//! The `Pid` type. #![allow(unsafe_code)] use core::num::NonZeroI32; /// A process identifier as a raw integer. pub type RawPid = i32; /// `pid_t`—A non-zero Unix process ID. /// /// This is a pid, and not a pidfd. It is not a file descriptor, and the /// process it refers to could disappear at any time and be replaced by /// another, unrelated, process. /// /// On Linux, `Pid` values are also used to identify threads. #[repr(transparent)] #[derive(Copy, Clone, Eq, PartialEq, Debug, Hash)] pub struct Pid(NonZeroI32); impl Pid { /// A `Pid` corresponding to the init process (pid 1). pub const INIT: Self = Self(match NonZeroI32::new(1) { Some(n) => n, None => panic!("unreachable"), }); /// Converts a `RawPid` into a `Pid`. /// /// Returns `Some` for positive values, and `None` for zero values. /// /// This is safe because a `Pid` is a number without any guarantees for the /// kernel. Non-child `Pid`s are always racy for any syscalls, but can only /// cause logic errors. If you want race-free access to or control of /// non-child processes, please consider other mechanisms like [pidfd] on /// Linux. /// /// Passing a negative number doesn't invoke undefined behavior, but it /// may cause unexpected behavior. /// /// [pidfd]: https://man7.org/linux/man-pages/man2/pidfd_open.2.html #[inline] pub const fn from_raw(raw: RawPid) -> Option { debug_assert!(raw >= 0); match NonZeroI32::new(raw) { Some(non_zero) => Some(Self(non_zero)), None => None, } } /// Converts a known positive `RawPid` into a `Pid`. /// /// Passing a negative number doesn't invoke undefined behavior, but it /// may cause unexpected behavior. /// /// # Safety /// /// The caller must guarantee `raw` is non-zero. #[inline] pub const unsafe fn from_raw_unchecked(raw: RawPid) -> Self { debug_assert!(raw > 0); Self(NonZeroI32::new_unchecked(raw)) } /// Creates a `Pid` holding the ID of the given child process. #[cfg(feature = "std")] #[inline] pub fn from_child(child: &std::process::Child) -> Self { let id = child.id(); // SAFETY: We know the returned ID is valid because it came directly // from an OS API. unsafe { Self::from_raw_unchecked(id as i32) } } /// Converts a `Pid` into a `NonZeroI32`. #[inline] pub const fn as_raw_nonzero(self) -> NonZeroI32 { self.0 } /// Converts an `Option` into a `RawPid`. #[inline] pub const fn as_raw(pid: Option) -> RawPid { match pid { Some(pid) => pid.0.get(), None => 0, } } /// Test whether this pid represents the init process ([`Pid::INIT`]). #[inline] pub const fn is_init(self) -> bool { self.0.get() == Self::INIT.0.get() } } #[cfg(test)] mod tests { use super::*; #[test] fn test_sizes() { use core::mem::transmute; assert_eq_size!(RawPid, NonZeroI32); assert_eq_size!(RawPid, Pid); assert_eq_size!(RawPid, Option); // Rustix doesn't depend on `Option` matching the ABI of a raw integer // for correctness, but it should work nonetheless. const_assert_eq!(0 as RawPid, unsafe { transmute::, RawPid>(None) }); const_assert_eq!(4567 as RawPid, unsafe { transmute::, RawPid>(Some(Pid::from_raw_unchecked(4567))) }); } #[test] fn test_ctors() { use std::num::NonZeroI32; assert!(Pid::from_raw(0).is_none()); assert_eq!( Pid::from_raw(77).unwrap().as_raw_nonzero(), NonZeroI32::new(77).unwrap() ); assert_eq!(Pid::as_raw(Pid::from_raw(77)), 77); } #[test] fn test_specials() { assert!(Pid::from_raw(1).unwrap().is_init()); assert_eq!(Pid::from_raw(1).unwrap(), Pid::INIT); } }