one() + .unwrap_err() + .eq(2..5)); + assert!((0..10) + .filter(|&_| false) + .exactly_one() + .unwrap_err() + .eq(0..0)); +} + +#[test] +fn at_most_one() { + assert_eq!((0..10).filter(|&x| x == 2).at_most_one().unwrap(), Some(2)); + assert!((0..10) + .filter(|&x| x > 1 && x < 4) + .at_most_one() + .unwrap_err() + .eq(2..4)); + assert!((0..10) + .filter(|&x| x > 1 && x < 5) + .at_most_one() + .unwrap_err() + .eq(2..5)); + assert_eq!((0..10).filter(|&_| false).at_most_one().unwrap(), None); +} + +#[test] +fn sum1() { + let v: &[i32] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; + assert_eq!(v[..0].iter().cloned().sum1::<i32>(), None); + assert_eq!(v[1..2].iter().cloned().sum1::<i32>(), Some(1)); + assert_eq!(v[1..3].iter().cloned().sum1::<i32>(), Some(3)); + assert_eq!(v.iter().cloned().sum1::<i32>(), Some(55)); +} + +#[test] +fn product1() { + let v: &[i32] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; + assert_eq!(v[..0].iter().cloned().product1::<i32>(), None); + assert_eq!(v[..1].iter().cloned().product1::<i32>(), Some(0)); + assert_eq!(v[1..3].iter().cloned().product1::<i32>(), Some(2)); + assert_eq!(v[1..5].iter().cloned().product1::<i32>(), Some(24)); +} + +#[test] +fn next_array() { + let v = [1, 2, 3, 4, 5]; + let mut iter = v.iter(); + assert_eq!(iter.next_array(), Some([])); + assert_eq!(iter.next_array().map(|[&x, &y]| [x, y]), Some([1, 2])); + assert_eq!(iter.next_array().map(|[&x, &y]| [x, y]), Some([3, 4])); + assert_eq!(iter.next_array::<2>(), None); +} + +#[test] +fn collect_array() { + let v = [1, 2]; + let iter = v.iter().cloned(); + assert_eq!(iter.collect_array(), Some([1, 2])); + + let v = [1]; + let iter = v.iter().cloned(); + assert_eq!(iter.collect_array::<2>(), None); + + let v = [1, 2, 3]; + let iter = v.iter().cloned(); + assert_eq!(iter.collect_array::<2>(), None); +} diff --git a/vendor/itertools/tests/test_std.rs b/vendor/itertools/tests/test_std.rs new file mode 100644 index 00000000..ad391faa --- /dev/null +++ b/vendor/itertools/tests/test_std.rs @@ -0,0 +1,1569 @@ +#![allow(unstable_name_collisions)] + +use crate::it::cloned; +use crate::it::free::put_back_n; +use crate::it::free::rciter; +use crate::it::iproduct; +use crate::it::izip; +use crate::it::multipeek; +use crate::it::multizip; +use crate::it::peek_nth; +use crate::it::repeat_n; +use crate::it::ExactlyOneError; +use crate::it::FoldWhile; +use crate::it::Itertools; +use itertools as it; +use quickcheck as qc; +use rand::{ + distributions::{Distribution, Standard}, + rngs::StdRng, + Rng, SeedableRng, +}; +use rand::{seq::SliceRandom, thread_rng}; +use std::{cmp::min, fmt::Debug, marker::PhantomData}; + +#[test] +fn product3() { + let prod = iproduct!(0..3, 0..2, 0..2); + assert_eq!(prod.size_hint(), (12, Some(12))); + let v = prod.collect_vec(); + for i in 0..3 { + for j in 0..2 { + for k in 0..2 { + assert!((i, j, k) == v[(i * 2 * 2 + j * 2 + k) as usize]); + } + } + } + for (_, _, _, _) in iproduct!(0..3, 0..2, 0..2, 0..3) { /* test compiles */ } +} + +#[test] +fn interleave_shortest() { + let v0: Vec<i32> = vec![0, 2, 4]; + let v1: Vec<i32> = vec![1, 3, 5, 7]; + let it = v0.into_iter().interleave_shortest(v1); + assert_eq!(it.size_hint(), (6, Some(6))); + assert_eq!(it.collect_vec(), vec![0, 1, 2, 3, 4, 5]); + + let v0: Vec<i32> = vec![0, 2, 4, 6, 8]; + let v1: Vec<i32> = vec![1, 3, 5]; + let it = v0.into_iter().interleave_shortest(v1); + assert_eq!(it.size_hint(), (7, Some(7))); + assert_eq!(it.collect_vec(), vec![0, 1, 2, 3, 4, 5, 6]); + + let i0 = ::std::iter::repeat(0); + let v1: Vec<_> = vec![1, 3, 5]; + let it = i0.interleave_shortest(v1); + assert_eq!(it.size_hint(), (7, Some(7))); + + let v0: Vec<_> = vec![0, 2, 4]; + let i1 = ::std::iter::repeat(1); + let it = v0.into_iter().interleave_shortest(i1); + assert_eq!(it.size_hint(), (6, Some(6))); +} + +#[test] +fn duplicates_by() { + let xs = ["aaa", "bbbbb", "aa", "ccc", "bbbb", "aaaaa", "cccc"]; + let ys = ["aa", "bbbb", "cccc"]; + it::assert_equal(ys.iter(), xs.iter().duplicates_by(|x| x[..2].to_string())); + it::assert_equal( + ys.iter(), + xs.iter().rev().duplicates_by(|x| x[..2].to_string()).rev(), + ); + let ys_rev = ["ccc", "aa", "bbbbb"]; + it::assert_equal( + ys_rev.iter(), + xs.iter().duplicates_by(|x| x[..2].to_string()).rev(), + ); +} + +#[test] +fn duplicates() { + let xs = [0, 1, 2, 3, 2, 1, 3]; + let ys = [2, 1, 3]; + it::assert_equal(ys.iter(), xs.iter().duplicates()); + it::assert_equal(ys.iter(), xs.iter().rev().duplicates().rev()); + let ys_rev = [3, 2, 1]; + it::assert_equal(ys_rev.iter(), xs.iter().duplicates().rev()); + + let xs = [0, 1, 0, 1]; + let ys = [0, 1]; + it::assert_equal(ys.iter(), xs.iter().duplicates()); + it::assert_equal(ys.iter(), xs.iter().rev().duplicates().rev()); + let ys_rev = [1, 0]; + it::assert_equal(ys_rev.iter(), xs.iter().duplicates().rev()); + + let xs = [0, 1, 2, 1, 2]; + let ys = vec![1, 2]; + assert_eq!(ys, xs.iter().duplicates().cloned().collect_vec()); + assert_eq!( + ys, + xs.iter().rev().duplicates().rev().cloned().collect_vec() + ); + let ys_rev = vec![2, 1]; + assert_eq!(ys_rev, xs.iter().duplicates().rev().cloned().collect_vec()); +} + +#[test] +fn unique_by() { + let xs = ["aaa", "bbbbb", "aa", "ccc", "bbbb", "aaaaa", "cccc"]; + let ys = ["aaa", "bbbbb", "ccc"]; + it::assert_equal(ys.iter(), xs.iter().unique_by(|x| x[..2].to_string())); + it::assert_equal( + ys.iter(), + xs.iter().rev().unique_by(|x| x[..2].to_string()).rev(), + ); + let ys_rev = ["cccc", "aaaaa", "bbbb"]; + it::assert_equal( + ys_rev.iter(), + xs.iter().unique_by(|x| x[..2].to_string()).rev(), + ); +} + +#[test] +fn unique() { + let xs = [0, 1, 2, 3, 2, 1, 3]; + let ys = [0, 1, 2, 3]; + it::assert_equal(ys.iter(), xs.iter().unique()); + it::assert_equal(ys.iter(), xs.iter().rev().unique().rev()); + let ys_rev = [3, 1, 2, 0]; + it::assert_equal(ys_rev.iter(), xs.iter().unique().rev()); + + let xs = [0, 1]; + let ys = [0, 1]; + it::assert_equal(ys.iter(), xs.iter().unique()); + it::assert_equal(ys.iter(), xs.iter().rev().unique().rev()); + let ys_rev = [1, 0]; + it::assert_equal(ys_rev.iter(), xs.iter().unique().rev()); +} + +#[test] +fn intersperse() { + let xs = ["a", "", "b", "c"]; + let v: Vec<&str> = xs.iter().cloned().intersperse(", ").collect(); + let text: String = v.concat(); + assert_eq!(text, "a, , b, c".to_string()); + + let ys = [0, 1, 2, 3]; + let mut it = ys[..0].iter().copied().intersperse(1); + assert!(it.next().is_none()); +} + +#[test] +fn dedup() { + let xs = [0, 1, 1, 1, 2, 1, 3, 3]; + let ys = [0, 1, 2, 1, 3]; + it::assert_equal(ys.iter(), xs.iter().dedup()); + let xs = [0, 0, 0, 0, 0]; + let ys = [0]; + it::assert_equal(ys.iter(), xs.iter().dedup()); + + let xs = [0, 1, 1, 1, 2, 1, 3, 3]; + let ys = [0, 1, 2, 1, 3]; + let mut xs_d = Vec::new(); + xs.iter().dedup().fold((), |(), &elt| xs_d.push(elt)); + assert_eq!(&xs_d, &ys); +} + +#[test] +fn coalesce() { + let data = [-1., -2., -3., 3., 1., 0., -1.]; + let it = data.iter().cloned().coalesce(|x, y| { + if (x >= 0.) == (y >= 0.) { + Ok(x + y) + } else { + Err((x, y)) + } + }); + itertools::assert_equal(it.clone(), vec![-6., 4., -1.]); + assert_eq!( + it.fold(vec![], |mut v, n| { + v.push(n); + v + }), + vec![-6., 4., -1.] + ); +} + +#[test] +fn dedup_by() { + let xs = [ + (0, 0), + (0, 1), + (1, 1), + (2, 1), + (0, 2), + (3, 1), + (0, 3), + (1, 3), + ]; + let ys = [(0, 0), (0, 1), (0, 2), (3, 1), (0, 3)]; + it::assert_equal(ys.iter(), xs.iter().dedup_by(|x, y| x.1 == y.1)); + let xs = [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]; + let ys = [(0, 1)]; + it::assert_equal(ys.iter(), xs.iter().dedup_by(|x, y| x.0 == y.0)); + + let xs = [ + (0, 0), + (0, 1), + (1, 1), + (2, 1), + (0, 2), + (3, 1), + (0, 3), + (1, 3), + ]; + let ys = [(0, 0), (0, 1), (0, 2), (3, 1), (0, 3)]; + let mut xs_d = Vec::new(); + xs.iter() + .dedup_by(|x, y| x.1 == y.1) + .fold((), |(), &elt| xs_d.push(elt)); + assert_eq!(&xs_d, &ys); +} + +#[test] +fn dedup_with_count() { + let xs: [i32; 8] = [0, 1, 1, 1, 2, 1, 3, 3]; + let ys: [(usize, &i32); 5] = [(1, &0), (3, &1), (1, &2), (1, &1), (2, &3)]; + + it::assert_equal(ys.iter().cloned(), xs.iter().dedup_with_count()); + + let xs: [i32; 5] = [0, 0, 0, 0, 0]; + let ys: [(usize, &i32); 1] = [(5, &0)]; + + it::assert_equal(ys.iter().cloned(), xs.iter().dedup_with_count()); +} + +#[test] +fn dedup_by_with_count() { + let xs = [ + (0, 0), + (0, 1), + (1, 1), + (2, 1), + (0, 2), + (3, 1), + (0, 3), + (1, 3), + ]; + let ys = [ + (1, &(0, 0)), + (3, &(0, 1)), + (1, &(0, 2)), + (1, &(3, 1)), + (2, &(0, 3)), + ]; + + it::assert_equal( + ys.iter().cloned(), + xs.iter().dedup_by_with_count(|x, y| x.1 == y.1), + ); + + let xs = [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]; + let ys = [(5, &(0, 1))]; + + it::assert_equal( + ys.iter().cloned(), + xs.iter().dedup_by_with_count(|x, y| x.0 == y.0), + ); +} + +#[test] +fn all_equal() { + assert!("".chars().all_equal()); + assert!("A".chars().all_equal()); + assert!(!"AABBCCC".chars().all_equal()); + assert!("AAAAAAA".chars().all_equal()); + for (_key, mut sub) in &"AABBCCC".chars().chunk_by(|&x| x) { + assert!(sub.all_equal()); + } +} + +#[test] +fn all_equal_value() { + assert_eq!("".chars().all_equal_value(), Err(None)); + assert_eq!("A".chars().all_equal_value(), Ok('A')); + assert_eq!("AABBCCC".chars().all_equal_value(), Err(Some(('A', 'B')))); + assert_eq!("AAAAAAA".chars().all_equal_value(), Ok('A')); + { + let mut it = [1, 2, 3].iter().copied(); + let result = it.all_equal_value(); + assert_eq!(result, Err(Some((1, 2)))); + let remaining = it.next(); + assert_eq!(remaining, Some(3)); + assert!(it.next().is_none()); + } +} + +#[test] +fn all_unique() { + assert!("ABCDEFGH".chars().all_unique()); + assert!(!"ABCDEFGA".chars().all_unique()); + assert!(::std::iter::empty::<usize>().all_unique()); +} + +#[test] +fn test_put_back_n() { + let xs = [0, 1, 1, 1, 2, 1, 3, 3]; + let mut pb = put_back_n(xs.iter().cloned()); + pb.next(); + pb.next(); + pb.put_back(1); + pb.put_back(0); + it::assert_equal(pb, xs.iter().cloned()); +} + +#[test] +fn tee() { + let xs = [0, 1, 2, 3]; + let (mut t1, mut t2) = xs.iter().cloned().tee(); + assert_eq!(t1.next(), Some(0)); + assert_eq!(t2.next(), Some(0)); + assert_eq!(t1.next(), Some(1)); + assert_eq!(t1.next(), Some(2)); + assert_eq!(t1.next(), Some(3)); + assert_eq!(t1.next(), None); + assert_eq!(t2.next(), Some(1)); + assert_eq!(t2.next(), Some(2)); + assert_eq!(t1.next(), None); + assert_eq!(t2.next(), Some(3)); + assert_eq!(t2.next(), None); + assert_eq!(t1.next(), None); + assert_eq!(t2.next(), None); + + let (t1, t2) = xs.iter().cloned().tee(); + it::assert_equal(t1, xs.iter().cloned()); + it::assert_equal(t2, xs.iter().cloned()); + + let (t1, t2) = xs.iter().cloned().tee(); + it::assert_equal(t1.zip(t2), xs.iter().cloned().zip(xs.iter().cloned())); +} + +#[test] +fn test_rciter() { + let xs = [0, 1, 1, 1, 2, 1, 3, 5, 6]; + + let mut r1 = rciter(xs.iter().cloned()); + let mut r2 = r1.clone(); + assert_eq!(r1.next(), Some(0)); + assert_eq!(r2.next(), Some(1)); + let mut z = r1.zip(r2); + assert_eq!(z.next(), Some((1, 1))); + assert_eq!(z.next(), Some((2, 1))); + assert_eq!(z.next(), Some((3, 5))); + assert_eq!(z.next(), None); + + // test intoiterator + let r1 = rciter(0..5); + let mut z = izip!(&r1, r1); + assert_eq!(z.next(), Some((0, 1))); +} + +#[test] +fn trait_pointers() { + struct ByRef<'r, I: ?Sized>(&'r mut I); + + impl<'r, X, I> Iterator for ByRef<'r, I> + where + I: ?Sized + 'r + Iterator<Item = X>, + { + type Item = X; + fn next(&mut self) -> Option<Self::Item> { + self.0.next() + } + } + + let mut it = Box::new(0..10) as Box<dyn Iterator<Item = i32>>; + assert_eq!(it.next(), Some(0)); + + { + let jt: &mut dyn Iterator<Item = i32> = &mut *it; + assert_eq!(jt.next(), Some(1)); + + { + let mut r = ByRef(jt); + assert_eq!(r.next(), Some(2)); + } + + assert_eq!(jt.find_position(|x| *x == 4), Some((1, 4))); + jt.for_each(|_| ()); + } +} + +#[test] +fn merge_by() { + let odd: Vec<(u32, &str)> = vec![(1, "hello"), (3, "world"), (5, "!")]; + let even = [(2, "foo"), (4, "bar"), (6, "baz")]; + let expected = [ + (1, "hello"), + (2, "foo"), + (3, "world"), + (4, "bar"), + (5, "!"), + (6, "baz"), + ]; + let results = odd.iter().merge_by(even.iter(), |a, b| a.0 <= b.0); + it::assert_equal(results, expected.iter()); +} + +#[test] +fn merge_by_btree() { + use std::collections::BTreeMap; + let mut bt1 = BTreeMap::new(); + bt1.insert("hello", 1); + bt1.insert("world", 3); + let mut bt2 = BTreeMap::new(); + bt2.insert("foo", 2); + bt2.insert("bar", 4); + let results = bt1.into_iter().merge_by(bt2, |a, b| a.0 <= b.0); + let expected = vec![("bar", 4), ("foo", 2), ("hello", 1), ("world", 3)]; + it::assert_equal(results, expected); +} + +#[test] +fn kmerge() { + let its = (0..4).map(|s| (s..10).step_by(4)); + + it::assert_equal(its.kmerge(), 0..10); +} + +#[test] +fn kmerge_2() { + let its = vec![3, 2, 1, 0].into_iter().map(|s| (s..10).step_by(4)); + + it::assert_equal(its.kmerge(), 0..10); +} + +#[test] +fn kmerge_empty() { + let its = (0..4).map(|_| 0..0); + assert_eq!(its.kmerge().next(), None); +} + +#[test] +fn kmerge_size_hint() { + let its = (0..5).map(|_| (0..10)); + assert_eq!(its.kmerge().size_hint(), (50, Some(50))); +} + +#[test] +fn kmerge_empty_size_hint() { + let its = (0..5).map(|_| (0..0)); + assert_eq!(its.kmerge().size_hint(), (0, Some(0))); +} + +#[test] +fn join() { + let many = [1, 2, 3]; + let one = [1]; + let none: Vec<i32> = vec![]; + + assert_eq!(many.iter().join(", "), "1, 2, 3"); + assert_eq!(one.iter().join(", "), "1"); + assert_eq!(none.iter().join(", "), ""); +} + +#[test] +fn sorted_unstable_by() { + let sc = [3, 4, 1, 2].iter().cloned().sorted_by(|&a, &b| a.cmp(&b)); + it::assert_equal(sc, vec![1, 2, 3, 4]); + + let v = (0..5).sorted_unstable_by(|&a, &b| a.cmp(&b).reverse()); + it::assert_equal(v, vec![4, 3, 2, 1, 0]); +} + +#[test] +fn sorted_unstable_by_key() { + let sc = [3, 4, 1, 2].iter().cloned().sorted_unstable_by_key(|&x| x); + it::assert_equal(sc, vec![1, 2, 3, 4]); + + let v = (0..5).sorted_unstable_by_key(|&x| -x); + it::assert_equal(v, vec![4, 3, 2, 1, 0]); +} + +#[test] +fn sorted_by() { + let sc = [3, 4, 1, 2].iter().cloned().sorted_by(|&a, &b| a.cmp(&b)); + it::assert_equal(sc, vec![1, 2, 3, 4]); + + let v = (0..5).sorted_by(|&a, &b| a.cmp(&b).reverse()); + it::assert_equal(v, vec![4, 3, 2, 1, 0]); +} + +#[cfg(not(miri))] +qc::quickcheck! { + fn k_smallest_range(n: i64, m: u16, k: u16) -> () { + // u16 is used to constrain k and m to 0..2¹⁶, + // otherwise the test could use too much memory. + let (k, m) = (k as usize, m as u64); + + let mut v: Vec<_> = (n..n.saturating_add(m as _)).collect(); + // Generate a random permutation of n..n+m + v.shuffle(&mut thread_rng()); + + // Construct the right answers for the top and bottom elements + let mut sorted = v.clone(); + sorted.sort(); + // how many elements are we checking + let num_elements = min(k, m as _); + + // Compute the top and bottom k in various combinations + let sorted_smallest = sorted[..num_elements].iter().cloned(); + let smallest = v.iter().cloned().k_smallest(k); + let smallest_by = v.iter().cloned().k_smallest_by(k, Ord::cmp); + let smallest_by_key = v.iter().cloned().k_smallest_by_key(k, |&x| x); + + let sorted_largest = sorted[sorted.len() - num_elements..].iter().rev().cloned(); + let largest = v.iter().cloned().k_largest(k); + let largest_by = v.iter().cloned().k_largest_by(k, Ord::cmp); + let largest_by_key = v.iter().cloned().k_largest_by_key(k, |&x| x); + + // Check the variations produce the same answers and that they're right + it::assert_equal(smallest, sorted_smallest.clone()); + it::assert_equal(smallest_by, sorted_smallest.clone()); + it::assert_equal(smallest_by_key, sorted_smallest); + + it::assert_equal(largest, sorted_largest.clone()); + it::assert_equal(largest_by, sorted_largest.clone()); + it::assert_equal(largest_by_key, sorted_largest); + } + + fn k_smallest_relaxed_range(n: i64, m: u16, k: u16) -> () { + // u16 is used to constrain k and m to 0..2¹⁶, + // otherwise the test could use too much memory. + let (k, m) = (k as usize, m as u64); + + let mut v: Vec<_> = (n..n.saturating_add(m as _)).collect(); + // Generate a random permutation of n..n+m + v.shuffle(&mut thread_rng()); + + // Construct the right answers for the top and bottom elements + let mut sorted = v.clone(); + sorted.sort(); + // how many elements are we checking + let num_elements = min(k, m as _); + + // Compute the top and bottom k in various combinations + let sorted_smallest = sorted[..num_elements].iter().cloned(); + let smallest = v.iter().cloned().k_smallest_relaxed(k); + let smallest_by = v.iter().cloned().k_smallest_relaxed_by(k, Ord::cmp); + let smallest_by_key = v.iter().cloned().k_smallest_relaxed_by_key(k, |&x| x); + + let sorted_largest = sorted[sorted.len() - num_elements..].iter().rev().cloned(); + let largest = v.iter().cloned().k_largest_relaxed(k); + let largest_by = v.iter().cloned().k_largest_relaxed_by(k, Ord::cmp); + let largest_by_key = v.iter().cloned().k_largest_relaxed_by_key(k, |&x| x); + + // Check the variations produce the same answers and that they're right + it::assert_equal(smallest, sorted_smallest.clone()); + it::assert_equal(smallest_by, sorted_smallest.clone()); + it::assert_equal(smallest_by_key, sorted_smallest); + + it::assert_equal(largest, sorted_largest.clone()); + it::assert_equal(largest_by, sorted_largest.clone()); + it::assert_equal(largest_by_key, sorted_largest); + } +} + +#[derive(Clone, Debug)] +struct RandIter<T: 'static + Clone + Send, R: 'static + Clone + Rng + SeedableRng + Send = StdRng> { + idx: usize, + len: usize, + rng: R, + _t: PhantomData<T>, +} + +impl<T: Clone + Send, R: Clone + Rng + SeedableRng + Send> Iterator for RandIter<T, R> +where + Standard: Distribution<T>, +{ + type Item = T; + fn next(&mut self) -> Option<T> { + if self.idx == self.len { + None + } else { + self.idx += 1; + Some(self.rng.gen()) + } + } +} + +impl<T: Clone + Send, R: Clone + Rng + SeedableRng + Send> qc::Arbitrary for RandIter<T, R> { + fn arbitrary<G: qc::Gen>(g: &mut G) -> Self { + Self { + idx: 0, + len: g.size(), + rng: R::seed_from_u64(g.next_u64()), + _t: PhantomData {}, + } + } +} + +// Check that taking the k smallest is the same as +// sorting then taking the k first elements +fn k_smallest_sort<I>(i: I, k: u16) +where + I: Iterator + Clone, + I::Item: Ord + Debug, +{ + let j = i.clone(); + let i1 = i.clone(); + let j1 = i.clone(); + let k = k as usize; + it::assert_equal(i.k_smallest(k), j.sorted().take(k)); + it::assert_equal(i1.k_smallest_relaxed(k), j1.sorted().take(k)); +} + +// Similar to `k_smallest_sort` but for our custom heap implementation. +fn k_smallest_by_sort<I>(i: I, k: u16) +where + I: Iterator + Clone, + I::Item: Ord + Debug, +{ + let j = i.clone(); + let i1 = i.clone(); + let j1 = i.clone(); + let k = k as usize; + it::assert_equal(i.k_smallest_by(k, Ord::cmp), j.sorted().take(k)); + it::assert_equal(i1.k_smallest_relaxed_by(k, Ord::cmp), j1.sorted().take(k)); +} + +macro_rules! generic_test { + ($f:ident, $($t:ty),+) => { + $(paste::item! { + qc::quickcheck! { + fn [< $f _ $t >](i: RandIter<$t>, k: u16) -> () { + $f(i, k) + } + } + })+ + }; +} + +#[cfg(not(miri))] +generic_test!(k_smallest_sort, u8, u16, u32, u64, i8, i16, i32, i64); +#[cfg(not(miri))] +generic_test!(k_smallest_by_sort, u8, u16, u32, u64, i8, i16, i32, i64); + +#[test] +fn sorted_by_key() { + let sc = [3, 4, 1, 2].iter().cloned().sorted_by_key(|&x| x); + it::assert_equal(sc, vec![1, 2, 3, 4]); + + let v = (0..5).sorted_by_key(|&x| -x); + it::assert_equal(v, vec![4, 3, 2, 1, 0]); +} + +#[test] +fn sorted_by_cached_key() { + // Track calls to key function + let mut ncalls = 0; + + let sorted = [3, 4, 1, 2].iter().cloned().sorted_by_cached_key(|&x| { + ncalls += 1; + x.to_string() + }); + it::assert_equal(sorted, vec![1, 2, 3, 4]); + // Check key function called once per element + assert_eq!(ncalls, 4); + + let mut ncalls = 0; + + let sorted = (0..5).sorted_by_cached_key(|&x| { + ncalls += 1; + -x + }); + it::assert_equal(sorted, vec![4, 3, 2, 1, 0]); + // Check key function called once per element + assert_eq!(ncalls, 5); +} + +#[test] +fn test_multipeek() { + let nums = vec![1u8, 2, 3, 4, 5]; + + let mp = multipeek(nums.iter().copied()); + assert_eq!(nums, mp.collect::<Vec<_>>()); + + let mut mp = multipeek(nums.iter().copied()); + assert_eq!(mp.peek(), Some(&1)); + assert_eq!(mp.next(), Some(1)); + assert_eq!(mp.peek(), Some(&2)); + assert_eq!(mp.peek(), Some(&3)); + assert_eq!(mp.next(), Some(2)); + assert_eq!(mp.peek(), Some(&3)); + assert_eq!(mp.peek(), Some(&4)); + assert_eq!(mp.peek(), Some(&5)); + assert_eq!(mp.peek(), None); + assert_eq!(mp.next(), Some(3)); + assert_eq!(mp.next(), Some(4)); + assert_eq!(mp.peek(), Some(&5)); + assert_eq!(mp.peek(), None); + assert_eq!(mp.next(), Some(5)); + assert_eq!(mp.next(), None); + assert_eq!(mp.peek(), None); +} + +#[test] +fn test_multipeek_reset() { + let data = [1, 2, 3, 4]; + + let mut mp = multipeek(cloned(&data)); + assert_eq!(mp.peek(), Some(&1)); + assert_eq!(mp.next(), Some(1)); + assert_eq!(mp.peek(), Some(&2)); + assert_eq!(mp.peek(), Some(&3)); + mp.reset_peek(); + assert_eq!(mp.peek(), Some(&2)); + assert_eq!(mp.next(), Some(2)); +} + +#[test] +fn test_multipeek_peeking_next() { + use crate::it::PeekingNext; + let nums = [1u8, 2, 3, 4, 5, 6, 7]; + + let mut mp = multipeek(nums.iter().copied()); + assert_eq!(mp.peeking_next(|&x| x != 0), Some(1)); + assert_eq!(mp.next(), Some(2)); + assert_eq!(mp.peek(), Some(&3)); + assert_eq!(mp.peek(), Some(&4)); + assert_eq!(mp.peeking_next(|&x| x == 3), Some(3)); + assert_eq!(mp.peek(), Some(&4)); + assert_eq!(mp.peeking_next(|&x| x != 4), None); + assert_eq!(mp.peeking_next(|&x| x == 4), Some(4)); + assert_eq!(mp.peek(), Some(&5)); + assert_eq!(mp.peek(), Some(&6)); + assert_eq!(mp.peeking_next(|&x| x != 5), None); + assert_eq!(mp.peek(), Some(&7)); + assert_eq!(mp.peeking_next(|&x| x == 5), Some(5)); + assert_eq!(mp.peeking_next(|&x| x == 6), Some(6)); + assert_eq!(mp.peek(), Some(&7)); + assert_eq!(mp.peek(), None); + assert_eq!(mp.next(), Some(7)); + assert_eq!(mp.peek(), None); +} + +#[test] +fn test_repeat_n_peeking_next() { + use crate::it::PeekingNext; + let mut rn = repeat_n(0, 5); + assert_eq!(rn.peeking_next(|&x| x != 0), None); + assert_eq!(rn.peeking_next(|&x| x <= 0), Some(0)); + assert_eq!(rn.next(), Some(0)); + assert_eq!(rn.peeking_next(|&x| x <= 0), Some(0)); + assert_eq!(rn.peeking_next(|&x| x != 0), None); + assert_eq!(rn.peeking_next(|&x| x >= 0), Some(0)); + assert_eq!(rn.next(), Some(0)); + assert_eq!(rn.peeking_next(|&x| x <= 0), None); + assert_eq!(rn.next(), None); +} + +#[test] +fn test_peek_nth() { + let nums = vec![1u8, 2, 3, 4, 5]; + + let iter = peek_nth(nums.iter().copied()); + assert_eq!(nums, iter.collect::<Vec<_>>()); + + let mut iter = peek_nth(nums.iter().copied()); + + assert_eq!(iter.peek_nth(0), Some(&1)); + assert_eq!(iter.peek_nth(0), Some(&1)); + assert_eq!(iter.next(), Some(1)); + + assert_eq!(iter.peek_nth(0), Some(&2)); + assert_eq!(iter.peek_nth(1), Some(&3)); + assert_eq!(iter.next(), Some(2)); + + assert_eq!(iter.peek_nth(0), Some(&3)); + assert_eq!(iter.peek_nth(1), Some(&4)); + assert_eq!(iter.peek_nth(2), Some(&5)); + assert_eq!(iter.peek_nth(3), None); + + assert_eq!(iter.next(), Some(3)); + assert_eq!(iter.next(), Some(4)); + + assert_eq!(iter.peek_nth(0), Some(&5)); + assert_eq!(iter.peek_nth(1), None); + assert_eq!(iter.next(), Some(5)); + assert_eq!(iter.next(), None); + + assert_eq!(iter.peek_nth(0), None); + assert_eq!(iter.peek_nth(1), None); +} + +#[test] +fn test_peek_nth_peeking_next() { + use it::PeekingNext; + let nums = [1u8, 2, 3, 4, 5, 6, 7]; + let mut iter = peek_nth(nums.iter().copied()); + + assert_eq!(iter.peeking_next(|&x| x != 0), Some(1)); + assert_eq!(iter.next(), Some(2)); + + assert_eq!(iter.peek_nth(0), Some(&3)); + assert_eq!(iter.peek_nth(1), Some(&4)); + assert_eq!(iter.peeking_next(|&x| x == 3), Some(3)); + assert_eq!(iter.peek(), Some(&4)); + + assert_eq!(iter.peeking_next(|&x| x != 4), None); + assert_eq!(iter.peeking_next(|&x| x == 4), Some(4)); + assert_eq!(iter.peek_nth(0), Some(&5)); + assert_eq!(iter.peek_nth(1), Some(&6)); + + assert_eq!(iter.peeking_next(|&x| x != 5), None); + assert_eq!(iter.peek(), Some(&5)); + + assert_eq!(iter.peeking_next(|&x| x == 5), Some(5)); + assert_eq!(iter.peeking_next(|&x| x == 6), Some(6)); + assert_eq!(iter.peek_nth(0), Some(&7)); + assert_eq!(iter.peek_nth(1), None); + assert_eq!(iter.next(), Some(7)); + assert_eq!(iter.peek(), None); +} + +#[test] +fn test_peek_nth_next_if() { + let nums = [1u8, 2, 3, 4, 5, 6, 7]; + let mut iter = peek_nth(nums.iter().copied()); + + assert_eq!(iter.next_if(|&x| x != 0), Some(1)); + assert_eq!(iter.next(), Some(2)); + + assert_eq!(iter.peek_nth(0), Some(&3)); + assert_eq!(iter.peek_nth(1), Some(&4)); + assert_eq!(iter.next_if_eq(&3), Some(3)); + assert_eq!(iter.peek(), Some(&4)); + + assert_eq!(iter.next_if(|&x| x != 4), None); + assert_eq!(iter.next_if_eq(&4), Some(4)); + assert_eq!(iter.peek_nth(0), Some(&5)); + assert_eq!(iter.peek_nth(1), Some(&6)); + + assert_eq!(iter.next_if(|&x| x != 5), None); + assert_eq!(iter.peek(), Some(&5)); + + assert_eq!(iter.next_if(|&x| x % 2 == 1), Some(5)); + assert_eq!(iter.next_if_eq(&6), Some(6)); + assert_eq!(iter.peek_nth(0), Some(&7)); + assert_eq!(iter.peek_nth(1), None); + assert_eq!(iter.next(), Some(7)); + assert_eq!(iter.peek(), None); +} + +#[test] +fn pad_using() { + it::assert_equal((0..0).pad_using(1, |_| 1), 1..2); + + let v: Vec<usize> = vec![0, 1, 2]; + let r = v.into_iter().pad_using(5, |n| n); + it::assert_equal(r, vec![0, 1, 2, 3, 4]); + + let v: Vec<usize> = vec![0, 1, 2]; + let r = v.into_iter().pad_using(1, |_| panic!()); + it::assert_equal(r, vec![0, 1, 2]); +} + +#[test] +fn chunk_by() { + for (ch1, sub) in &"AABBCCC".chars().chunk_by(|&x| x) { + for ch2 in sub { + assert_eq!(ch1, ch2); + } + } + + for (ch1, sub) in &"AAABBBCCCCDDDD".chars().chunk_by(|&x| x) { + for ch2 in sub { + assert_eq!(ch1, ch2); + if ch1 == 'C' { + break; + } + } + } + + let toupper = |ch: &char| ch.to_uppercase().next().unwrap(); + + // try all possible orderings + for indices in permutohedron::Heap::new(&mut [0, 1, 2, 3]) { + let chunks = "AaaBbbccCcDDDD".chars().chunk_by(&toupper); + let mut subs = chunks.into_iter().collect_vec(); + + for &idx in &indices[..] { + let (key, text) = match idx { + 0 => ('A', "Aaa".chars()), + 1 => ('B', "Bbb".chars()), + 2 => ('C', "ccCc".chars()), + 3 => ('D', "DDDD".chars()), + _ => unreachable!(), + }; + assert_eq!(key, subs[idx].0); + it::assert_equal(&mut subs[idx].1, text); + } + } + + let chunks = "AAABBBCCCCDDDD".chars().chunk_by(|&x| x); + let mut subs = chunks.into_iter().map(|(_, g)| g).collect_vec(); + + let sd = subs.pop().unwrap(); + let sc = subs.pop().unwrap(); + let sb = subs.pop().unwrap(); + let sa = subs.pop().unwrap(); + for (a, b, c, d) in multizip((sa, sb, sc, sd)) { + assert_eq!(a, 'A'); + assert_eq!(b, 'B'); + assert_eq!(c, 'C'); + assert_eq!(d, 'D'); + } + + // check that the key closure is called exactly n times + { + let mut ntimes = 0; + let text = "AABCCC"; + for (_, sub) in &text.chars().chunk_by(|&x| { + ntimes += 1; + x + }) { + for _ in sub {} + } + assert_eq!(ntimes, text.len()); + } + + { + let mut ntimes = 0; + let text = "AABCCC"; + for _ in &text.chars().chunk_by(|&x| { + ntimes += 1; + x + }) {} + assert_eq!(ntimes, text.len()); + } + + { + let text = "ABCCCDEEFGHIJJKK"; + let gr = text.chars().chunk_by(|&x| x); + it::assert_equal(gr.into_iter().flat_map(|(_, sub)| sub), text.chars()); + } +} + +#[test] +fn chunk_by_lazy_2() { + let data = [0, 1]; + let chunks = data.iter().chunk_by(|k| *k); + let gs = chunks.into_iter().collect_vec(); + it::assert_equal(data.iter(), gs.into_iter().flat_map(|(_k, g)| g)); + + let data = [0, 1, 1, 0, 0]; + let chunks = data.iter().chunk_by(|k| *k); + let mut gs = chunks.into_iter().collect_vec(); + gs[1..].reverse(); + it::assert_equal(&[0, 0, 0, 1, 1], gs.into_iter().flat_map(|(_, g)| g)); + + let grouper = data.iter().chunk_by(|k| *k); + let mut chunks = Vec::new(); + for (k, chunk) in &grouper { + if *k == 1 { + chunks.push(chunk); + } + } + it::assert_equal(&mut chunks[0], &[1, 1]); + + let data = [0, 0, 0, 1, 1, 0, 0, 2, 2, 3, 3]; + let grouper = data.iter().chunk_by(|k| *k); + let mut chunks = Vec::new(); + for (i, (_, chunk)) in grouper.into_iter().enumerate() { + if i < 2 { + chunks.push(chunk); + } else if i < 4 { + for _ in chunk {} + } else { + chunks.push(chunk); + } + } + it::assert_equal(&mut chunks[0], &[0, 0, 0]); + it::assert_equal(&mut chunks[1], &[1, 1]); + it::assert_equal(&mut chunks[2], &[3, 3]); + + let data = [0, 0, 0, 1, 1, 0, 0, 2, 2, 3, 3]; + let mut i = 0; + let grouper = data.iter().chunk_by(move |_| { + let k = i / 3; + i += 1; + k + }); + for (i, chunk) in &grouper { + match i { + 0 => it::assert_equal(chunk, &[0, 0, 0]), + 1 => it::assert_equal(chunk, &[1, 1, 0]), + 2 => it::assert_equal(chunk, &[0, 2, 2]), + 3 => it::assert_equal(chunk, &[3, 3]), + _ => unreachable!(), + } + } +} + +#[test] +fn chunk_by_lazy_3() { + // test consuming each chunk on the lap after it was produced + let data = [0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2]; + let grouper = data.iter().chunk_by(|elt| *elt); + let mut last = None; + for (key, chunk) in &grouper { + if let Some(gr) = last.take() { + for elt in gr { + assert!(elt != key && i32::abs(elt - key) == 1); + } + } + last = Some(chunk); + } +} + +#[test] +fn chunks() { + let data = [0, 0, 0, 1, 1, 0, 0, 2, 2, 3, 3]; + let grouper = data.iter().chunks(3); + for (i, chunk) in grouper.into_iter().enumerate() { + match i { + 0 => it::assert_equal(chunk, &[0, 0, 0]), + 1 => it::assert_equal(chunk, &[1, 1, 0]), + 2 => it::assert_equal(chunk, &[0, 2, 2]), + 3 => it::assert_equal(chunk, &[3, 3]), + _ => unreachable!(), + } + } +} + +#[test] +fn concat_empty() { + let data: Vec<Vec<()>> = Vec::new(); + assert_eq!(data.into_iter().concat(), Vec::new()) +} + +#[test] +fn concat_non_empty() { + let data = vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]]; + assert_eq!(data.into_iter().concat(), vec![1, 2, 3, 4, 5, 6, 7, 8, 9]) +} + +#[test] +fn combinations() { + assert!((1..3).combinations(5).next().is_none()); + + let it = (1..3).combinations(2); + it::assert_equal(it, vec![vec![1, 2]]); + + let it = (1..5).combinations(2); + it::assert_equal( + it, + vec![ + vec![1, 2], + vec![1, 3], + vec![1, 4], + vec![2, 3], + vec![2, 4], + vec![3, 4], + ], + ); + + it::assert_equal((0..0).tuple_combinations::<(_, _)>(), <Vec<_>>::new()); + it::assert_equal((0..1).tuple_combinations::<(_, _)>(), <Vec<_>>::new()); + it::assert_equal((0..2).tuple_combinations::<(_, _)>(), vec![(0, 1)]); + + it::assert_equal((0..0).combinations(2), <Vec<Vec<_>>>::new()); + it::assert_equal((0..1).combinations(1), vec![vec![0]]); + it::assert_equal((0..2).combinations(1), vec![vec![0], vec![1]]); + it::assert_equal((0..2).combinations(2), vec![vec![0, 1]]); +} + +#[test] +fn combinations_of_too_short() { + for i in 1..10 { + assert!((0..0).combinations(i).next().is_none()); + assert!((0..i - 1).combinations(i).next().is_none()); + } +} + +#[test] +fn combinations_zero() { + it::assert_equal((1..3).combinations(0), vec![vec![]]); + it::assert_equal((0..0).combinations(0), vec![vec![]]); +} + +fn binomial(n: usize, k: usize) -> usize { + if k > n { + 0 + } else { + (n - k + 1..=n).product::<usize>() / (1..=k).product::<usize>() + } +} + +#[test] +fn combinations_range_count() { + for n in 0..=7 { + for k in 0..=7 { + let len = binomial(n, k); + let mut it = (0..n).combinations(k); + assert_eq!(len, it.clone().count()); + assert_eq!(len, it.size_hint().0); + assert_eq!(Some(len), it.size_hint().1); + for count in (0..len).rev() { + let elem = it.next(); + assert!(elem.is_some()); + assert_eq!(count, it.clone().count()); + assert_eq!(count, it.size_hint().0); + assert_eq!(Some(count), it.size_hint().1); + } + let should_be_none = it.next(); + assert!(should_be_none.is_none()); + } + } +} + +#[test] +fn combinations_inexact_size_hints() { + for k in 0..=7 { + let mut numbers = (0..18).filter(|i| i % 2 == 0); // 9 elements + let mut it = numbers.clone().combinations(k); + let real_n = numbers.clone().count(); + let len = binomial(real_n, k); + assert_eq!(len, it.clone().count()); + + let mut nb_loaded = 0; + let sh = numbers.size_hint(); + assert_eq!(binomial(sh.0 + nb_loaded, k), it.size_hint().0); + assert_eq!(sh.1.map(|n| binomial(n + nb_loaded, k)), it.size_hint().1); + + for next_count in 1..=len { + let elem = it.next(); + assert!(elem.is_some()); + assert_eq!(len - next_count, it.clone().count()); + if next_count == 1 { + // The very first time, the lazy buffer is prefilled. + nb_loaded = numbers.by_ref().take(k).count(); + } else { + // Then it loads one item each time until exhausted. + let nb = numbers.next(); + if nb.is_some() { + nb_loaded += 1; + } + } + let sh = numbers.size_hint(); + if next_count > real_n - k + 1 { + assert_eq!(0, sh.0); + assert_eq!(Some(0), sh.1); + assert_eq!(real_n, nb_loaded); + // Once it's fully loaded, size hints of `it` are exacts. + } + assert_eq!(binomial(sh.0 + nb_loaded, k) - next_count, it.size_hint().0); + assert_eq!( + sh.1.map(|n| binomial(n + nb_loaded, k) - next_count), + it.size_hint().1 + ); + } + let should_be_none = it.next(); + assert!(should_be_none.is_none()); + } +} + +#[test] +fn permutations_zero() { + it::assert_equal((1..3).permutations(0), vec![vec![]]); + it::assert_equal((0..0).permutations(0), vec![vec![]]); +} + +#[test] +fn permutations_range_count() { + for n in 0..=4 { + for k in 0..=4 { + let len = if k <= n { (n - k + 1..=n).product() } else { 0 }; + let mut it = (0..n).permutations(k); + assert_eq!(len, it.clone().count()); + assert_eq!(len, it.size_hint().0); + assert_eq!(Some(len), it.size_hint().1); + for count in (0..len).rev() { + let elem = it.next(); + assert!(elem.is_some()); + assert_eq!(count, it.clone().count()); + assert_eq!(count, it.size_hint().0); + assert_eq!(Some(count), it.size_hint().1); + } + let should_be_none = it.next(); + assert!(should_be_none.is_none()); + } + } +} + +#[test] +fn permutations_overflowed_size_hints() { + let mut it = std::iter::repeat(()).permutations(2); + assert_eq!(it.size_hint().0, usize::MAX); + assert_eq!(it.size_hint().1, None); + for nb_generated in 1..=1000 { + it.next(); + assert!(it.size_hint().0 >= usize::MAX - nb_generated); + assert_eq!(it.size_hint().1, None); + } +} + +#[test] +#[cfg(not(miri))] +fn combinations_with_replacement() { + // Pool smaller than n + it::assert_equal((0..1).combinations_with_replacement(2), vec![vec![0, 0]]); + // Pool larger than n + it::assert_equal( + (0..3).combinations_with_replacement(2), + vec![ + vec![0, 0], + vec![0, 1], + vec![0, 2], + vec![1, 1], + vec![1, 2], + vec![2, 2], + ], + ); + // Zero size + it::assert_equal((0..3).combinations_with_replacement(0), vec![vec![]]); + // Zero size on empty pool + it::assert_equal((0..0).combinations_with_replacement(0), vec![vec![]]); + // Empty pool + it::assert_equal( + (0..0).combinations_with_replacement(2), + <Vec<Vec<_>>>::new(), + ); +} + +#[test] +fn combinations_with_replacement_range_count() { + for n in 0..=4 { + for k in 0..=4 { + let len = binomial(usize::saturating_sub(n + k, 1), k); + let mut it = (0..n).combinations_with_replacement(k); + assert_eq!(len, it.clone().count()); + assert_eq!(len, it.size_hint().0); + assert_eq!(Some(len), it.size_hint().1); + for count in (0..len).rev() { + let elem = it.next(); + assert!(elem.is_some()); + assert_eq!(count, it.clone().count()); + assert_eq!(count, it.size_hint().0); + assert_eq!(Some(count), it.size_hint().1); + } + let should_be_none = it.next(); + assert!(should_be_none.is_none()); + } + } +} + +#[test] +fn powerset() { + it::assert_equal((0..0).powerset(), vec![vec![]]); + it::assert_equal((0..1).powerset(), vec![vec![], vec![0]]); + it::assert_equal( + (0..2).powerset(), + vec![vec![], vec![0], vec![1], vec![0, 1]], + ); + it::assert_equal( + (0..3).powerset(), + vec![ + vec![], + vec![0], + vec![1], + vec![2], + vec![0, 1], + vec![0, 2], + vec![1, 2], + vec![0, 1, 2], + ], + ); + + assert_eq!((0..4).powerset().count(), 1 << 4); + assert_eq!((0..8).powerset().count(), 1 << 8); + assert_eq!((0..16).powerset().count(), 1 << 16); + + for n in 0..=4 { + let mut it = (0..n).powerset(); + let len = 2_usize.pow(n); + assert_eq!(len, it.clone().count()); + assert_eq!(len, it.size_hint().0); + assert_eq!(Some(len), it.size_hint().1); + for count in (0..len).rev() { + let elem = it.next(); + assert!(elem.is_some()); + assert_eq!(count, it.clone().count()); + assert_eq!(count, it.size_hint().0); + assert_eq!(Some(count), it.size_hint().1); + } + let should_be_none = it.next(); + assert!(should_be_none.is_none()); + } +} + +#[test] +fn diff_mismatch() { + let a = [1, 2, 3, 4]; + let b = vec![1.0, 5.0, 3.0, 4.0]; + let b_map = b.into_iter().map(|f| f as i32); + let diff = it::diff_with(a.iter(), b_map, |a, b| *a == b); + + assert!(match diff { + Some(it::Diff::FirstMismatch(1, _, from_diff)) => + from_diff.collect::<Vec<_>>() == vec![5, 3, 4], + _ => false, + }); +} + +#[test] +fn diff_longer() { + let a = [1, 2, 3, 4]; + let b = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0]; + let b_map = b.into_iter().map(|f| f as i32); + let diff = it::diff_with(a.iter(), b_map, |a, b| *a == b); + + assert!(match diff { + Some(it::Diff::Longer(_, remaining)) => remaining.collect::<Vec<_>>() == vec![5, 6], + _ => false, + }); +} + +#[test] +fn diff_shorter() { + let a = [1, 2, 3, 4]; + let b = vec![1.0, 2.0]; + let b_map = b.into_iter().map(|f| f as i32); + let diff = it::diff_with(a.iter(), b_map, |a, b| *a == b); + + assert!(match diff { + Some(it::Diff::Shorter(len, _)) => len == 2, + _ => false, + }); +} + +#[test] +fn extrema_set() { + use std::cmp::Ordering; + + // A peculiar type: Equality compares both tuple items, but ordering only the + // first item. Used to distinguish equal elements. + #[derive(Clone, Debug, PartialEq, Eq)] + struct Val(u32, u32); + + impl PartialOrd<Self> for Val { + fn partial_cmp(&self, other: &Self) -> Option<Ordering> { + Some(self.cmp(other)) + } + } + + impl Ord for Val { + fn cmp(&self, other: &Self) -> Ordering { + self.0.cmp(&other.0) + } + } + + assert_eq!(None::<u32>.iter().min_set(), Vec::<&u32>::new()); + assert_eq!(None::<u32>.iter().max_set(), Vec::<&u32>::new()); + + assert_eq!(Some(1u32).iter().min_set(), vec![&1]); + assert_eq!(Some(1u32).iter().max_set(), vec![&1]); + + let data = [Val(0, 1), Val(2, 0), Val(0, 2), Val(1, 0), Val(2, 1)]; + + let min_set = data.iter().min_set(); + assert_eq!(min_set, vec![&Val(0, 1), &Val(0, 2)]); + + let min_set_by_key = data.iter().min_set_by_key(|v| v.1); + assert_eq!(min_set_by_key, vec![&Val(2, 0), &Val(1, 0)]); + + let min_set_by = data.iter().min_set_by(|x, y| x.1.cmp(&y.1)); + assert_eq!(min_set_by, vec![&Val(2, 0), &Val(1, 0)]); + + let max_set = data.iter().max_set(); + assert_eq!(max_set, vec![&Val(2, 0), &Val(2, 1)]); + + let max_set_by_key = data.iter().max_set_by_key(|v| v.1); + assert_eq!(max_set_by_key, vec![&Val(0, 2)]); + + let max_set_by = data.iter().max_set_by(|x, y| x.1.cmp(&y.1)); + assert_eq!(max_set_by, vec![&Val(0, 2)]); +} + +#[test] +fn minmax() { + use crate::it::MinMaxResult; + use std::cmp::Ordering; + + // A peculiar type: Equality compares both tuple items, but ordering only the + // first item. This is so we can check the stability property easily. + #[derive(Clone, Debug, PartialEq, Eq)] + struct Val(u32, u32); + + impl PartialOrd<Self> for Val { + fn partial_cmp(&self, other: &Self) -> Option<Ordering> { + Some(self.cmp(other)) + } + } + + impl Ord for Val { + fn cmp(&self, other: &Self) -> Ordering { + self.0.cmp(&other.0) + } + } + + assert_eq!( + None::<Option<u32>>.iter().minmax(), + MinMaxResult::NoElements + ); + + assert_eq!(Some(1u32).iter().minmax(), MinMaxResult::OneElement(&1)); + + let data = [Val(0, 1), Val(2, 0), Val(0, 2), Val(1, 0), Val(2, 1)]; + + let minmax = data.iter().minmax(); + assert_eq!(minmax, MinMaxResult::MinMax(&Val(0, 1), &Val(2, 1))); + + let (min, max) = data.iter().minmax_by_key(|v| v.1).into_option().unwrap(); + assert_eq!(min, &Val(2, 0)); + assert_eq!(max, &Val(0, 2)); + + let (min, max) = data + .iter() + .minmax_by(|x, y| x.1.cmp(&y.1)) + .into_option() + .unwrap(); + assert_eq!(min, &Val(2, 0)); + assert_eq!(max, &Val(0, 2)); +} + +#[test] +fn format() { + let data = [0, 1, 2, 3]; + let ans1 = "0, 1, 2, 3"; + let ans2 = "0--1--2--3"; + + let t1 = format!("{}", data.iter().format(", ")); + assert_eq!(t1, ans1); + let t2 = format!("{:?}", data.iter().format("--")); + assert_eq!(t2, ans2); + + let dataf = [1.1, 5.71828, -22.]; + let t3 = format!("{:.2e}", dataf.iter().format(", ")); + assert_eq!(t3, "1.10e0, 5.72e0, -2.20e1"); +} + +#[test] +fn while_some() { + let ns = (1..10) + .map(|x| if x % 5 != 0 { Some(x) } else { None }) + .while_some(); + it::assert_equal(ns, vec![1, 2, 3, 4]); +} + +#[test] +fn fold_while() { + let mut iterations = 0; + let vec = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; + let sum = vec + .into_iter() + .fold_while(0, |acc, item| { + iterations += 1; + let new_sum = acc + item; + if new_sum <= 20 { + FoldWhile::Continue(new_sum) + } else { + FoldWhile::Done(acc) + } + }) + .into_inner(); + assert_eq!(iterations, 6); + assert_eq!(sum, 15); +} + +#[test] +fn tree_reduce() { + let x = [ + "", + "0", + "0 1 x", + "0 1 x 2 x", + "0 1 x 2 3 x x", + "0 1 x 2 3 x x 4 x", + "0 1 x 2 3 x x 4 5 x x", + "0 1 x 2 3 x x 4 5 x 6 x x", + "0 1 x 2 3 x x 4 5 x 6 7 x x x", + "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 x", + "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x x", + "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 x x", + "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x x", + "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 x x", + "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 13 x x x", + "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 13 x 14 x x x", + "0 1 x 2 3 x x 4 5 x 6 7 x x x 8 9 x 10 11 x x 12 13 x 14 15 x x x x", + ]; + for (i, &s) in x.iter().enumerate() { + let expected = if s.is_empty() { + None + } else { + Some(s.to_string()) + }; + let num_strings = (0..i).map(|x| x.to_string()); + let actual = num_strings.tree_reduce(|a, b| format!("{} {} x", a, b)); + assert_eq!(actual, expected); + } +} + +#[test] +fn exactly_one_question_mark_syntax_works() { + exactly_one_question_mark_return().unwrap_err(); +} + +fn exactly_one_question_mark_return() -> Result<(), ExactlyOneError<std::slice::Iter<'static, ()>>> +{ + [].iter().exactly_one()?; + Ok(()) +} + +#[test] +fn multiunzip() { + let (a, b, c): (Vec<_>, Vec<_>, Vec<_>) = [(0, 1, 2), (3, 4, 5), (6, 7, 8)] + .iter() + .cloned() + .multiunzip(); + assert_eq!((a, b, c), (vec![0, 3, 6], vec![1, 4, 7], vec![2, 5, 8])); + let (): () = [(), (), ()].iter().cloned().multiunzip(); + #[allow(clippy::type_complexity)] + let t: ( + Vec<_>, + Vec<_>, + Vec<_>, + Vec<_>, + Vec<_>, + Vec<_>, + Vec<_>, + Vec<_>, + Vec<_>, + Vec<_>, + Vec<_>, + Vec<_>, + ) = [(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)] + .iter() + .cloned() + .multiunzip(); + assert_eq!( + t, + ( + vec![0], + vec![1], + vec![2], + vec![3], + vec![4], + vec![5], + vec![6], + vec![7], + vec![8], + vec![9], + vec![10], + vec![11] + ) + ); +} diff --git a/vendor/itertools/tests/tuples.rs b/vendor/itertools/tests/tuples.rs new file mode 100644 index 00000000..9fc8b3cc --- /dev/null +++ b/vendor/itertools/tests/tuples.rs @@ -0,0 +1,86 @@ +use itertools::Itertools; + +#[test] +fn tuples() { + let v = [1, 2, 3, 4, 5]; + let mut iter = v.iter().cloned().tuples(); + assert_eq!(Some((1,)), iter.next()); + assert_eq!(Some((2,)), iter.next()); + assert_eq!(Some((3,)), iter.next()); + assert_eq!(Some((4,)), iter.next()); + assert_eq!(Some((5,)), iter.next()); + assert_eq!(None, iter.next()); + assert_eq!(None, iter.into_buffer().next()); + + let mut iter = v.iter().cloned().tuples(); + assert_eq!(Some((1, 2)), iter.next()); + assert_eq!(Some((3, 4)), iter.next()); + assert_eq!(None, iter.next()); + itertools::assert_equal(vec![5], iter.into_buffer()); + + let mut iter = v.iter().cloned().tuples(); + assert_eq!(Some((1, 2, 3)), iter.next()); + assert_eq!(None, iter.next()); + itertools::assert_equal(vec![4, 5], iter.into_buffer()); + + let mut iter = v.iter().cloned().tuples(); + assert_eq!(Some((1, 2, 3, 4)), iter.next()); + assert_eq!(None, iter.next()); + itertools::assert_equal(vec![5], iter.into_buffer()); +} + +#[test] +fn tuple_windows() { + let v = [1, 2, 3, 4, 5]; + + let mut iter = v.iter().cloned().tuple_windows(); + assert_eq!(Some((1,)), iter.next()); + assert_eq!(Some((2,)), iter.next()); + assert_eq!(Some((3,)), iter.next()); + + let mut iter = v.iter().cloned().tuple_windows(); + assert_eq!(Some((1, 2)), iter.next()); + assert_eq!(Some((2, 3)), iter.next()); + assert_eq!(Some((3, 4)), iter.next()); + assert_eq!(Some((4, 5)), iter.next()); + assert_eq!(None, iter.next()); + + let mut iter = v.iter().cloned().tuple_windows(); + assert_eq!(Some((1, 2, 3)), iter.next()); + assert_eq!(Some((2, 3, 4)), iter.next()); + assert_eq!(Some((3, 4, 5)), iter.next()); + assert_eq!(None, iter.next()); + + let mut iter = v.iter().cloned().tuple_windows(); + assert_eq!(Some((1, 2, 3, 4)), iter.next()); + assert_eq!(Some((2, 3, 4, 5)), iter.next()); + assert_eq!(None, iter.next()); + + let v = [1, 2, 3]; + let mut iter = v.iter().cloned().tuple_windows::<(_, _, _, _)>(); + assert_eq!(None, iter.next()); +} + +#[test] +fn next_tuple() { + let v = [1, 2, 3, 4, 5]; + let mut iter = v.iter(); + assert_eq!(iter.next_tuple().map(|(&x, &y)| (x, y)), Some((1, 2))); + assert_eq!(iter.next_tuple().map(|(&x, &y)| (x, y)), Some((3, 4))); + assert_eq!(iter.next_tuple::<(_, _)>(), None); +} + +#[test] +fn collect_tuple() { + let v = [1, 2]; + let iter = v.iter().cloned(); + assert_eq!(iter.collect_tuple(), Some((1, 2))); + + let v = [1]; + let iter = v.iter().cloned(); + assert_eq!(iter.collect_tuple::<(_, _)>(), None); + + let v = [1, 2, 3]; + let iter = v.iter().cloned(); + assert_eq!(iter.collect_tuple::<(_, _)>(), None); +} diff --git a/vendor/itertools/tests/zip.rs b/vendor/itertools/tests/zip.rs new file mode 100644 index 00000000..daed31e3 --- /dev/null +++ b/vendor/itertools/tests/zip.rs @@ -0,0 +1,56 @@ +use itertools::multizip; +use itertools::EitherOrBoth::{Both, Left, Right}; +use itertools::Itertools; + +#[test] +fn zip_longest_fused() { + let a = [Some(1), None, Some(3), Some(4)]; + let b = [1, 2, 3]; + + let unfused = a + .iter() + .batching(|it| *it.next().unwrap()) + .zip_longest(b.iter().cloned()); + itertools::assert_equal(unfused, vec![Both(1, 1), Right(2), Right(3)]); +} + +#[test] +fn test_zip_longest_size_hint() { + let c = (1..10).cycle(); + let v: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]; + let v2 = &[10, 11, 12]; + + assert_eq!(c.zip_longest(v.iter()).size_hint(), (usize::MAX, None)); + + assert_eq!(v.iter().zip_longest(v2.iter()).size_hint(), (10, Some(10))); +} + +#[test] +fn test_double_ended_zip_longest() { + let xs = [1, 2, 3, 4, 5, 6]; + let ys = [1, 2, 3, 7]; + let a = xs.iter().copied(); + let b = ys.iter().copied(); + let mut it = a.zip_longest(b); + assert_eq!(it.next(), Some(Both(1, 1))); + assert_eq!(it.next(), Some(Both(2, 2))); + assert_eq!(it.next_back(), Some(Left(6))); + assert_eq!(it.next_back(), Some(Left(5))); + assert_eq!(it.next_back(), Some(Both(4, 7))); + assert_eq!(it.next(), Some(Both(3, 3))); + assert_eq!(it.next(), None); +} + +#[test] +fn test_double_ended_zip() { + let xs = [1, 2, 3, 4, 5, 6]; + let ys = [1, 2, 3, 7]; + let a = xs.iter().copied(); + let b = ys.iter().copied(); + let mut it = multizip((a, b)); + assert_eq!(it.next_back(), Some((4, 7))); + assert_eq!(it.next_back(), Some((3, 3))); + assert_eq!(it.next_back(), Some((2, 2))); + assert_eq!(it.next_back(), Some((1, 1))); + assert_eq!(it.next_back(), None); +} |
