// Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #if !defined(OPENSSL_NO_ASM) && (defined(OPENSSL_X86) || defined(OPENSSL_X86_64)) #if defined(_MSC_VER) && !defined(__clang__) #pragma warning(push, 3) #include #include #pragma warning(pop) #endif #include "internal.h" // OPENSSL_cpuid runs the cpuid instruction. |leaf| is passed in as EAX and ECX // is set to zero. It writes EAX, EBX, ECX, and EDX to |*out_eax| through // |*out_edx|. static void OPENSSL_cpuid(uint32_t *out_eax, uint32_t *out_ebx, uint32_t *out_ecx, uint32_t *out_edx, uint32_t leaf) { #if defined(_MSC_VER) && !defined(__clang__) int tmp[4]; __cpuid(tmp, (int)leaf); *out_eax = (uint32_t)tmp[0]; *out_ebx = (uint32_t)tmp[1]; *out_ecx = (uint32_t)tmp[2]; *out_edx = (uint32_t)tmp[3]; #elif defined(__pic__) && defined(OPENSSL_32_BIT) // Inline assembly may not clobber the PIC register. For 32-bit, this is EBX. // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=47602. __asm__ volatile ( "xor %%ecx, %%ecx\n" "mov %%ebx, %%edi\n" "cpuid\n" "xchg %%edi, %%ebx\n" : "=a"(*out_eax), "=D"(*out_ebx), "=c"(*out_ecx), "=d"(*out_edx) : "a"(leaf) ); #else __asm__ volatile ( "xor %%ecx, %%ecx\n" "cpuid\n" : "=a"(*out_eax), "=b"(*out_ebx), "=c"(*out_ecx), "=d"(*out_edx) : "a"(leaf) ); #endif } // OPENSSL_xgetbv returns the value of an Intel Extended Control Register (XCR). // Currently only XCR0 is defined by Intel so |xcr| should always be zero. // // See https://software.intel.com/en-us/articles/how-to-detect-new-instruction-support-in-the-4th-generation-intel-core-processor-family static uint64_t OPENSSL_xgetbv(uint32_t xcr) { #if defined(_MSC_VER) && !defined(__clang__) return (uint64_t)_xgetbv(xcr); #else uint32_t eax, edx; __asm__ volatile ("xgetbv" : "=a"(eax), "=d"(edx) : "c"(xcr)); return (((uint64_t)edx) << 32) | eax; #endif } void OPENSSL_cpuid_setup(uint32_t OPENSSL_ia32cap_P[4]) { // Determine the vendor and maximum input value. uint32_t eax, ebx, ecx, edx; OPENSSL_cpuid(&eax, &ebx, &ecx, &edx, 0); uint32_t num_ids = eax; int is_intel = ebx == 0x756e6547 /* Genu */ && edx == 0x49656e69 /* ineI */ && ecx == 0x6c65746e /* ntel */; uint32_t extended_features[2] = {0}; if (num_ids >= 7) { OPENSSL_cpuid(&eax, &ebx, &ecx, &edx, 7); extended_features[0] = ebx; extended_features[1] = ecx; } OPENSSL_cpuid(&eax, &ebx, &ecx, &edx, 1); const uint32_t base_family = (eax >> 8) & 15; const uint32_t base_model = (eax >> 4) & 15; uint32_t family = base_family; uint32_t model = base_model; if (base_family == 15) { const uint32_t ext_family = (eax >> 20) & 255; family += ext_family; } if (base_family == 6 || base_family == 15) { const uint32_t ext_model = (eax >> 16) & 15; model |= ext_model << 4; } // Reserved bit #30 is repurposed to signal an Intel CPU. if (is_intel) { edx |= (1u << 30); } else { edx &= ~(1u << 30); } uint64_t xcr0 = 0; if (ecx & (1u << 27)) { // XCR0 may only be queried if the OSXSAVE bit is set. xcr0 = OPENSSL_xgetbv(0); } // See Intel manual, volume 1, section 14.3. if ((xcr0 & 6) != 6) { // YMM registers cannot be used. ecx &= ~(1u << 28); // AVX ecx &= ~(1u << 12); // FMA ecx &= ~(1u << 11); // AMD XOP extended_features[0] &= ~(1u << 5); // AVX2 extended_features[1] &= ~(1u << 9); // VAES extended_features[1] &= ~(1u << 10); // VPCLMULQDQ } // See Intel manual, volume 1, sections 15.2 ("Detection of AVX-512 Foundation // Instructions") through 15.4 ("Detection of Intel AVX-512 Instruction Groups // Operating at 256 and 128-bit Vector Lengths"). if ((xcr0 & 0xe6) != 0xe6) { // Without XCR0.111xx11x, no AVX512 feature can be used. This includes ZMM // registers, masking, SIMD registers 16-31 (even if accessed as YMM or // XMM), and EVEX-coded instructions (even on YMM or XMM). Even if only // XCR0.ZMM_Hi256 is missing, it isn't valid to use AVX512 features on // shorter vectors, since AVX512 ties everything to the availability of // 512-bit vectors. See the above-mentioned sections of the Intel manual, // which say that *all* these XCR0 bits must be checked even when just using // 128-bit or 256-bit vectors, and also volume 2a section 2.7.11 ("#UD // Equations for EVEX") which says that all EVEX-coded instructions raise an // undefined-instruction exception if any of these XCR0 bits is zero. // // AVX10 fixes this by reorganizing the features that used to be part of // "AVX512" and allowing them to be used independently of 512-bit support. // TODO: add AVX10 detection. extended_features[0] &= ~(1u << 16); // AVX512F extended_features[0] &= ~(1u << 17); // AVX512DQ extended_features[0] &= ~(1u << 21); // AVX512IFMA extended_features[0] &= ~(1u << 26); // AVX512PF extended_features[0] &= ~(1u << 27); // AVX512ER extended_features[0] &= ~(1u << 28); // AVX512CD extended_features[0] &= ~(1u << 30); // AVX512BW extended_features[0] &= ~(1u << 31); // AVX512VL extended_features[1] &= ~(1u << 1); // AVX512VBMI extended_features[1] &= ~(1u << 6); // AVX512VBMI2 extended_features[1] &= ~(1u << 11); // AVX512VNNI extended_features[1] &= ~(1u << 12); // AVX512BITALG extended_features[1] &= ~(1u << 14); // AVX512VPOPCNTDQ } // Repurpose the bit for the removed MPX feature to indicate when using zmm // registers should be avoided even when they are supported. (When set, AVX512 // features can still be used, but only using ymm or xmm registers.) Skylake // suffered from severe downclocking when zmm registers were used, which // affected unrelated code running on the system, making zmm registers not too // useful outside of benchmarks. The situation improved significantly by Ice // Lake, but a small amount of downclocking remained. (See // https://lore.kernel.org/linux-crypto/e8ce1146-3952-6977-1d0e-a22758e58914@intel.com/) // We take a conservative approach of not allowing zmm registers until after // Ice Lake and Tiger Lake, i.e. until Sapphire Rapids on the server side. // // AMD CPUs, which support AVX512 starting with Zen 4, have not been reported // to have any downclocking problem when zmm registers are used. if (is_intel && family == 6 && (model == 85 || // Skylake, Cascade Lake, Cooper Lake (server) model == 106 || // Ice Lake (server) model == 108 || // Ice Lake (micro server) model == 125 || // Ice Lake (client) model == 126 || // Ice Lake (mobile) model == 140 || // Tiger Lake (mobile) model == 141)) { // Tiger Lake (client) extended_features[0] |= 1u << 14; } else { extended_features[0] &= ~(1u << 14); } OPENSSL_ia32cap_P[0] = edx; OPENSSL_ia32cap_P[1] = ecx; OPENSSL_ia32cap_P[2] = extended_features[0]; OPENSSL_ia32cap_P[3] = extended_features[1]; } #endif // !OPENSSL_NO_ASM && (OPENSSL_X86 || OPENSSL_X86_64)