//! `FixedBitSet` is a simple fixed size set of bits. //! //! ### Crate features //! //! - `std` (default feature) //! Disabling this feature disables using std and instead uses crate alloc. //! //! ### SIMD Acceleration //! `fixedbitset` is written with SIMD in mind. The backing store and set operations will use aligned SIMD data types and instructions when compiling //! for compatible target platforms. The use of SIMD generally enables better performance in many set and batch operations (i.e. intersection/union/inserting a range). //! //! When SIMD is not available on the target, the crate will gracefully fallback to a default implementation. It is intended to add support for other SIMD architectures //! once they appear in stable Rust. //! //! Currently only SSE2/AVX/AVX2 on x86/x86_64 and wasm32 SIMD are supported as this is what stable Rust supports. #![no_std] #![deny(clippy::undocumented_unsafe_blocks)] extern crate alloc; use alloc::{vec, vec::Vec}; mod block; mod range; #[cfg(feature = "serde")] extern crate serde; #[cfg(feature = "serde")] mod serde_impl; use core::fmt::Write; use core::fmt::{Binary, Display, Error, Formatter}; use core::cmp::Ordering; use core::hash::Hash; use core::iter::{Chain, FusedIterator}; use core::mem::ManuallyDrop; use core::mem::MaybeUninit; use core::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Index}; use core::ptr::NonNull; pub use range::IndexRange; pub(crate) const BITS: usize = core::mem::size_of::() * 8; #[cfg(feature = "serde")] pub(crate) const BYTES: usize = core::mem::size_of::(); use block::Block as SimdBlock; pub type Block = usize; #[inline] fn div_rem(x: usize, denominator: usize) -> (usize, usize) { (x / denominator, x % denominator) } fn vec_into_parts(vec: Vec) -> (NonNull, usize, usize) { let mut vec = ManuallyDrop::new(vec); ( // SAFETY: A Vec's internal pointer is always non-null. unsafe { NonNull::new_unchecked(vec.as_mut_ptr()) }, vec.capacity(), vec.len(), ) } /// `FixedBitSet` is a simple fixed size set of bits that each can /// be enabled (1 / **true**) or disabled (0 / **false**). /// /// The bit set has a fixed capacity in terms of enabling bits (and the /// capacity can grow using the `grow` method). /// /// Derived traits depend on both the zeros and ones, so [0,1] is not equal to /// [0,1,0]. #[derive(Debug, Eq)] pub struct FixedBitSet { pub(crate) data: NonNull>, capacity: usize, /// length in bits pub(crate) length: usize, } // SAFETY: FixedBitset contains no thread-local state and can be safely sent between threads unsafe impl Send for FixedBitSet {} // SAFETY: FixedBitset does not provide simultaneous unsynchronized mutable access to the // underlying buffer. unsafe impl Sync for FixedBitSet {} impl FixedBitSet { /// Create a new empty **FixedBitSet**. pub const fn new() -> Self { FixedBitSet { data: NonNull::dangling(), capacity: 0, length: 0, } } /// Create a new **FixedBitSet** with a specific number of bits, /// all initially clear. pub fn with_capacity(bits: usize) -> Self { let (mut blocks, rem) = div_rem(bits, SimdBlock::BITS); blocks += (rem > 0) as usize; Self::from_blocks_and_len(vec![SimdBlock::NONE; blocks], bits) } #[inline] fn from_blocks_and_len(data: Vec, length: usize) -> Self { let (data, capacity, _) = vec_into_parts(data); FixedBitSet { data: data.cast(), capacity, length, } } /// Create a new **FixedBitSet** with a specific number of bits, /// initialized from provided blocks. /// /// If the blocks are not the exact size needed for the capacity /// they will be padded with zeros (if shorter) or truncated to /// the capacity (if longer). /// /// For example: /// ``` /// let data = vec![4]; /// let bs = fixedbitset::FixedBitSet::with_capacity_and_blocks(4, data); /// assert_eq!(format!("{:b}", bs), "0010"); /// ``` pub fn with_capacity_and_blocks>(bits: usize, blocks: I) -> Self { let mut bitset = Self::with_capacity(bits); for (subblock, value) in bitset.as_mut_slice().iter_mut().zip(blocks.into_iter()) { *subblock = value; } bitset } /// Grow capacity to **bits**, all new bits initialized to zero #[inline] pub fn grow(&mut self, bits: usize) { #[cold] #[track_caller] #[inline(never)] fn do_grow(slf: &mut FixedBitSet, bits: usize) { // SAFETY: The provided fill is initialized to NONE. unsafe { slf.grow_inner(bits, MaybeUninit::new(SimdBlock::NONE)) }; } if bits > self.length { do_grow(self, bits); } } /// # Safety /// If `fill` is uninitialized, the memory must not be accessed and must be immediately /// written over #[inline(always)] unsafe fn grow_inner(&mut self, bits: usize, fill: MaybeUninit) { // SAFETY: The data pointer and capacity were created from a Vec initially. The block // len is identical to that of the original. let mut data = unsafe { Vec::from_raw_parts(self.data.as_ptr(), self.simd_block_len(), self.capacity) }; let (mut blocks, rem) = div_rem(bits, SimdBlock::BITS); blocks += (rem > 0) as usize; data.resize(blocks, fill); let (data, capacity, _) = vec_into_parts(data); self.data = data; self.capacity = capacity; self.length = bits; } #[inline] unsafe fn get_unchecked(&self, subblock: usize) -> &Block { &*self.data.as_ptr().cast::().add(subblock) } #[inline] unsafe fn get_unchecked_mut(&mut self, subblock: usize) -> &mut Block { &mut *self.data.as_ptr().cast::().add(subblock) } #[inline] fn usize_len(&self) -> usize { let (mut blocks, rem) = div_rem(self.length, BITS); blocks += (rem > 0) as usize; blocks } #[inline] fn simd_block_len(&self) -> usize { let (mut blocks, rem) = div_rem(self.length, SimdBlock::BITS); blocks += (rem > 0) as usize; blocks } #[inline] fn batch_count_ones(blocks: impl IntoIterator) -> usize { blocks.into_iter().map(|x| x.count_ones() as usize).sum() } #[inline] fn as_simd_slice(&self) -> &[SimdBlock] { // SAFETY: The slice constructed is within bounds of the underlying allocation. This function // is called with a read-only borrow so no other write can happen as long as the returned borrow lives. unsafe { core::slice::from_raw_parts(self.data.as_ptr().cast(), self.simd_block_len()) } } #[inline] fn as_mut_simd_slice(&mut self) -> &mut [SimdBlock] { // SAFETY: The slice constructed is within bounds of the underlying allocation. This function // is called with a mutable borrow so no other read or write can happen as long as the returned borrow lives. unsafe { core::slice::from_raw_parts_mut(self.data.as_ptr().cast(), self.simd_block_len()) } } #[inline] fn as_simd_slice_uninit(&self) -> &[MaybeUninit] { // SAFETY: The slice constructed is within bounds of the underlying allocation. This function // is called with a read-only borrow so no other write can happen as long as the returned borrow lives. unsafe { core::slice::from_raw_parts(self.data.as_ptr(), self.simd_block_len()) } } #[inline] fn as_mut_simd_slice_uninit(&mut self) -> &mut [MaybeUninit] { // SAFETY: The slice constructed is within bounds of the underlying allocation. This function // is called with a mutable borrow so no other read or write can happen as long as the returned borrow lives. unsafe { core::slice::from_raw_parts_mut(self.data.as_ptr(), self.simd_block_len()) } } /// Grows the internal size of the bitset before inserting a bit /// /// Unlike `insert`, this cannot panic, but may allocate if the bit is outside of the existing buffer's range. /// /// This is faster than calling `grow` then `insert` in succession. #[inline] pub fn grow_and_insert(&mut self, bits: usize) { self.grow(bits + 1); let (blocks, rem) = div_rem(bits, BITS); // SAFETY: The above grow ensures that the block is inside the Vec's allocation. unsafe { *self.get_unchecked_mut(blocks) |= 1 << rem; } } /// The length of the [`FixedBitSet`] in bits. /// /// Note: `len` includes both set and unset bits. /// ``` /// # use fixedbitset::FixedBitSet; /// let bitset = FixedBitSet::with_capacity(10); /// // there are 0 set bits, but 10 unset bits /// assert_eq!(bitset.len(), 10); /// ``` /// `len` does not return the count of set bits. For that, use /// [`bitset.count_ones(..)`](FixedBitSet::count_ones) instead. #[inline] pub fn len(&self) -> usize { self.length } /// `true` if the [`FixedBitSet`] is empty. /// /// Note that an "empty" `FixedBitSet` is a `FixedBitSet` with /// no bits (meaning: it's length is zero). If you want to check /// if all bits are unset, use [`FixedBitSet::is_clear`]. /// /// ``` /// # use fixedbitset::FixedBitSet; /// let bitset = FixedBitSet::with_capacity(10); /// assert!(!bitset.is_empty()); /// /// let bitset = FixedBitSet::with_capacity(0); /// assert!(bitset.is_empty()); /// ``` #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// `true` if all bits in the [`FixedBitSet`] are unset. /// /// As opposed to [`FixedBitSet::is_empty`], which is `true` only for /// sets without any bits, set or unset. /// /// ``` /// # use fixedbitset::FixedBitSet; /// let mut bitset = FixedBitSet::with_capacity(10); /// assert!(bitset.is_clear()); /// /// bitset.insert(2); /// assert!(!bitset.is_clear()); /// ``` /// /// This is equivalent to [`bitset.count_ones(..) == 0`](FixedBitSet::count_ones). #[inline] pub fn is_clear(&self) -> bool { self.as_simd_slice().iter().all(|block| block.is_empty()) } /// Finds the lowest set bit in the bitset. /// /// Returns `None` if there aren't any set bits. /// /// ``` /// # use fixedbitset::FixedBitSet; /// let mut bitset = FixedBitSet::with_capacity(10); /// assert_eq!(bitset.minimum(), None); /// /// bitset.insert(2); /// assert_eq!(bitset.minimum(), Some(2)); /// bitset.insert(8); /// assert_eq!(bitset.minimum(), Some(2)); /// ``` #[inline] pub fn minimum(&self) -> Option { let (block_idx, block) = self .as_simd_slice() .iter() .enumerate() .find(|&(_, block)| !block.is_empty())?; let mut inner = 0; let mut trailing = 0; for subblock in block.into_usize_array() { if subblock != 0 { trailing = subblock.trailing_zeros() as usize; break; } else { inner += BITS; } } Some(block_idx * SimdBlock::BITS + inner + trailing) } /// Finds the highest set bit in the bitset. /// /// Returns `None` if there aren't any set bits. /// /// ``` /// # use fixedbitset::FixedBitSet; /// let mut bitset = FixedBitSet::with_capacity(10); /// assert_eq!(bitset.maximum(), None); /// /// bitset.insert(8); /// assert_eq!(bitset.maximum(), Some(8)); /// bitset.insert(2); /// assert_eq!(bitset.maximum(), Some(8)); /// ``` #[inline] pub fn maximum(&self) -> Option { let (block_idx, block) = self .as_simd_slice() .iter() .rev() .enumerate() .find(|&(_, block)| !block.is_empty())?; let mut inner = 0; let mut leading = 0; for subblock in block.into_usize_array().iter().rev() { if *subblock != 0 { leading = subblock.leading_zeros() as usize; break; } else { inner += BITS; } } let max = self.simd_block_len() * SimdBlock::BITS; Some(max - block_idx * SimdBlock::BITS - inner - leading - 1) } /// `true` if all bits in the [`FixedBitSet`] are set. /// /// ``` /// # use fixedbitset::FixedBitSet; /// let mut bitset = FixedBitSet::with_capacity(10); /// assert!(!bitset.is_full()); /// /// bitset.insert_range(..); /// assert!(bitset.is_full()); /// ``` /// /// This is equivalent to [`bitset.count_ones(..) == bitset.len()`](FixedBitSet::count_ones). #[inline] pub fn is_full(&self) -> bool { self.contains_all_in_range(..) } /// Return **true** if the bit is enabled in the **FixedBitSet**, /// **false** otherwise. /// /// Note: bits outside the capacity are always disabled. /// /// Note: Also available with index syntax: `bitset[bit]`. #[inline] pub fn contains(&self, bit: usize) -> bool { (bit < self.length) // SAFETY: The above check ensures that the block and bit are within bounds. .then(|| unsafe { self.contains_unchecked(bit) }) .unwrap_or(false) } /// Return **true** if the bit is enabled in the **FixedBitSet**, /// **false** otherwise. /// /// Note: unlike `contains`, calling this with an invalid `bit` /// is undefined behavior. /// /// # Safety /// `bit` must be less than `self.len()` #[inline] pub unsafe fn contains_unchecked(&self, bit: usize) -> bool { let (block, i) = div_rem(bit, BITS); (self.get_unchecked(block) & (1 << i)) != 0 } /// Clear all bits. #[inline] pub fn clear(&mut self) { for elt in self.as_mut_simd_slice().iter_mut() { *elt = SimdBlock::NONE } } /// Enable `bit`. /// /// **Panics** if **bit** is out of bounds. #[inline] pub fn insert(&mut self, bit: usize) { assert!( bit < self.length, "insert at index {} exceeds fixedbitset size {}", bit, self.length ); // SAFETY: The above assertion ensures that the block is inside the Vec's allocation. unsafe { self.insert_unchecked(bit); } } /// Enable `bit` without any length checks. /// /// # Safety /// `bit` must be less than `self.len()` #[inline] pub unsafe fn insert_unchecked(&mut self, bit: usize) { let (block, i) = div_rem(bit, BITS); // SAFETY: The above assertion ensures that the block is inside the Vec's allocation. unsafe { *self.get_unchecked_mut(block) |= 1 << i; } } /// Disable `bit`. /// /// **Panics** if **bit** is out of bounds. #[inline] pub fn remove(&mut self, bit: usize) { assert!( bit < self.length, "remove at index {} exceeds fixedbitset size {}", bit, self.length ); // SAFETY: The above assertion ensures that the block is inside the Vec's allocation. unsafe { self.remove_unchecked(bit); } } /// Disable `bit` without any bounds checking. /// /// # Safety /// `bit` must be less than `self.len()` #[inline] pub unsafe fn remove_unchecked(&mut self, bit: usize) { let (block, i) = div_rem(bit, BITS); // SAFETY: The above assertion ensures that the block is inside the Vec's allocation. unsafe { *self.get_unchecked_mut(block) &= !(1 << i); } } /// Enable `bit`, and return its previous value. /// /// **Panics** if **bit** is out of bounds. #[inline] pub fn put(&mut self, bit: usize) -> bool { assert!( bit < self.length, "put at index {} exceeds fixedbitset size {}", bit, self.length ); // SAFETY: The above assertion ensures that the block is inside the Vec's allocation. unsafe { self.put_unchecked(bit) } } /// Enable `bit`, and return its previous value without doing any bounds checking. /// /// # Safety /// `bit` must be less than `self.len()` #[inline] pub unsafe fn put_unchecked(&mut self, bit: usize) -> bool { let (block, i) = div_rem(bit, BITS); // SAFETY: The above assertion ensures that the block is inside the Vec's allocation. unsafe { let word = self.get_unchecked_mut(block); let prev = *word & (1 << i) != 0; *word |= 1 << i; prev } } /// Toggle `bit` (inverting its state). /// /// ***Panics*** if **bit** is out of bounds #[inline] pub fn toggle(&mut self, bit: usize) { assert!( bit < self.length, "toggle at index {} exceeds fixedbitset size {}", bit, self.length ); // SAFETY: The above assertion ensures that the block is inside the Vec's allocation. unsafe { self.toggle_unchecked(bit); } } /// Toggle `bit` (inverting its state) without any bounds checking. /// /// # Safety /// `bit` must be less than `self.len()` #[inline] pub unsafe fn toggle_unchecked(&mut self, bit: usize) { let (block, i) = div_rem(bit, BITS); // SAFETY: The above assertion ensures that the block is inside the Vec's allocation. unsafe { *self.get_unchecked_mut(block) ^= 1 << i; } } /// Sets a bit to the provided `enabled` value. /// /// **Panics** if **bit** is out of bounds. #[inline] pub fn set(&mut self, bit: usize, enabled: bool) { assert!( bit < self.length, "set at index {} exceeds fixedbitset size {}", bit, self.length ); // SAFETY: The above assertion ensures that the block is inside the Vec's allocation. unsafe { self.set_unchecked(bit, enabled); } } /// Sets a bit to the provided `enabled` value without doing any bounds checking. /// /// # Safety /// `bit` must be less than `self.len()` #[inline] pub unsafe fn set_unchecked(&mut self, bit: usize, enabled: bool) { let (block, i) = div_rem(bit, BITS); // SAFETY: The above assertion ensures that the block is inside the Vec's allocation. let elt = unsafe { self.get_unchecked_mut(block) }; if enabled { *elt |= 1 << i; } else { *elt &= !(1 << i); } } /// Copies boolean value from specified bit to the specified bit. /// /// If `from` is out-of-bounds, `to` will be unset. /// /// **Panics** if **to** is out of bounds. #[inline] pub fn copy_bit(&mut self, from: usize, to: usize) { assert!( to < self.length, "copy to index {} exceeds fixedbitset size {}", to, self.length ); let enabled = self.contains(from); // SAFETY: The above assertion ensures that the block is inside the Vec's allocation. unsafe { self.set_unchecked(to, enabled) }; } /// Copies boolean value from specified bit to the specified bit. /// /// Note: unlike `copy_bit`, calling this with an invalid `from` /// is undefined behavior. /// /// # Safety /// `to` must both be less than `self.len()` #[inline] pub unsafe fn copy_bit_unchecked(&mut self, from: usize, to: usize) { // SAFETY: Caller must ensure that `from` is within bounds. let enabled = self.contains_unchecked(from); // SAFETY: Caller must ensure that `to` is within bounds. self.set_unchecked(to, enabled); } /// Count the number of set bits in the given bit range. /// /// This function is potentially much faster than using `ones(other).count()`. /// Use `..` to count the whole content of the bitset. /// /// **Panics** if the range extends past the end of the bitset. #[inline] pub fn count_ones(&self, range: T) -> usize { Self::batch_count_ones(Masks::new(range, self.length).map(|(block, mask)| { // SAFETY: Masks cannot return a block index that is out of range. unsafe { *self.get_unchecked(block) & mask } })) } /// Count the number of unset bits in the given bit range. /// /// This function is potentially much faster than using `zeroes(other).count()`. /// Use `..` to count the whole content of the bitset. /// /// **Panics** if the range extends past the end of the bitset. #[inline] pub fn count_zeroes(&self, range: T) -> usize { Self::batch_count_ones(Masks::new(range, self.length).map(|(block, mask)| { // SAFETY: Masks cannot return a block index that is out of range. unsafe { !*self.get_unchecked(block) & mask } })) } /// Sets every bit in the given range to the given state (`enabled`) /// /// Use `..` to set the whole bitset. /// /// **Panics** if the range extends past the end of the bitset. #[inline] pub fn set_range(&mut self, range: T, enabled: bool) { if enabled { self.insert_range(range); } else { self.remove_range(range); } } /// Enables every bit in the given range. /// /// Use `..` to make the whole bitset ones. /// /// **Panics** if the range extends past the end of the bitset. #[inline] pub fn insert_range(&mut self, range: T) { for (block, mask) in Masks::new(range, self.length) { // SAFETY: Masks cannot return a block index that is out of range. let block = unsafe { self.get_unchecked_mut(block) }; *block |= mask; } } /// Disables every bit in the given range. /// /// Use `..` to make the whole bitset ones. /// /// **Panics** if the range extends past the end of the bitset. #[inline] pub fn remove_range(&mut self, range: T) { for (block, mask) in Masks::new(range, self.length) { // SAFETY: Masks cannot return a block index that is out of range. let block = unsafe { self.get_unchecked_mut(block) }; *block &= !mask; } } /// Toggles (inverts) every bit in the given range. /// /// Use `..` to toggle the whole bitset. /// /// **Panics** if the range extends past the end of the bitset. #[inline] pub fn toggle_range(&mut self, range: T) { for (block, mask) in Masks::new(range, self.length) { // SAFETY: Masks cannot return a block index that is out of range. let block = unsafe { self.get_unchecked_mut(block) }; *block ^= mask; } } /// Checks if the bitset contains every bit in the given range. /// /// **Panics** if the range extends past the end of the bitset. #[inline] pub fn contains_all_in_range(&self, range: T) -> bool { for (block, mask) in Masks::new(range, self.length) { // SAFETY: Masks cannot return a block index that is out of range. let block = unsafe { self.get_unchecked(block) }; if block & mask != mask { return false; } } true } /// Checks if the bitset contains at least one set bit in the given range. /// /// **Panics** if the range extends past the end of the bitset. #[inline] pub fn contains_any_in_range(&self, range: T) -> bool { for (block, mask) in Masks::new(range, self.length) { // SAFETY: Masks cannot return a block index that is out of range. let block = unsafe { self.get_unchecked(block) }; if block & mask != 0 { return true; } } false } /// View the bitset as a slice of `Block` blocks #[inline] pub fn as_slice(&self) -> &[Block] { // SAFETY: The bits from both usize and Block are required to be reinterprettable, and // neither have any padding or alignment issues. The slice constructed is within bounds // of the underlying allocation. This function is called with a read-only borrow so // no other write can happen as long as the returned borrow lives. unsafe { let ptr = self.data.as_ptr().cast::(); core::slice::from_raw_parts(ptr, self.usize_len()) } } /// View the bitset as a mutable slice of `Block` blocks. Writing past the bitlength in the last /// will cause `contains` to return potentially incorrect results for bits past the bitlength. #[inline] pub fn as_mut_slice(&mut self) -> &mut [Block] { // SAFETY: The bits from both usize and Block are required to be reinterprettable, and // neither have any padding or alignment issues. The slice constructed is within bounds // of the underlying allocation. This function is called with a mutable borrow so // no other read or write can happen as long as the returned borrow lives. unsafe { let ptr = self.data.as_ptr().cast::(); core::slice::from_raw_parts_mut(ptr, self.usize_len()) } } /// Iterates over all enabled bits. /// /// Iterator element is the index of the `1` bit, type `usize`. #[inline] pub fn ones(&self) -> Ones { match self.as_slice().split_first() { Some((&first_block, rem)) => { let (&last_block, rem) = rem.split_last().unwrap_or((&0, rem)); Ones { bitset_front: first_block, bitset_back: last_block, block_idx_front: 0, block_idx_back: (1 + rem.len()) * BITS, remaining_blocks: rem.iter(), } } None => Ones { bitset_front: 0, bitset_back: 0, block_idx_front: 0, block_idx_back: 0, remaining_blocks: [].iter(), }, } } /// Iterates over all enabled bits. /// /// Iterator element is the index of the `1` bit, type `usize`. /// Unlike `ones`, this function consumes the `FixedBitset`. pub fn into_ones(self) -> IntoOnes { let ptr = self.data.as_ptr().cast(); let len = self.simd_block_len() * SimdBlock::USIZE_COUNT; // SAFETY: // - ptr comes from self.data, so it is valid; // - self.data is valid for self.data.len() SimdBlocks, // which is exactly self.data.len() * SimdBlock::USIZE_COUNT usizes; // - we will keep this slice around only as long as self.data is, // so it won't become dangling. let slice = unsafe { core::slice::from_raw_parts(ptr, len) }; // SAFETY: The data pointer and capacity were created from a Vec initially. The block // len is identical to that of the original. let data: Vec = unsafe { Vec::from_raw_parts( self.data.as_ptr().cast(), self.simd_block_len(), self.capacity, ) }; let mut iter = slice.iter().copied(); core::mem::forget(self); IntoOnes { bitset_front: iter.next().unwrap_or(0), bitset_back: iter.next_back().unwrap_or(0), block_idx_front: 0, block_idx_back: len.saturating_sub(1) * BITS, remaining_blocks: iter, _buf: data, } } /// Iterates over all disabled bits. /// /// Iterator element is the index of the `0` bit, type `usize`. #[inline] pub fn zeroes(&self) -> Zeroes { match self.as_slice().split_first() { Some((&block, rem)) => Zeroes { bitset: !block, block_idx: 0, len: self.len(), remaining_blocks: rem.iter(), }, None => Zeroes { bitset: !0, block_idx: 0, len: self.len(), remaining_blocks: [].iter(), }, } } /// Returns a lazy iterator over the intersection of two `FixedBitSet`s pub fn intersection<'a>(&'a self, other: &'a FixedBitSet) -> Intersection<'a> { Intersection { iter: self.ones(), other, } } /// Returns a lazy iterator over the union of two `FixedBitSet`s. pub fn union<'a>(&'a self, other: &'a FixedBitSet) -> Union<'a> { Union { iter: self.ones().chain(other.difference(self)), } } /// Returns a lazy iterator over the difference of two `FixedBitSet`s. The difference of `a` /// and `b` is the elements of `a` which are not in `b`. pub fn difference<'a>(&'a self, other: &'a FixedBitSet) -> Difference<'a> { Difference { iter: self.ones(), other, } } /// Returns a lazy iterator over the symmetric difference of two `FixedBitSet`s. /// The symmetric difference of `a` and `b` is the elements of one, but not both, sets. pub fn symmetric_difference<'a>(&'a self, other: &'a FixedBitSet) -> SymmetricDifference<'a> { SymmetricDifference { iter: self.difference(other).chain(other.difference(self)), } } /// In-place union of two `FixedBitSet`s. /// /// On calling this method, `self`'s capacity may be increased to match `other`'s. pub fn union_with(&mut self, other: &FixedBitSet) { if other.len() >= self.len() { self.grow(other.len()); } self.as_mut_simd_slice() .iter_mut() .zip(other.as_simd_slice().iter()) .for_each(|(x, y)| *x |= *y); } /// In-place intersection of two `FixedBitSet`s. /// /// On calling this method, `self`'s capacity will remain the same as before. pub fn intersect_with(&mut self, other: &FixedBitSet) { let me = self.as_mut_simd_slice(); let other = other.as_simd_slice(); me.iter_mut().zip(other.iter()).for_each(|(x, y)| { *x &= *y; }); let mn = core::cmp::min(me.len(), other.len()); for wd in &mut me[mn..] { *wd = SimdBlock::NONE; } } /// In-place difference of two `FixedBitSet`s. /// /// On calling this method, `self`'s capacity will remain the same as before. pub fn difference_with(&mut self, other: &FixedBitSet) { self.as_mut_simd_slice() .iter_mut() .zip(other.as_simd_slice().iter()) .for_each(|(x, y)| { *x &= !*y; }); // There's no need to grow self or do any other adjustments. // // * If self is longer than other, the bits at the end of self won't be affected since other // has them implicitly set to 0. // * If other is longer than self, the bits at the end of other are irrelevant since self // has them set to 0 anyway. } /// In-place symmetric difference of two `FixedBitSet`s. /// /// On calling this method, `self`'s capacity may be increased to match `other`'s. pub fn symmetric_difference_with(&mut self, other: &FixedBitSet) { if other.len() >= self.len() { self.grow(other.len()); } self.as_mut_simd_slice() .iter_mut() .zip(other.as_simd_slice().iter()) .for_each(|(x, y)| { *x ^= *y; }); } /// Computes how many bits would be set in the union between two bitsets. /// /// This is potentially much faster than using `union(other).count()`. Unlike /// other methods like using [`union_with`] followed by [`count_ones`], this /// does not mutate in place or require separate allocations. #[inline] pub fn union_count(&self, other: &FixedBitSet) -> usize { let me = self.as_slice(); let other = other.as_slice(); let count = Self::batch_count_ones(me.iter().zip(other.iter()).map(|(x, y)| (*x | *y))); match other.len().cmp(&me.len()) { Ordering::Greater => count + Self::batch_count_ones(other[me.len()..].iter().copied()), Ordering::Less => count + Self::batch_count_ones(me[other.len()..].iter().copied()), Ordering::Equal => count, } } /// Computes how many bits would be set in the intersection between two bitsets. /// /// This is potentially much faster than using `intersection(other).count()`. Unlike /// other methods like using [`intersect_with`] followed by [`count_ones`], this /// does not mutate in place or require separate allocations. #[inline] pub fn intersection_count(&self, other: &FixedBitSet) -> usize { Self::batch_count_ones( self.as_slice() .iter() .zip(other.as_slice()) .map(|(x, y)| (*x & *y)), ) } /// Computes how many bits would be set in the difference between two bitsets. /// /// This is potentially much faster than using `difference(other).count()`. Unlike /// other methods like using [`difference_with`] followed by [`count_ones`], this /// does not mutate in place or require separate allocations. #[inline] pub fn difference_count(&self, other: &FixedBitSet) -> usize { Self::batch_count_ones( self.as_slice() .iter() .zip(other.as_slice().iter()) .map(|(x, y)| (*x & !*y)), ) } /// Computes how many bits would be set in the symmetric difference between two bitsets. /// /// This is potentially much faster than using `symmetric_difference(other).count()`. Unlike /// other methods like using [`symmetric_difference_with`] followed by [`count_ones`], this /// does not mutate in place or require separate allocations. #[inline] pub fn symmetric_difference_count(&self, other: &FixedBitSet) -> usize { let me = self.as_slice(); let other = other.as_slice(); let count = Self::batch_count_ones(me.iter().zip(other.iter()).map(|(x, y)| (*x ^ *y))); match other.len().cmp(&me.len()) { Ordering::Greater => count + Self::batch_count_ones(other[me.len()..].iter().copied()), Ordering::Less => count + Self::batch_count_ones(me[other.len()..].iter().copied()), Ordering::Equal => count, } } /// Returns `true` if `self` has no elements in common with `other`. This /// is equivalent to checking for an empty intersection. pub fn is_disjoint(&self, other: &FixedBitSet) -> bool { self.as_simd_slice() .iter() .zip(other.as_simd_slice()) .all(|(x, y)| (*x & *y).is_empty()) } /// Returns `true` if the set is a subset of another, i.e. `other` contains /// at least all the values in `self`. pub fn is_subset(&self, other: &FixedBitSet) -> bool { let me = self.as_simd_slice(); let other = other.as_simd_slice(); me.iter() .zip(other.iter()) .all(|(x, y)| x.andnot(*y).is_empty()) && me.iter().skip(other.len()).all(|x| x.is_empty()) } /// Returns `true` if the set is a superset of another, i.e. `self` contains /// at least all the values in `other`. pub fn is_superset(&self, other: &FixedBitSet) -> bool { other.is_subset(self) } } impl Hash for FixedBitSet { fn hash(&self, state: &mut H) { self.length.hash(state); self.as_simd_slice().hash(state); } } impl PartialEq for FixedBitSet { fn eq(&self, other: &Self) -> bool { self.length == other.length && self.as_simd_slice().eq(other.as_simd_slice()) } } impl PartialOrd for FixedBitSet { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl Ord for FixedBitSet { fn cmp(&self, other: &Self) -> Ordering { self.length .cmp(&other.length) .then_with(|| self.as_simd_slice().cmp(other.as_simd_slice())) } } impl Default for FixedBitSet { fn default() -> Self { Self::new() } } impl Drop for FixedBitSet { fn drop(&mut self) { // SAFETY: The data pointer and capacity were created from a Vec initially. The block // len is identical to that of the original. drop(unsafe { Vec::from_raw_parts(self.data.as_ptr(), self.simd_block_len(), self.capacity) }); } } impl Binary for FixedBitSet { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { if f.alternate() { f.write_str("0b")?; } for i in 0..self.length { if self[i] { f.write_char('1')?; } else { f.write_char('0')?; } } Ok(()) } } impl Display for FixedBitSet { fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { Binary::fmt(&self, f) } } /// An iterator producing elements in the difference of two sets. /// /// This struct is created by the [`FixedBitSet::difference`] method. pub struct Difference<'a> { iter: Ones<'a>, other: &'a FixedBitSet, } impl<'a> Iterator for Difference<'a> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.iter.by_ref().find(|&nxt| !self.other.contains(nxt)) } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a> DoubleEndedIterator for Difference<'a> { fn next_back(&mut self) -> Option { self.iter .by_ref() .rev() .find(|&nxt| !self.other.contains(nxt)) } } // Difference will continue to return None once it first returns None. impl<'a> FusedIterator for Difference<'a> {} /// An iterator producing elements in the symmetric difference of two sets. /// /// This struct is created by the [`FixedBitSet::symmetric_difference`] method. pub struct SymmetricDifference<'a> { iter: Chain, Difference<'a>>, } impl<'a> Iterator for SymmetricDifference<'a> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.iter.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a> DoubleEndedIterator for SymmetricDifference<'a> { fn next_back(&mut self) -> Option { self.iter.next_back() } } // SymmetricDifference will continue to return None once it first returns None. impl<'a> FusedIterator for SymmetricDifference<'a> {} /// An iterator producing elements in the intersection of two sets. /// /// This struct is created by the [`FixedBitSet::intersection`] method. pub struct Intersection<'a> { iter: Ones<'a>, other: &'a FixedBitSet, } impl<'a> Iterator for Intersection<'a> { type Item = usize; // the bit position of the '1' #[inline] fn next(&mut self) -> Option { self.iter.by_ref().find(|&nxt| self.other.contains(nxt)) } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a> DoubleEndedIterator for Intersection<'a> { fn next_back(&mut self) -> Option { self.iter .by_ref() .rev() .find(|&nxt| self.other.contains(nxt)) } } // Intersection will continue to return None once it first returns None. impl<'a> FusedIterator for Intersection<'a> {} /// An iterator producing elements in the union of two sets. /// /// This struct is created by the [`FixedBitSet::union`] method. pub struct Union<'a> { iter: Chain, Difference<'a>>, } impl<'a> Iterator for Union<'a> { type Item = usize; #[inline] fn next(&mut self) -> Option { self.iter.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a> DoubleEndedIterator for Union<'a> { fn next_back(&mut self) -> Option { self.iter.next_back() } } // Union will continue to return None once it first returns None. impl<'a> FusedIterator for Union<'a> {} struct Masks { first_block: usize, first_mask: usize, last_block: usize, last_mask: usize, } impl Masks { #[inline] fn new(range: T, length: usize) -> Masks { let start = range.start().unwrap_or(0); let end = range.end().unwrap_or(length); assert!( start <= end && end <= length, "invalid range {}..{} for a fixedbitset of size {}", start, end, length ); let (first_block, first_rem) = div_rem(start, BITS); let (last_block, last_rem) = div_rem(end, BITS); Masks { first_block, first_mask: usize::MAX << first_rem, last_block, last_mask: (usize::MAX >> 1) >> (BITS - last_rem - 1), // this is equivalent to `MAX >> (BITS - x)` with correct semantics when x == 0. } } } impl Iterator for Masks { type Item = (usize, usize); #[inline] fn next(&mut self) -> Option { match self.first_block.cmp(&self.last_block) { Ordering::Less => { let res = (self.first_block, self.first_mask); self.first_block += 1; self.first_mask = !0; Some(res) } Ordering::Equal => { let mask = self.first_mask & self.last_mask; let res = if mask == 0 { None } else { Some((self.first_block, mask)) }; self.first_block += 1; res } Ordering::Greater => None, } } #[inline] fn size_hint(&self) -> (usize, Option) { (self.first_block..=self.last_block).size_hint() } } // Masks will continue to return None once it first returns None. impl FusedIterator for Masks {} // Masks's size_hint implementation is exact. It never returns an // unbounded value and always returns an exact number of values. impl ExactSizeIterator for Masks {} /// An iterator producing the indices of the set bit in a set. /// /// This struct is created by the [`FixedBitSet::ones`] method. pub struct Ones<'a> { bitset_front: usize, bitset_back: usize, block_idx_front: usize, block_idx_back: usize, remaining_blocks: core::slice::Iter<'a, usize>, } impl<'a> Ones<'a> { #[inline] pub fn last_positive_bit_and_unset(n: &mut usize) -> usize { // Find the last set bit using x & -x let last_bit = *n & n.wrapping_neg(); // Find the position of the last set bit let position = last_bit.trailing_zeros(); // Unset the last set bit *n &= *n - 1; position as usize } #[inline] fn first_positive_bit_and_unset(n: &mut usize) -> usize { /* Identify the first non zero bit */ let bit_idx = n.leading_zeros(); /* set that bit to zero */ let mask = !((1_usize) << (BITS as u32 - bit_idx - 1)); n.bitand_assign(mask); bit_idx as usize } } impl<'a> DoubleEndedIterator for Ones<'a> { fn next_back(&mut self) -> Option { while self.bitset_back == 0 { match self.remaining_blocks.next_back() { None => { if self.bitset_front != 0 { self.bitset_back = 0; self.block_idx_back = self.block_idx_front; return Some( self.block_idx_front + BITS - Self::first_positive_bit_and_unset(&mut self.bitset_front) - 1, ); } else { return None; } } Some(next_block) => { self.bitset_back = *next_block; self.block_idx_back -= BITS; } }; } Some( self.block_idx_back - Self::first_positive_bit_and_unset(&mut self.bitset_back) + BITS - 1, ) } } impl<'a> Iterator for Ones<'a> { type Item = usize; // the bit position of the '1' #[inline] fn next(&mut self) -> Option { while self.bitset_front == 0 { match self.remaining_blocks.next() { Some(next_block) => { self.bitset_front = *next_block; self.block_idx_front += BITS; } None => { if self.bitset_back != 0 { // not needed for iteration, but for size_hint self.block_idx_front = self.block_idx_back; self.bitset_front = 0; return Some( self.block_idx_back + Self::last_positive_bit_and_unset(&mut self.bitset_back), ); } else { return None; } } }; } Some(self.block_idx_front + Self::last_positive_bit_and_unset(&mut self.bitset_front)) } #[inline] fn size_hint(&self) -> (usize, Option) { ( 0, (Some(self.block_idx_back - self.block_idx_front + 2 * BITS)), ) } } // Ones will continue to return None once it first returns None. impl<'a> FusedIterator for Ones<'a> {} /// An iterator producing the indices of the set bit in a set. /// /// This struct is created by the [`FixedBitSet::ones`] method. pub struct Zeroes<'a> { bitset: usize, block_idx: usize, len: usize, remaining_blocks: core::slice::Iter<'a, usize>, } impl<'a> Iterator for Zeroes<'a> { type Item = usize; // the bit position of the '1' #[inline] fn next(&mut self) -> Option { while self.bitset == 0 { self.bitset = !*self.remaining_blocks.next()?; self.block_idx += BITS; } let t = self.bitset & (0_usize).wrapping_sub(self.bitset); let r = self.bitset.trailing_zeros() as usize; self.bitset ^= t; let bit = self.block_idx + r; // The remaining zeroes beyond the length of the bitset must be excluded. if bit < self.len { Some(bit) } else { None } } #[inline] fn size_hint(&self) -> (usize, Option) { (0, Some(self.len)) } } // Zeroes will stop returning Some when exhausted. impl<'a> FusedIterator for Zeroes<'a> {} impl Clone for FixedBitSet { #[inline] fn clone(&self) -> Self { Self::from_blocks_and_len(Vec::from(self.as_simd_slice()), self.length) } #[inline] fn clone_from(&mut self, source: &Self) { if self.length < source.length { // SAFETY: `fill` is uninitialized, but is immediately initialized from `source`. unsafe { self.grow_inner(source.length, MaybeUninit::uninit()) }; } let me = self.as_mut_simd_slice_uninit(); let them = source.as_simd_slice_uninit(); match me.len().cmp(&them.len()) { Ordering::Greater => { let (head, tail) = me.split_at_mut(them.len()); head.copy_from_slice(them); tail.fill(MaybeUninit::new(SimdBlock::NONE)); } Ordering::Equal => me.copy_from_slice(them), // The grow_inner above ensures that self is at least as large as source. // so this branch is unreachable. Ordering::Less => {} } self.length = source.length; } } /// Return **true** if the bit is enabled in the bitset, /// or **false** otherwise. /// /// Note: bits outside the capacity are always disabled, and thus /// indexing a FixedBitSet will not panic. impl Index for FixedBitSet { type Output = bool; #[inline] fn index(&self, bit: usize) -> &bool { if self.contains(bit) { &true } else { &false } } } /// Sets the bit at index **i** to **true** for each item **i** in the input **src**. impl Extend for FixedBitSet { fn extend>(&mut self, src: I) { let iter = src.into_iter(); for i in iter { if i >= self.len() { self.grow(i + 1); } self.put(i); } } } /// Return a FixedBitSet containing bits set to **true** for every bit index in /// the iterator, other bits are set to **false**. impl FromIterator for FixedBitSet { fn from_iter>(src: I) -> Self { let mut fbs = FixedBitSet::with_capacity(0); fbs.extend(src); fbs } } pub struct IntoOnes { bitset_front: Block, bitset_back: Block, block_idx_front: usize, block_idx_back: usize, remaining_blocks: core::iter::Copied>, // Keep buf along so that `remaining_blocks` remains valid. _buf: Vec, } impl IntoOnes { #[inline] pub fn last_positive_bit_and_unset(n: &mut Block) -> usize { // Find the last set bit using x & -x let last_bit = *n & n.wrapping_neg(); // Find the position of the last set bit let position = last_bit.trailing_zeros(); // Unset the last set bit *n &= *n - 1; position as usize } #[inline] fn first_positive_bit_and_unset(n: &mut Block) -> usize { /* Identify the first non zero bit */ let bit_idx = n.leading_zeros(); /* set that bit to zero */ let mask = !((1_usize) << (BITS as u32 - bit_idx - 1)); n.bitand_assign(mask); bit_idx as usize } } impl DoubleEndedIterator for IntoOnes { fn next_back(&mut self) -> Option { while self.bitset_back == 0 { match self.remaining_blocks.next_back() { None => { if self.bitset_front != 0 { self.bitset_back = 0; self.block_idx_back = self.block_idx_front; return Some( self.block_idx_front + BITS - Self::first_positive_bit_and_unset(&mut self.bitset_front) - 1, ); } else { return None; } } Some(next_block) => { self.bitset_back = next_block; self.block_idx_back -= BITS; } }; } Some( self.block_idx_back - Self::first_positive_bit_and_unset(&mut self.bitset_back) + BITS - 1, ) } } impl Iterator for IntoOnes { type Item = usize; // the bit position of the '1' #[inline] fn next(&mut self) -> Option { while self.bitset_front == 0 { match self.remaining_blocks.next() { Some(next_block) => { self.bitset_front = next_block; self.block_idx_front += BITS; } None => { if self.bitset_back != 0 { // not needed for iteration, but for size_hint self.block_idx_front = self.block_idx_back; self.bitset_front = 0; return Some( self.block_idx_back + Self::last_positive_bit_and_unset(&mut self.bitset_back), ); } else { return None; } } }; } Some(self.block_idx_front + Self::last_positive_bit_and_unset(&mut self.bitset_front)) } #[inline] fn size_hint(&self) -> (usize, Option) { ( 0, (Some(self.block_idx_back - self.block_idx_front + 2 * BITS)), ) } } // Ones will continue to return None once it first returns None. impl FusedIterator for IntoOnes {} impl<'a> BitAnd for &'a FixedBitSet { type Output = FixedBitSet; fn bitand(self, other: &FixedBitSet) -> FixedBitSet { let (short, long) = { if self.len() <= other.len() { (self.as_simd_slice(), other.as_simd_slice()) } else { (other.as_simd_slice(), self.as_simd_slice()) } }; let mut data = Vec::from(short); for (data, block) in data.iter_mut().zip(long.iter()) { *data &= *block; } let len = core::cmp::min(self.len(), other.len()); FixedBitSet::from_blocks_and_len(data, len) } } impl BitAndAssign for FixedBitSet { fn bitand_assign(&mut self, other: Self) { self.intersect_with(&other); } } impl BitAndAssign<&Self> for FixedBitSet { fn bitand_assign(&mut self, other: &Self) { self.intersect_with(other); } } impl<'a> BitOr for &'a FixedBitSet { type Output = FixedBitSet; fn bitor(self, other: &FixedBitSet) -> FixedBitSet { let (short, long) = { if self.len() <= other.len() { (self.as_simd_slice(), other.as_simd_slice()) } else { (other.as_simd_slice(), self.as_simd_slice()) } }; let mut data = Vec::from(long); for (data, block) in data.iter_mut().zip(short.iter()) { *data |= *block; } let len = core::cmp::max(self.len(), other.len()); FixedBitSet::from_blocks_and_len(data, len) } } impl BitOrAssign for FixedBitSet { fn bitor_assign(&mut self, other: Self) { self.union_with(&other); } } impl BitOrAssign<&Self> for FixedBitSet { fn bitor_assign(&mut self, other: &Self) { self.union_with(other); } } impl<'a> BitXor for &'a FixedBitSet { type Output = FixedBitSet; fn bitxor(self, other: &FixedBitSet) -> FixedBitSet { let (short, long) = { if self.len() <= other.len() { (self.as_simd_slice(), other.as_simd_slice()) } else { (other.as_simd_slice(), self.as_simd_slice()) } }; let mut data = Vec::from(long); for (data, block) in data.iter_mut().zip(short.iter()) { *data ^= *block; } let len = core::cmp::max(self.len(), other.len()); FixedBitSet::from_blocks_and_len(data, len) } } impl BitXorAssign for FixedBitSet { fn bitxor_assign(&mut self, other: Self) { self.symmetric_difference_with(&other); } } impl BitXorAssign<&Self> for FixedBitSet { fn bitxor_assign(&mut self, other: &Self) { self.symmetric_difference_with(other); } }