// Copyright 2015-2024 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. use super::{ super::montgomery::Unencoded, unwrap_impossible_len_mismatch_error, BoxedLimbs, Elem, OwnedModulusValue, PublicModulus, Storage, N0, }; use crate::{ bits::BitLength, cpu, error, limb::{self, Limb, LIMB_BITS}, polyfill::LeadingZerosStripped, }; use core::marker::PhantomData; /// The modulus *m* for a ring ℤ/mℤ, along with the precomputed values needed /// for efficient Montgomery multiplication modulo *m*. The value must be odd /// and larger than 2. The larger-than-1 requirement is imposed, at least, by /// the modular inversion code. pub struct OwnedModulus { inner: OwnedModulusValue, // n0 * N == -1 (mod r). // // r == 2**(N0::LIMBS_USED * LIMB_BITS) and LG_LITTLE_R == lg(r). This // ensures that we can do integer division by |r| by simply ignoring // `N0::LIMBS_USED` limbs. Similarly, we can calculate values modulo `r` by // just looking at the lowest `N0::LIMBS_USED` limbs. This is what makes // Montgomery multiplication efficient. // // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a // multi-limb Montgomery multiplication of a * b (mod n), given the // unreduced product t == a * b, we repeatedly calculate: // // t1 := t % r |t1| is |t|'s lowest limb (see previous paragraph). // t2 := t1*n0*n // t3 := t + t2 // t := t3 / r copy all limbs of |t3| except the lowest to |t|. // // In the last step, it would only make sense to ignore the lowest limb of // |t3| if it were zero. The middle steps ensure that this is the case: // // t3 == 0 (mod r) // t + t2 == 0 (mod r) // t + t1*n0*n == 0 (mod r) // t1*n0*n == -t (mod r) // t*n0*n == -t (mod r) // n0*n == -1 (mod r) // n0 == -1/n (mod r) // // Thus, in each iteration of the loop, we multiply by the constant factor // n0, the negative inverse of n (mod r). // // TODO(perf): Not all 32-bit platforms actually make use of n0[1]. For the // ones that don't, we could use a shorter `R` value and use faster `Limb` // calculations instead of double-precision `u64` calculations. n0: N0, } impl Clone for OwnedModulus { fn clone(&self) -> Self { Self { inner: self.inner.clone(), n0: self.n0, } } } impl OwnedModulus { pub(crate) fn from(n: OwnedModulusValue) -> Self { // n_mod_r = n % r. As explained in the documentation for `n0`, this is // done by taking the lowest `N0::LIMBS_USED` limbs of `n`. #[allow(clippy::useless_conversion)] let n0 = { prefixed_extern! { fn bn_neg_inv_mod_r_u64(n: u64) -> u64; } // XXX: u64::from isn't guaranteed to be constant time. let mut n_mod_r: u64 = u64::from(n.limbs()[0]); if N0::LIMBS_USED == 2 { // XXX: If we use `<< LIMB_BITS` here then 64-bit builds // fail to compile because of `deny(exceeding_bitshifts)`. debug_assert_eq!(LIMB_BITS, 32); n_mod_r |= u64::from(n.limbs()[1]) << 32; } N0::precalculated(unsafe { bn_neg_inv_mod_r_u64(n_mod_r) }) }; Self { inner: n, n0 } } pub fn to_elem(&self, l: &Modulus) -> Result, error::Unspecified> { self.inner.verify_less_than(l)?; let mut limbs = BoxedLimbs::zero(l.limbs().len()); limbs[..self.inner.limbs().len()].copy_from_slice(self.inner.limbs()); Ok(Elem { limbs, encoding: PhantomData, }) } pub(crate) fn modulus(&self, cpu_features: cpu::Features) -> Modulus { Modulus { limbs: self.inner.limbs(), n0: self.n0, len_bits: self.len_bits(), m: PhantomData, cpu_features, } } pub fn len_bits(&self) -> BitLength { self.inner.len_bits() } } impl OwnedModulus { pub fn be_bytes(&self) -> LeadingZerosStripped + Clone + '_> { LeadingZerosStripped::new(limb::unstripped_be_bytes(self.inner.limbs())) } } pub struct Modulus<'a, M> { limbs: &'a [Limb], n0: N0, len_bits: BitLength, m: PhantomData, cpu_features: cpu::Features, } impl Modulus<'_, M> { pub(super) fn oneR(&self, out: &mut [Limb]) { assert_eq!(self.limbs.len(), out.len()); let r = self.limbs.len() * LIMB_BITS; // out = 2**r - m where m = self. limb::limbs_negative_odd(out, self.limbs); let lg_m = self.len_bits().as_bits(); let leading_zero_bits_in_m = r - lg_m; // When m's length is a multiple of LIMB_BITS, which is the case we // most want to optimize for, then we already have // out == 2**r - m == 2**r (mod m). if leading_zero_bits_in_m != 0 { debug_assert!(leading_zero_bits_in_m < LIMB_BITS); // Correct out to 2**(lg m) (mod m). `limbs_negative_odd` flipped // all the leading zero bits to ones. Flip them back. *out.last_mut().unwrap() &= (!0) >> leading_zero_bits_in_m; // Now we have out == 2**(lg m) (mod m). Keep doubling until we get // to 2**r (mod m). for _ in 0..leading_zero_bits_in_m { limb::limbs_double_mod(out, self.limbs) .unwrap_or_else(unwrap_impossible_len_mismatch_error); } } // Now out == 2**r (mod m) == 1*R. } // TODO: XXX Avoid duplication with `Modulus`. pub fn alloc_zero(&self) -> Storage { Storage { limbs: BoxedLimbs::zero(self.limbs.len()), } } #[inline] pub(super) fn limbs(&self) -> &[Limb] { self.limbs } #[inline] pub(super) fn n0(&self) -> &N0 { &self.n0 } pub fn len_bits(&self) -> BitLength { self.len_bits } #[inline] pub(crate) fn cpu_features(&self) -> cpu::Features { self.cpu_features } }