summaryrefslogtreecommitdiff
path: root/vendor/base64/src/read
diff options
context:
space:
mode:
authormo khan <mo@mokhan.ca>2025-07-15 16:37:08 -0600
committermo khan <mo@mokhan.ca>2025-07-17 16:30:22 -0600
commit45df4d0d9b577fecee798d672695fe24ff57fb1b (patch)
tree1b99bf645035b58e0d6db08c7a83521f41f7a75b /vendor/base64/src/read
parentf94f79608393d4ab127db63cc41668445ef6b243 (diff)
feat: migrate from Cedar to SpiceDB authorization system
This is a major architectural change that replaces the Cedar policy-based authorization system with SpiceDB's relation-based authorization. Key changes: - Migrate from Rust to Go implementation - Replace Cedar policies with SpiceDB schema and relationships - Switch from envoy `ext_authz` with Cedar to SpiceDB permission checks - Update build system and dependencies for Go ecosystem - Maintain Envoy integration for external authorization This change enables more flexible permission modeling through SpiceDB's Google Zanzibar inspired relation-based system, supporting complex hierarchical permissions that were difficult to express in Cedar. Breaking change: Existing Cedar policies and Rust-based configuration will no longer work and need to be migrated to SpiceDB schema.
Diffstat (limited to 'vendor/base64/src/read')
-rw-r--r--vendor/base64/src/read/decoder.rs335
-rw-r--r--vendor/base64/src/read/decoder_tests.rs487
-rw-r--r--vendor/base64/src/read/mod.rs6
3 files changed, 0 insertions, 828 deletions
diff --git a/vendor/base64/src/read/decoder.rs b/vendor/base64/src/read/decoder.rs
deleted file mode 100644
index 781f6f88..00000000
--- a/vendor/base64/src/read/decoder.rs
+++ /dev/null
@@ -1,335 +0,0 @@
-use crate::{engine::Engine, DecodeError, DecodeSliceError, PAD_BYTE};
-use std::{cmp, fmt, io};
-
-// This should be large, but it has to fit on the stack.
-pub(crate) const BUF_SIZE: usize = 1024;
-
-// 4 bytes of base64 data encode 3 bytes of raw data (modulo padding).
-const BASE64_CHUNK_SIZE: usize = 4;
-const DECODED_CHUNK_SIZE: usize = 3;
-
-/// A `Read` implementation that decodes base64 data read from an underlying reader.
-///
-/// # Examples
-///
-/// ```
-/// use std::io::Read;
-/// use std::io::Cursor;
-/// use base64::engine::general_purpose;
-///
-/// // use a cursor as the simplest possible `Read` -- in real code this is probably a file, etc.
-/// let mut wrapped_reader = Cursor::new(b"YXNkZg==");
-/// let mut decoder = base64::read::DecoderReader::new(
-/// &mut wrapped_reader,
-/// &general_purpose::STANDARD);
-///
-/// // handle errors as you normally would
-/// let mut result = Vec::new();
-/// decoder.read_to_end(&mut result).unwrap();
-///
-/// assert_eq!(b"asdf", &result[..]);
-///
-/// ```
-pub struct DecoderReader<'e, E: Engine, R: io::Read> {
- engine: &'e E,
- /// Where b64 data is read from
- inner: R,
-
- /// Holds b64 data read from the delegate reader.
- b64_buffer: [u8; BUF_SIZE],
- /// The start of the pending buffered data in `b64_buffer`.
- b64_offset: usize,
- /// The amount of buffered b64 data after `b64_offset` in `b64_len`.
- b64_len: usize,
- /// Since the caller may provide us with a buffer of size 1 or 2 that's too small to copy a
- /// decoded chunk in to, we have to be able to hang on to a few decoded bytes.
- /// Technically we only need to hold 2 bytes, but then we'd need a separate temporary buffer to
- /// decode 3 bytes into and then juggle copying one byte into the provided read buf and the rest
- /// into here, which seems like a lot of complexity for 1 extra byte of storage.
- decoded_chunk_buffer: [u8; DECODED_CHUNK_SIZE],
- /// Index of start of decoded data in `decoded_chunk_buffer`
- decoded_offset: usize,
- /// Length of decoded data after `decoded_offset` in `decoded_chunk_buffer`
- decoded_len: usize,
- /// Input length consumed so far.
- /// Used to provide accurate offsets in errors
- input_consumed_len: usize,
- /// offset of previously seen padding, if any
- padding_offset: Option<usize>,
-}
-
-// exclude b64_buffer as it's uselessly large
-impl<'e, E: Engine, R: io::Read> fmt::Debug for DecoderReader<'e, E, R> {
- fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
- f.debug_struct("DecoderReader")
- .field("b64_offset", &self.b64_offset)
- .field("b64_len", &self.b64_len)
- .field("decoded_chunk_buffer", &self.decoded_chunk_buffer)
- .field("decoded_offset", &self.decoded_offset)
- .field("decoded_len", &self.decoded_len)
- .field("input_consumed_len", &self.input_consumed_len)
- .field("padding_offset", &self.padding_offset)
- .finish()
- }
-}
-
-impl<'e, E: Engine, R: io::Read> DecoderReader<'e, E, R> {
- /// Create a new decoder that will read from the provided reader `r`.
- pub fn new(reader: R, engine: &'e E) -> Self {
- DecoderReader {
- engine,
- inner: reader,
- b64_buffer: [0; BUF_SIZE],
- b64_offset: 0,
- b64_len: 0,
- decoded_chunk_buffer: [0; DECODED_CHUNK_SIZE],
- decoded_offset: 0,
- decoded_len: 0,
- input_consumed_len: 0,
- padding_offset: None,
- }
- }
-
- /// Write as much as possible of the decoded buffer into the target buffer.
- /// Must only be called when there is something to write and space to write into.
- /// Returns a Result with the number of (decoded) bytes copied.
- fn flush_decoded_buf(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- debug_assert!(self.decoded_len > 0);
- debug_assert!(!buf.is_empty());
-
- let copy_len = cmp::min(self.decoded_len, buf.len());
- debug_assert!(copy_len > 0);
- debug_assert!(copy_len <= self.decoded_len);
-
- buf[..copy_len].copy_from_slice(
- &self.decoded_chunk_buffer[self.decoded_offset..self.decoded_offset + copy_len],
- );
-
- self.decoded_offset += copy_len;
- self.decoded_len -= copy_len;
-
- debug_assert!(self.decoded_len < DECODED_CHUNK_SIZE);
-
- Ok(copy_len)
- }
-
- /// Read into the remaining space in the buffer after the current contents.
- /// Must only be called when there is space to read into in the buffer.
- /// Returns the number of bytes read.
- fn read_from_delegate(&mut self) -> io::Result<usize> {
- debug_assert!(self.b64_offset + self.b64_len < BUF_SIZE);
-
- let read = self
- .inner
- .read(&mut self.b64_buffer[self.b64_offset + self.b64_len..])?;
- self.b64_len += read;
-
- debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
-
- Ok(read)
- }
-
- /// Decode the requested number of bytes from the b64 buffer into the provided buffer. It's the
- /// caller's responsibility to choose the number of b64 bytes to decode correctly.
- ///
- /// Returns a Result with the number of decoded bytes written to `buf`.
- ///
- /// # Panics
- ///
- /// panics if `buf` is too small
- fn decode_to_buf(&mut self, b64_len_to_decode: usize, buf: &mut [u8]) -> io::Result<usize> {
- debug_assert!(self.b64_len >= b64_len_to_decode);
- debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
- debug_assert!(!buf.is_empty());
-
- let b64_to_decode = &self.b64_buffer[self.b64_offset..self.b64_offset + b64_len_to_decode];
- let decode_metadata = self
- .engine
- .internal_decode(
- b64_to_decode,
- buf,
- self.engine.internal_decoded_len_estimate(b64_len_to_decode),
- )
- .map_err(|dse| match dse {
- DecodeSliceError::DecodeError(de) => {
- match de {
- DecodeError::InvalidByte(offset, byte) => {
- match (byte, self.padding_offset) {
- // if there was padding in a previous block of decoding that happened to
- // be correct, and we now find more padding that happens to be incorrect,
- // to be consistent with non-reader decodes, record the error at the first
- // padding
- (PAD_BYTE, Some(first_pad_offset)) => {
- DecodeError::InvalidByte(first_pad_offset, PAD_BYTE)
- }
- _ => {
- DecodeError::InvalidByte(self.input_consumed_len + offset, byte)
- }
- }
- }
- DecodeError::InvalidLength(len) => {
- DecodeError::InvalidLength(self.input_consumed_len + len)
- }
- DecodeError::InvalidLastSymbol(offset, byte) => {
- DecodeError::InvalidLastSymbol(self.input_consumed_len + offset, byte)
- }
- DecodeError::InvalidPadding => DecodeError::InvalidPadding,
- }
- }
- DecodeSliceError::OutputSliceTooSmall => {
- unreachable!("buf is sized correctly in calling code")
- }
- })
- .map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))?;
-
- if let Some(offset) = self.padding_offset {
- // we've already seen padding
- if decode_metadata.decoded_len > 0 {
- // we read more after already finding padding; report error at first padding byte
- return Err(io::Error::new(
- io::ErrorKind::InvalidData,
- DecodeError::InvalidByte(offset, PAD_BYTE),
- ));
- }
- }
-
- self.padding_offset = self.padding_offset.or(decode_metadata
- .padding_offset
- .map(|offset| self.input_consumed_len + offset));
- self.input_consumed_len += b64_len_to_decode;
- self.b64_offset += b64_len_to_decode;
- self.b64_len -= b64_len_to_decode;
-
- debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
-
- Ok(decode_metadata.decoded_len)
- }
-
- /// Unwraps this `DecoderReader`, returning the base reader which it reads base64 encoded
- /// input from.
- ///
- /// Because `DecoderReader` performs internal buffering, the state of the inner reader is
- /// unspecified. This function is mainly provided because the inner reader type may provide
- /// additional functionality beyond the `Read` implementation which may still be useful.
- pub fn into_inner(self) -> R {
- self.inner
- }
-}
-
-impl<'e, E: Engine, R: io::Read> io::Read for DecoderReader<'e, E, R> {
- /// Decode input from the wrapped reader.
- ///
- /// Under non-error circumstances, this returns `Ok` with the value being the number of bytes
- /// written in `buf`.
- ///
- /// Where possible, this function buffers base64 to minimize the number of read() calls to the
- /// delegate reader.
- ///
- /// # Errors
- ///
- /// Any errors emitted by the delegate reader are returned. Decoding errors due to invalid
- /// base64 are also possible, and will have `io::ErrorKind::InvalidData`.
- fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- if buf.is_empty() {
- return Ok(0);
- }
-
- // offset == BUF_SIZE when we copied it all last time
- debug_assert!(self.b64_offset <= BUF_SIZE);
- debug_assert!(self.b64_offset + self.b64_len <= BUF_SIZE);
- debug_assert!(if self.b64_offset == BUF_SIZE {
- self.b64_len == 0
- } else {
- self.b64_len <= BUF_SIZE
- });
-
- debug_assert!(if self.decoded_len == 0 {
- // can be = when we were able to copy the complete chunk
- self.decoded_offset <= DECODED_CHUNK_SIZE
- } else {
- self.decoded_offset < DECODED_CHUNK_SIZE
- });
-
- // We shouldn't ever decode into decoded_buffer when we can't immediately write at least one
- // byte into the provided buf, so the effective length should only be 3 momentarily between
- // when we decode and when we copy into the target buffer.
- debug_assert!(self.decoded_len < DECODED_CHUNK_SIZE);
- debug_assert!(self.decoded_len + self.decoded_offset <= DECODED_CHUNK_SIZE);
-
- if self.decoded_len > 0 {
- // we have a few leftover decoded bytes; flush that rather than pull in more b64
- self.flush_decoded_buf(buf)
- } else {
- let mut at_eof = false;
- while self.b64_len < BASE64_CHUNK_SIZE {
- // Copy any bytes we have to the start of the buffer.
- self.b64_buffer
- .copy_within(self.b64_offset..self.b64_offset + self.b64_len, 0);
- self.b64_offset = 0;
-
- // then fill in more data
- let read = self.read_from_delegate()?;
- if read == 0 {
- // we never read into an empty buf, so 0 => we've hit EOF
- at_eof = true;
- break;
- }
- }
-
- if self.b64_len == 0 {
- debug_assert!(at_eof);
- // we must be at EOF, and we have no data left to decode
- return Ok(0);
- };
-
- debug_assert!(if at_eof {
- // if we are at eof, we may not have a complete chunk
- self.b64_len > 0
- } else {
- // otherwise, we must have at least one chunk
- self.b64_len >= BASE64_CHUNK_SIZE
- });
-
- debug_assert_eq!(0, self.decoded_len);
-
- if buf.len() < DECODED_CHUNK_SIZE {
- // caller requested an annoyingly short read
- // have to write to a tmp buf first to avoid double mutable borrow
- let mut decoded_chunk = [0_u8; DECODED_CHUNK_SIZE];
- // if we are at eof, could have less than BASE64_CHUNK_SIZE, in which case we have
- // to assume that these last few tokens are, in fact, valid (i.e. must be 2-4 b64
- // tokens, not 1, since 1 token can't decode to 1 byte).
- let to_decode = cmp::min(self.b64_len, BASE64_CHUNK_SIZE);
-
- let decoded = self.decode_to_buf(to_decode, &mut decoded_chunk[..])?;
- self.decoded_chunk_buffer[..decoded].copy_from_slice(&decoded_chunk[..decoded]);
-
- self.decoded_offset = 0;
- self.decoded_len = decoded;
-
- // can be less than 3 on last block due to padding
- debug_assert!(decoded <= 3);
-
- self.flush_decoded_buf(buf)
- } else {
- let b64_bytes_that_can_decode_into_buf = (buf.len() / DECODED_CHUNK_SIZE)
- .checked_mul(BASE64_CHUNK_SIZE)
- .expect("too many chunks");
- debug_assert!(b64_bytes_that_can_decode_into_buf >= BASE64_CHUNK_SIZE);
-
- let b64_bytes_available_to_decode = if at_eof {
- self.b64_len
- } else {
- // only use complete chunks
- self.b64_len - self.b64_len % 4
- };
-
- let actual_decode_len = cmp::min(
- b64_bytes_that_can_decode_into_buf,
- b64_bytes_available_to_decode,
- );
- self.decode_to_buf(actual_decode_len, buf)
- }
- }
- }
-}
diff --git a/vendor/base64/src/read/decoder_tests.rs b/vendor/base64/src/read/decoder_tests.rs
deleted file mode 100644
index f3431457..00000000
--- a/vendor/base64/src/read/decoder_tests.rs
+++ /dev/null
@@ -1,487 +0,0 @@
-use std::{
- cmp,
- io::{self, Read as _},
- iter,
-};
-
-use rand::{Rng as _, RngCore as _};
-
-use super::decoder::{DecoderReader, BUF_SIZE};
-use crate::{
- alphabet,
- engine::{general_purpose::STANDARD, Engine, GeneralPurpose},
- tests::{random_alphabet, random_config, random_engine},
- DecodeError, PAD_BYTE,
-};
-
-#[test]
-fn simple() {
- let tests: &[(&[u8], &[u8])] = &[
- (&b"0"[..], &b"MA=="[..]),
- (b"01", b"MDE="),
- (b"012", b"MDEy"),
- (b"0123", b"MDEyMw=="),
- (b"01234", b"MDEyMzQ="),
- (b"012345", b"MDEyMzQ1"),
- (b"0123456", b"MDEyMzQ1Ng=="),
- (b"01234567", b"MDEyMzQ1Njc="),
- (b"012345678", b"MDEyMzQ1Njc4"),
- (b"0123456789", b"MDEyMzQ1Njc4OQ=="),
- ][..];
-
- for (text_expected, base64data) in tests.iter() {
- // Read n bytes at a time.
- for n in 1..base64data.len() + 1 {
- let mut wrapped_reader = io::Cursor::new(base64data);
- let mut decoder = DecoderReader::new(&mut wrapped_reader, &STANDARD);
-
- // handle errors as you normally would
- let mut text_got = Vec::new();
- let mut buffer = vec![0u8; n];
- while let Ok(read) = decoder.read(&mut buffer[..]) {
- if read == 0 {
- break;
- }
- text_got.extend_from_slice(&buffer[..read]);
- }
-
- assert_eq!(
- text_got,
- *text_expected,
- "\nGot: {}\nExpected: {}",
- String::from_utf8_lossy(&text_got[..]),
- String::from_utf8_lossy(text_expected)
- );
- }
- }
-}
-
-// Make sure we error out on trailing junk.
-#[test]
-fn trailing_junk() {
- let tests: &[&[u8]] = &[&b"MDEyMzQ1Njc4*!@#$%^&"[..], b"MDEyMzQ1Njc4OQ== "][..];
-
- for base64data in tests.iter() {
- // Read n bytes at a time.
- for n in 1..base64data.len() + 1 {
- let mut wrapped_reader = io::Cursor::new(base64data);
- let mut decoder = DecoderReader::new(&mut wrapped_reader, &STANDARD);
-
- // handle errors as you normally would
- let mut buffer = vec![0u8; n];
- let mut saw_error = false;
- loop {
- match decoder.read(&mut buffer[..]) {
- Err(_) => {
- saw_error = true;
- break;
- }
- Ok(0) => break,
- Ok(_len) => (),
- }
- }
-
- assert!(saw_error);
- }
- }
-}
-
-#[test]
-fn handles_short_read_from_delegate() {
- let mut rng = rand::thread_rng();
- let mut bytes = Vec::new();
- let mut b64 = String::new();
- let mut decoded = Vec::new();
-
- for _ in 0..10_000 {
- bytes.clear();
- b64.clear();
- decoded.clear();
-
- let size = rng.gen_range(0..(10 * BUF_SIZE));
- bytes.extend(iter::repeat(0).take(size));
- bytes.truncate(size);
- rng.fill_bytes(&mut bytes[..size]);
- assert_eq!(size, bytes.len());
-
- let engine = random_engine(&mut rng);
- engine.encode_string(&bytes[..], &mut b64);
-
- let mut wrapped_reader = io::Cursor::new(b64.as_bytes());
- let mut short_reader = RandomShortRead {
- delegate: &mut wrapped_reader,
- rng: &mut rng,
- };
-
- let mut decoder = DecoderReader::new(&mut short_reader, &engine);
-
- let decoded_len = decoder.read_to_end(&mut decoded).unwrap();
- assert_eq!(size, decoded_len);
- assert_eq!(&bytes[..], &decoded[..]);
- }
-}
-
-#[test]
-fn read_in_short_increments() {
- let mut rng = rand::thread_rng();
- let mut bytes = Vec::new();
- let mut b64 = String::new();
- let mut decoded = Vec::new();
-
- for _ in 0..10_000 {
- bytes.clear();
- b64.clear();
- decoded.clear();
-
- let size = rng.gen_range(0..(10 * BUF_SIZE));
- bytes.extend(iter::repeat(0).take(size));
- // leave room to play around with larger buffers
- decoded.extend(iter::repeat(0).take(size * 3));
-
- rng.fill_bytes(&mut bytes[..]);
- assert_eq!(size, bytes.len());
-
- let engine = random_engine(&mut rng);
-
- engine.encode_string(&bytes[..], &mut b64);
-
- let mut wrapped_reader = io::Cursor::new(&b64[..]);
- let mut decoder = DecoderReader::new(&mut wrapped_reader, &engine);
-
- consume_with_short_reads_and_validate(&mut rng, &bytes[..], &mut decoded, &mut decoder);
- }
-}
-
-#[test]
-fn read_in_short_increments_with_short_delegate_reads() {
- let mut rng = rand::thread_rng();
- let mut bytes = Vec::new();
- let mut b64 = String::new();
- let mut decoded = Vec::new();
-
- for _ in 0..10_000 {
- bytes.clear();
- b64.clear();
- decoded.clear();
-
- let size = rng.gen_range(0..(10 * BUF_SIZE));
- bytes.extend(iter::repeat(0).take(size));
- // leave room to play around with larger buffers
- decoded.extend(iter::repeat(0).take(size * 3));
-
- rng.fill_bytes(&mut bytes[..]);
- assert_eq!(size, bytes.len());
-
- let engine = random_engine(&mut rng);
-
- engine.encode_string(&bytes[..], &mut b64);
-
- let mut base_reader = io::Cursor::new(&b64[..]);
- let mut decoder = DecoderReader::new(&mut base_reader, &engine);
- let mut short_reader = RandomShortRead {
- delegate: &mut decoder,
- rng: &mut rand::thread_rng(),
- };
-
- consume_with_short_reads_and_validate(
- &mut rng,
- &bytes[..],
- &mut decoded,
- &mut short_reader,
- );
- }
-}
-
-#[test]
-fn reports_invalid_last_symbol_correctly() {
- let mut rng = rand::thread_rng();
- let mut bytes = Vec::new();
- let mut b64 = String::new();
- let mut b64_bytes = Vec::new();
- let mut decoded = Vec::new();
- let mut bulk_decoded = Vec::new();
-
- for _ in 0..1_000 {
- bytes.clear();
- b64.clear();
- b64_bytes.clear();
-
- let size = rng.gen_range(1..(10 * BUF_SIZE));
- bytes.extend(iter::repeat(0).take(size));
- decoded.extend(iter::repeat(0).take(size));
- rng.fill_bytes(&mut bytes[..]);
- assert_eq!(size, bytes.len());
-
- let config = random_config(&mut rng);
- let alphabet = random_alphabet(&mut rng);
- // changing padding will cause invalid padding errors when we twiddle the last byte
- let engine = GeneralPurpose::new(alphabet, config.with_encode_padding(false));
- engine.encode_string(&bytes[..], &mut b64);
- b64_bytes.extend(b64.bytes());
- assert_eq!(b64_bytes.len(), b64.len());
-
- // change the last character to every possible symbol. Should behave the same as bulk
- // decoding whether invalid or valid.
- for &s1 in alphabet.symbols.iter() {
- decoded.clear();
- bulk_decoded.clear();
-
- // replace the last
- *b64_bytes.last_mut().unwrap() = s1;
- let bulk_res = engine.decode_vec(&b64_bytes[..], &mut bulk_decoded);
-
- let mut wrapped_reader = io::Cursor::new(&b64_bytes[..]);
- let mut decoder = DecoderReader::new(&mut wrapped_reader, &engine);
-
- let stream_res = decoder.read_to_end(&mut decoded).map(|_| ()).map_err(|e| {
- e.into_inner()
- .and_then(|e| e.downcast::<DecodeError>().ok())
- });
-
- assert_eq!(bulk_res.map_err(|e| Some(Box::new(e))), stream_res);
- }
- }
-}
-
-#[test]
-fn reports_invalid_byte_correctly() {
- let mut rng = rand::thread_rng();
- let mut bytes = Vec::new();
- let mut b64 = String::new();
- let mut stream_decoded = Vec::new();
- let mut bulk_decoded = Vec::new();
-
- for _ in 0..10_000 {
- bytes.clear();
- b64.clear();
- stream_decoded.clear();
- bulk_decoded.clear();
-
- let size = rng.gen_range(1..(10 * BUF_SIZE));
- bytes.extend(iter::repeat(0).take(size));
- rng.fill_bytes(&mut bytes[..size]);
- assert_eq!(size, bytes.len());
-
- let engine = GeneralPurpose::new(&alphabet::STANDARD, random_config(&mut rng));
-
- engine.encode_string(&bytes[..], &mut b64);
- // replace one byte, somewhere, with '*', which is invalid
- let bad_byte_pos = rng.gen_range(0..b64.len());
- let mut b64_bytes = b64.bytes().collect::<Vec<u8>>();
- b64_bytes[bad_byte_pos] = b'*';
-
- let mut wrapped_reader = io::Cursor::new(b64_bytes.clone());
- let mut decoder = DecoderReader::new(&mut wrapped_reader, &engine);
-
- let read_decode_err = decoder
- .read_to_end(&mut stream_decoded)
- .map_err(|e| {
- let kind = e.kind();
- let inner = e
- .into_inner()
- .and_then(|e| e.downcast::<DecodeError>().ok());
- inner.map(|i| (*i, kind))
- })
- .err()
- .and_then(|o| o);
-
- let bulk_decode_err = engine.decode_vec(&b64_bytes[..], &mut bulk_decoded).err();
-
- // it's tricky to predict where the invalid data's offset will be since if it's in the last
- // chunk it will be reported at the first padding location because it's treated as invalid
- // padding. So, we just check that it's the same as it is for decoding all at once.
- assert_eq!(
- bulk_decode_err.map(|e| (e, io::ErrorKind::InvalidData)),
- read_decode_err
- );
- }
-}
-
-#[test]
-fn internal_padding_error_with_short_read_concatenated_texts_invalid_byte_error() {
- let mut rng = rand::thread_rng();
- let mut bytes = Vec::new();
- let mut b64 = String::new();
- let mut reader_decoded = Vec::new();
- let mut bulk_decoded = Vec::new();
-
- // encodes with padding, requires that padding be present so we don't get InvalidPadding
- // just because padding is there at all
- let engine = STANDARD;
-
- for _ in 0..10_000 {
- bytes.clear();
- b64.clear();
- reader_decoded.clear();
- bulk_decoded.clear();
-
- // at least 2 bytes so there can be a split point between bytes
- let size = rng.gen_range(2..(10 * BUF_SIZE));
- bytes.resize(size, 0);
- rng.fill_bytes(&mut bytes[..size]);
-
- // Concatenate two valid b64s, yielding padding in the middle.
- // This avoids scenarios that are challenging to assert on, like random padding location
- // that might be InvalidLastSymbol when decoded at certain buffer sizes but InvalidByte
- // when done all at once.
- let split = loop {
- // find a split point that will produce padding on the first part
- let s = rng.gen_range(1..size);
- if s % 3 != 0 {
- // short enough to need padding
- break s;
- };
- };
-
- engine.encode_string(&bytes[..split], &mut b64);
- assert!(b64.contains('='), "split: {}, b64: {}", split, b64);
- let bad_byte_pos = b64.find('=').unwrap();
- engine.encode_string(&bytes[split..], &mut b64);
- let b64_bytes = b64.as_bytes();
-
- // short read to make it plausible for padding to happen on a read boundary
- let read_len = rng.gen_range(1..10);
- let mut wrapped_reader = ShortRead {
- max_read_len: read_len,
- delegate: io::Cursor::new(&b64_bytes),
- };
-
- let mut decoder = DecoderReader::new(&mut wrapped_reader, &engine);
-
- let read_decode_err = decoder
- .read_to_end(&mut reader_decoded)
- .map_err(|e| {
- *e.into_inner()
- .and_then(|e| e.downcast::<DecodeError>().ok())
- .unwrap()
- })
- .unwrap_err();
-
- let bulk_decode_err = engine.decode_vec(b64_bytes, &mut bulk_decoded).unwrap_err();
-
- assert_eq!(
- bulk_decode_err,
- read_decode_err,
- "read len: {}, bad byte pos: {}, b64: {}",
- read_len,
- bad_byte_pos,
- std::str::from_utf8(b64_bytes).unwrap()
- );
- assert_eq!(
- DecodeError::InvalidByte(
- split / 3 * 4
- + match split % 3 {
- 1 => 2,
- 2 => 3,
- _ => unreachable!(),
- },
- PAD_BYTE
- ),
- read_decode_err
- );
- }
-}
-
-#[test]
-fn internal_padding_anywhere_error() {
- let mut rng = rand::thread_rng();
- let mut bytes = Vec::new();
- let mut b64 = String::new();
- let mut reader_decoded = Vec::new();
-
- // encodes with padding, requires that padding be present so we don't get InvalidPadding
- // just because padding is there at all
- let engine = STANDARD;
-
- for _ in 0..10_000 {
- bytes.clear();
- b64.clear();
- reader_decoded.clear();
-
- bytes.resize(10 * BUF_SIZE, 0);
- rng.fill_bytes(&mut bytes[..]);
-
- // Just shove a padding byte in there somewhere.
- // The specific error to expect is challenging to predict precisely because it
- // will vary based on the position of the padding in the quad and the read buffer
- // length, but SOMETHING should go wrong.
-
- engine.encode_string(&bytes[..], &mut b64);
- let mut b64_bytes = b64.as_bytes().to_vec();
- // put padding somewhere other than the last quad
- b64_bytes[rng.gen_range(0..bytes.len() - 4)] = PAD_BYTE;
-
- // short read to make it plausible for padding to happen on a read boundary
- let read_len = rng.gen_range(1..10);
- let mut wrapped_reader = ShortRead {
- max_read_len: read_len,
- delegate: io::Cursor::new(&b64_bytes),
- };
-
- let mut decoder = DecoderReader::new(&mut wrapped_reader, &engine);
-
- let result = decoder.read_to_end(&mut reader_decoded);
- assert!(result.is_err());
- }
-}
-
-fn consume_with_short_reads_and_validate<R: io::Read>(
- rng: &mut rand::rngs::ThreadRng,
- expected_bytes: &[u8],
- decoded: &mut [u8],
- short_reader: &mut R,
-) {
- let mut total_read = 0_usize;
- loop {
- assert!(
- total_read <= expected_bytes.len(),
- "tr {} size {}",
- total_read,
- expected_bytes.len()
- );
- if total_read == expected_bytes.len() {
- assert_eq!(expected_bytes, &decoded[..total_read]);
- // should be done
- assert_eq!(0, short_reader.read(&mut *decoded).unwrap());
- // didn't write anything
- assert_eq!(expected_bytes, &decoded[..total_read]);
-
- break;
- }
- let decode_len = rng.gen_range(1..cmp::max(2, expected_bytes.len() * 2));
-
- let read = short_reader
- .read(&mut decoded[total_read..total_read + decode_len])
- .unwrap();
- total_read += read;
- }
-}
-
-/// Limits how many bytes a reader will provide in each read call.
-/// Useful for shaking out code that may work fine only with typical input sources that always fill
-/// the buffer.
-struct RandomShortRead<'a, 'b, R: io::Read, N: rand::Rng> {
- delegate: &'b mut R,
- rng: &'a mut N,
-}
-
-impl<'a, 'b, R: io::Read, N: rand::Rng> io::Read for RandomShortRead<'a, 'b, R, N> {
- fn read(&mut self, buf: &mut [u8]) -> Result<usize, io::Error> {
- // avoid 0 since it means EOF for non-empty buffers
- let effective_len = cmp::min(self.rng.gen_range(1..20), buf.len());
-
- self.delegate.read(&mut buf[..effective_len])
- }
-}
-
-struct ShortRead<R: io::Read> {
- delegate: R,
- max_read_len: usize,
-}
-
-impl<R: io::Read> io::Read for ShortRead<R> {
- fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
- let len = self.max_read_len.max(buf.len());
- self.delegate.read(&mut buf[..len])
- }
-}
diff --git a/vendor/base64/src/read/mod.rs b/vendor/base64/src/read/mod.rs
deleted file mode 100644
index 85606448..00000000
--- a/vendor/base64/src/read/mod.rs
+++ /dev/null
@@ -1,6 +0,0 @@
-//! Implementations of `io::Read` to transparently decode base64.
-mod decoder;
-pub use self::decoder::DecoderReader;
-
-#[cfg(test)]
-mod decoder_tests;