#![allow(clippy::duplicate_mod)] use alloc::boxed::Box; use super::ring_like::aead; use crate::crypto::cipher::{AeadKey, Iv, Nonce}; use crate::error::Error; use crate::quic; pub(crate) struct HeaderProtectionKey(aead::quic::HeaderProtectionKey); impl HeaderProtectionKey { pub(crate) fn new(key: AeadKey, alg: &'static aead::quic::Algorithm) -> Self { Self(aead::quic::HeaderProtectionKey::new(alg, key.as_ref()).unwrap()) } fn xor_in_place( &self, sample: &[u8], first: &mut u8, packet_number: &mut [u8], masked: bool, ) -> Result<(), Error> { // This implements "Header Protection Application" almost verbatim. // let mask = self .0 .new_mask(sample) .map_err(|_| Error::General("sample of invalid length".into()))?; // The `unwrap()` will not panic because `new_mask` returns a // non-empty result. let (first_mask, pn_mask) = mask.split_first().unwrap(); // It is OK for the `mask` to be longer than `packet_number`, // but a valid `packet_number` will never be longer than `mask`. if packet_number.len() > pn_mask.len() { return Err(Error::General("packet number too long".into())); } // Infallible from this point on. Before this point, `first` and // `packet_number` are unchanged. const LONG_HEADER_FORM: u8 = 0x80; let bits = match *first & LONG_HEADER_FORM == LONG_HEADER_FORM { true => 0x0f, // Long header: 4 bits masked false => 0x1f, // Short header: 5 bits masked }; let first_plain = match masked { // When unmasking, use the packet length bits after unmasking true => *first ^ (first_mask & bits), // When masking, use the packet length bits before masking false => *first, }; let pn_len = (first_plain & 0x03) as usize + 1; *first ^= first_mask & bits; for (dst, m) in packet_number .iter_mut() .zip(pn_mask) .take(pn_len) { *dst ^= m; } Ok(()) } } impl quic::HeaderProtectionKey for HeaderProtectionKey { fn encrypt_in_place( &self, sample: &[u8], first: &mut u8, packet_number: &mut [u8], ) -> Result<(), Error> { self.xor_in_place(sample, first, packet_number, false) } fn decrypt_in_place( &self, sample: &[u8], first: &mut u8, packet_number: &mut [u8], ) -> Result<(), Error> { self.xor_in_place(sample, first, packet_number, true) } #[inline] fn sample_len(&self) -> usize { self.0.algorithm().sample_len() } } pub(crate) struct PacketKey { /// Encrypts or decrypts a packet's payload key: aead::LessSafeKey, /// Computes unique nonces for each packet iv: Iv, /// Confidentiality limit (see [`quic::PacketKey::confidentiality_limit`]) confidentiality_limit: u64, /// Integrity limit (see [`quic::PacketKey::integrity_limit`]) integrity_limit: u64, } impl PacketKey { pub(crate) fn new( key: AeadKey, iv: Iv, confidentiality_limit: u64, integrity_limit: u64, aead_algorithm: &'static aead::Algorithm, ) -> Self { Self { key: aead::LessSafeKey::new( aead::UnboundKey::new(aead_algorithm, key.as_ref()).unwrap(), ), iv, confidentiality_limit, integrity_limit, } } } impl quic::PacketKey for PacketKey { fn encrypt_in_place( &self, packet_number: u64, header: &[u8], payload: &mut [u8], ) -> Result { let aad = aead::Aad::from(header); let nonce = aead::Nonce::assume_unique_for_key(Nonce::new(&self.iv, packet_number).0); let tag = self .key .seal_in_place_separate_tag(nonce, aad, payload) .map_err(|_| Error::EncryptError)?; Ok(quic::Tag::from(tag.as_ref())) } /// Decrypt a QUIC packet /// /// Takes the packet `header`, which is used as the additional authenticated data, and the /// `payload`, which includes the authentication tag. /// /// If the return value is `Ok`, the decrypted payload can be found in `payload`, up to the /// length found in the return value. fn decrypt_in_place<'a>( &self, packet_number: u64, header: &[u8], payload: &'a mut [u8], ) -> Result<&'a [u8], Error> { let payload_len = payload.len(); let aad = aead::Aad::from(header); let nonce = aead::Nonce::assume_unique_for_key(Nonce::new(&self.iv, packet_number).0); self.key .open_in_place(nonce, aad, payload) .map_err(|_| Error::DecryptError)?; let plain_len = payload_len - self.key.algorithm().tag_len(); Ok(&payload[..plain_len]) } /// Tag length for the underlying AEAD algorithm #[inline] fn tag_len(&self) -> usize { self.key.algorithm().tag_len() } /// Confidentiality limit (see [`quic::PacketKey::confidentiality_limit`]) fn confidentiality_limit(&self) -> u64 { self.confidentiality_limit } /// Integrity limit (see [`quic::PacketKey::integrity_limit`]) fn integrity_limit(&self) -> u64 { self.integrity_limit } } pub(crate) struct KeyBuilder { pub(crate) packet_alg: &'static aead::Algorithm, pub(crate) header_alg: &'static aead::quic::Algorithm, pub(crate) confidentiality_limit: u64, pub(crate) integrity_limit: u64, } impl quic::Algorithm for KeyBuilder { fn packet_key(&self, key: AeadKey, iv: Iv) -> Box { Box::new(PacketKey::new( key, iv, self.confidentiality_limit, self.integrity_limit, self.packet_alg, )) } fn header_protection_key(&self, key: AeadKey) -> Box { Box::new(HeaderProtectionKey::new(key, self.header_alg)) } fn aead_key_len(&self) -> usize { self.packet_alg.key_len() } fn fips(&self) -> bool { super::fips() } } #[cfg(test)] #[macro_rules_attribute::apply(test_for_each_provider)] mod tests { use std::dbg; use super::provider::tls13::{ TLS13_AES_128_GCM_SHA256_INTERNAL, TLS13_CHACHA20_POLY1305_SHA256_INTERNAL, }; use crate::common_state::Side; use crate::crypto::tls13::OkmBlock; use crate::quic::*; fn test_short_packet(version: Version, expected: &[u8]) { const PN: u64 = 654360564; const SECRET: &[u8] = &[ 0x9a, 0xc3, 0x12, 0xa7, 0xf8, 0x77, 0x46, 0x8e, 0xbe, 0x69, 0x42, 0x27, 0x48, 0xad, 0x00, 0xa1, 0x54, 0x43, 0xf1, 0x82, 0x03, 0xa0, 0x7d, 0x60, 0x60, 0xf6, 0x88, 0xf3, 0x0f, 0x21, 0x63, 0x2b, ]; let secret = OkmBlock::new(SECRET); let builder = KeyBuilder::new( &secret, version, TLS13_CHACHA20_POLY1305_SHA256_INTERNAL .quic .unwrap(), TLS13_CHACHA20_POLY1305_SHA256_INTERNAL.hkdf_provider, ); let packet = builder.packet_key(); let hpk = builder.header_protection_key(); const PLAIN: &[u8] = &[0x42, 0x00, 0xbf, 0xf4, 0x01]; let mut buf = PLAIN.to_vec(); let (header, payload) = buf.split_at_mut(4); let tag = packet .encrypt_in_place(PN, header, payload) .unwrap(); buf.extend(tag.as_ref()); let pn_offset = 1; let (header, sample) = buf.split_at_mut(pn_offset + 4); let (first, rest) = header.split_at_mut(1); let sample = &sample[..hpk.sample_len()]; hpk.encrypt_in_place(sample, &mut first[0], dbg!(rest)) .unwrap(); assert_eq!(&buf, expected); let (header, sample) = buf.split_at_mut(pn_offset + 4); let (first, rest) = header.split_at_mut(1); let sample = &sample[..hpk.sample_len()]; hpk.decrypt_in_place(sample, &mut first[0], rest) .unwrap(); let (header, payload_tag) = buf.split_at_mut(4); let plain = packet .decrypt_in_place(PN, header, payload_tag) .unwrap(); assert_eq!(plain, &PLAIN[4..]); } #[test] fn short_packet_header_protection() { // https://www.rfc-editor.org/rfc/rfc9001.html#name-chacha20-poly1305-short-hea test_short_packet( Version::V1, &[ 0x4c, 0xfe, 0x41, 0x89, 0x65, 0x5e, 0x5c, 0xd5, 0x5c, 0x41, 0xf6, 0x90, 0x80, 0x57, 0x5d, 0x79, 0x99, 0xc2, 0x5a, 0x5b, 0xfb, ], ); } #[test] fn key_update_test_vector() { fn equal_okm(x: &OkmBlock, y: &OkmBlock) -> bool { x.as_ref() == y.as_ref() } let mut secrets = Secrets::new( // Constant dummy values for reproducibility OkmBlock::new( &[ 0xb8, 0x76, 0x77, 0x08, 0xf8, 0x77, 0x23, 0x58, 0xa6, 0xea, 0x9f, 0xc4, 0x3e, 0x4a, 0xdd, 0x2c, 0x96, 0x1b, 0x3f, 0x52, 0x87, 0xa6, 0xd1, 0x46, 0x7e, 0xe0, 0xae, 0xab, 0x33, 0x72, 0x4d, 0xbf, ][..], ), OkmBlock::new( &[ 0x42, 0xdc, 0x97, 0x21, 0x40, 0xe0, 0xf2, 0xe3, 0x98, 0x45, 0xb7, 0x67, 0x61, 0x34, 0x39, 0xdc, 0x67, 0x58, 0xca, 0x43, 0x25, 0x9b, 0x87, 0x85, 0x06, 0x82, 0x4e, 0xb1, 0xe4, 0x38, 0xd8, 0x55, ][..], ), TLS13_AES_128_GCM_SHA256_INTERNAL, TLS13_AES_128_GCM_SHA256_INTERNAL .quic .unwrap(), Side::Client, Version::V1, ); secrets.update(); assert!(equal_okm( &secrets.client, &OkmBlock::new( &[ 0x42, 0xca, 0xc8, 0xc9, 0x1c, 0xd5, 0xeb, 0x40, 0x68, 0x2e, 0x43, 0x2e, 0xdf, 0x2d, 0x2b, 0xe9, 0xf4, 0x1a, 0x52, 0xca, 0x6b, 0x22, 0xd8, 0xe6, 0xcd, 0xb1, 0xe8, 0xac, 0xa9, 0x6, 0x1f, 0xce ][..] ) )); assert!(equal_okm( &secrets.server, &OkmBlock::new( &[ 0xeb, 0x7f, 0x5e, 0x2a, 0x12, 0x3f, 0x40, 0x7d, 0xb4, 0x99, 0xe3, 0x61, 0xca, 0xe5, 0x90, 0xd4, 0xd9, 0x92, 0xe1, 0x4b, 0x7a, 0xce, 0x3, 0xc2, 0x44, 0xe0, 0x42, 0x21, 0x15, 0xb6, 0xd3, 0x8a ][..] ) )); } #[test] fn short_packet_header_protection_v2() { // https://www.ietf.org/archive/id/draft-ietf-quic-v2-10.html#name-chacha20-poly1305-short-head test_short_packet( Version::V2, &[ 0x55, 0x58, 0xb1, 0xc6, 0x0a, 0xe7, 0xb6, 0xb9, 0x32, 0xbc, 0x27, 0xd7, 0x86, 0xf4, 0xbc, 0x2b, 0xb2, 0x0f, 0x21, 0x62, 0xba, ], ); } #[test] fn initial_test_vector_v2() { // https://www.ietf.org/archive/id/draft-ietf-quic-v2-10.html#name-sample-packet-protection-2 let icid = [0x83, 0x94, 0xc8, 0xf0, 0x3e, 0x51, 0x57, 0x08]; let server = Keys::initial( Version::V2, TLS13_AES_128_GCM_SHA256_INTERNAL, TLS13_AES_128_GCM_SHA256_INTERNAL .quic .unwrap(), &icid, Side::Server, ); let mut server_payload = [ 0x02, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x40, 0x5a, 0x02, 0x00, 0x00, 0x56, 0x03, 0x03, 0xee, 0xfc, 0xe7, 0xf7, 0xb3, 0x7b, 0xa1, 0xd1, 0x63, 0x2e, 0x96, 0x67, 0x78, 0x25, 0xdd, 0xf7, 0x39, 0x88, 0xcf, 0xc7, 0x98, 0x25, 0xdf, 0x56, 0x6d, 0xc5, 0x43, 0x0b, 0x9a, 0x04, 0x5a, 0x12, 0x00, 0x13, 0x01, 0x00, 0x00, 0x2e, 0x00, 0x33, 0x00, 0x24, 0x00, 0x1d, 0x00, 0x20, 0x9d, 0x3c, 0x94, 0x0d, 0x89, 0x69, 0x0b, 0x84, 0xd0, 0x8a, 0x60, 0x99, 0x3c, 0x14, 0x4e, 0xca, 0x68, 0x4d, 0x10, 0x81, 0x28, 0x7c, 0x83, 0x4d, 0x53, 0x11, 0xbc, 0xf3, 0x2b, 0xb9, 0xda, 0x1a, 0x00, 0x2b, 0x00, 0x02, 0x03, 0x04, ]; let mut server_header = [ 0xd1, 0x6b, 0x33, 0x43, 0xcf, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a, 0x42, 0x62, 0xb5, 0x00, 0x40, 0x75, 0x00, 0x01, ]; let tag = server .local .packet .encrypt_in_place(1, &server_header, &mut server_payload) .unwrap(); let (first, rest) = server_header.split_at_mut(1); let rest_len = rest.len(); server .local .header .encrypt_in_place( &server_payload[2..18], &mut first[0], &mut rest[rest_len - 2..], ) .unwrap(); let mut server_packet = server_header.to_vec(); server_packet.extend(server_payload); server_packet.extend(tag.as_ref()); let expected_server_packet = [ 0xdc, 0x6b, 0x33, 0x43, 0xcf, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a, 0x42, 0x62, 0xb5, 0x00, 0x40, 0x75, 0xd9, 0x2f, 0xaa, 0xf1, 0x6f, 0x05, 0xd8, 0xa4, 0x39, 0x8c, 0x47, 0x08, 0x96, 0x98, 0xba, 0xee, 0xa2, 0x6b, 0x91, 0xeb, 0x76, 0x1d, 0x9b, 0x89, 0x23, 0x7b, 0xbf, 0x87, 0x26, 0x30, 0x17, 0x91, 0x53, 0x58, 0x23, 0x00, 0x35, 0xf7, 0xfd, 0x39, 0x45, 0xd8, 0x89, 0x65, 0xcf, 0x17, 0xf9, 0xaf, 0x6e, 0x16, 0x88, 0x6c, 0x61, 0xbf, 0xc7, 0x03, 0x10, 0x6f, 0xba, 0xf3, 0xcb, 0x4c, 0xfa, 0x52, 0x38, 0x2d, 0xd1, 0x6a, 0x39, 0x3e, 0x42, 0x75, 0x75, 0x07, 0x69, 0x80, 0x75, 0xb2, 0xc9, 0x84, 0xc7, 0x07, 0xf0, 0xa0, 0x81, 0x2d, 0x8c, 0xd5, 0xa6, 0x88, 0x1e, 0xaf, 0x21, 0xce, 0xda, 0x98, 0xf4, 0xbd, 0x23, 0xf6, 0xfe, 0x1a, 0x3e, 0x2c, 0x43, 0xed, 0xd9, 0xce, 0x7c, 0xa8, 0x4b, 0xed, 0x85, 0x21, 0xe2, 0xe1, 0x40, ]; assert_eq!(server_packet[..], expected_server_packet[..]); } }