// This is a part of Chrono. // See README.md and LICENSE.txt for details. //! ISO 8601 date and time with time zone. #[cfg(all(feature = "alloc", not(feature = "std"), not(test)))] use alloc::string::String; use core::borrow::Borrow; use core::cmp::Ordering; use core::fmt::Write; use core::ops::{Add, AddAssign, Sub, SubAssign}; use core::time::Duration; use core::{fmt, hash, str}; #[cfg(feature = "std")] use std::time::{SystemTime, UNIX_EPOCH}; #[allow(deprecated)] use crate::Date; #[cfg(all(feature = "unstable-locales", feature = "alloc"))] use crate::format::Locale; #[cfg(feature = "alloc")] use crate::format::{DelayedFormat, SecondsFormat, write_rfc2822, write_rfc3339}; use crate::format::{ Fixed, Item, ParseError, ParseResult, Parsed, StrftimeItems, TOO_LONG, parse, parse_and_remainder, parse_rfc3339, }; use crate::naive::{Days, IsoWeek, NaiveDate, NaiveDateTime, NaiveTime}; #[cfg(feature = "clock")] use crate::offset::Local; use crate::offset::{FixedOffset, LocalResult, Offset, TimeZone, Utc}; use crate::{Datelike, Months, TimeDelta, Timelike, Weekday}; use crate::{expect, try_opt}; #[cfg(any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"))] use rkyv::{Archive, Deserialize, Serialize}; /// documented at re-export site #[cfg(feature = "serde")] pub(super) mod serde; #[cfg(test)] mod tests; /// ISO 8601 combined date and time with time zone. /// /// There are some constructors implemented here (the `from_*` methods), but /// the general-purpose constructors are all via the methods on the /// [`TimeZone`](./offset/trait.TimeZone.html) implementations. #[derive(Clone)] #[cfg_attr( any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"), derive(Archive, Deserialize, Serialize), archive(compare(PartialEq, PartialOrd)) )] #[cfg_attr(feature = "rkyv-validation", archive(check_bytes))] pub struct DateTime { datetime: NaiveDateTime, offset: Tz::Offset, } /// The minimum possible `DateTime`. #[deprecated(since = "0.4.20", note = "Use DateTime::MIN_UTC instead")] pub const MIN_DATETIME: DateTime = DateTime::::MIN_UTC; /// The maximum possible `DateTime`. #[deprecated(since = "0.4.20", note = "Use DateTime::MAX_UTC instead")] pub const MAX_DATETIME: DateTime = DateTime::::MAX_UTC; impl DateTime { /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`. /// /// This is a low-level method, intended for use cases such as deserializing a `DateTime` or /// passing it through FFI. /// /// For regular use you will probably want to use a method such as /// [`TimeZone::from_local_datetime`] or [`NaiveDateTime::and_local_timezone`] instead. /// /// # Example /// /// ``` /// # #[cfg(feature = "clock")] { /// use chrono::{DateTime, Local}; /// /// let dt = Local::now(); /// // Get components /// let naive_utc = dt.naive_utc(); /// let offset = dt.offset().clone(); /// // Serialize, pass through FFI... and recreate the `DateTime`: /// let dt_new = DateTime::::from_naive_utc_and_offset(naive_utc, offset); /// assert_eq!(dt, dt_new); /// # } /// ``` #[inline] #[must_use] pub const fn from_naive_utc_and_offset( datetime: NaiveDateTime, offset: Tz::Offset, ) -> DateTime { DateTime { datetime, offset } } /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`. #[inline] #[must_use] #[deprecated( since = "0.4.27", note = "Use TimeZone::from_utc_datetime() or DateTime::from_naive_utc_and_offset instead" )] pub fn from_utc(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime { DateTime { datetime, offset } } /// Makes a new `DateTime` from a `NaiveDateTime` in *local* time and an `Offset`. /// /// # Panics /// /// Panics if the local datetime can't be converted to UTC because it would be out of range. /// /// This can happen if `datetime` is near the end of the representable range of `NaiveDateTime`, /// and the offset from UTC pushes it beyond that. #[inline] #[must_use] #[deprecated( since = "0.4.27", note = "Use TimeZone::from_local_datetime() or NaiveDateTime::and_local_timezone instead" )] pub fn from_local(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime { let datetime_utc = datetime - offset.fix(); DateTime { datetime: datetime_utc, offset } } /// Retrieves the date component with an associated timezone. /// /// Unless you are immediately planning on turning this into a `DateTime` /// with the same timezone you should use the [`date_naive`](DateTime::date_naive) method. /// /// [`NaiveDate`] is a more well-defined type, and has more traits implemented on it, /// so should be preferred to [`Date`] any time you truly want to operate on dates. /// /// # Panics /// /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This /// method will panic if the offset from UTC would push the local date outside of the /// representable range of a [`Date`]. #[inline] #[deprecated(since = "0.4.23", note = "Use `date_naive()` instead")] #[allow(deprecated)] #[must_use] pub fn date(&self) -> Date { Date::from_utc(self.naive_local().date(), self.offset.clone()) } /// Retrieves the date component. /// /// # Panics /// /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This /// method will panic if the offset from UTC would push the local date outside of the /// representable range of a [`NaiveDate`]. /// /// # Example /// /// ``` /// use chrono::prelude::*; /// /// let date: DateTime = Utc.with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap(); /// let other: DateTime = /// FixedOffset::east_opt(23).unwrap().with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap(); /// assert_eq!(date.date_naive(), other.date_naive()); /// ``` #[inline] #[must_use] pub fn date_naive(&self) -> NaiveDate { self.naive_local().date() } /// Retrieves the time component. #[inline] #[must_use] pub fn time(&self) -> NaiveTime { self.datetime.time() + self.offset.fix() } /// Returns the number of non-leap seconds since January 1, 1970 0:00:00 UTC /// (aka "UNIX timestamp"). /// /// The reverse operation of creating a [`DateTime`] from a timestamp can be performed /// using [`from_timestamp`](DateTime::from_timestamp) or [`TimeZone::timestamp_opt`]. /// /// ``` /// use chrono::{DateTime, TimeZone, Utc}; /// /// let dt: DateTime = Utc.with_ymd_and_hms(2015, 5, 15, 0, 0, 0).unwrap(); /// assert_eq!(dt.timestamp(), 1431648000); /// /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt); /// ``` #[inline] #[must_use] pub const fn timestamp(&self) -> i64 { let gregorian_day = self.datetime.date().num_days_from_ce() as i64; let seconds_from_midnight = self.datetime.time().num_seconds_from_midnight() as i64; (gregorian_day - UNIX_EPOCH_DAY) * 86_400 + seconds_from_midnight } /// Returns the number of non-leap-milliseconds since January 1, 1970 UTC. /// /// # Example /// /// ``` /// use chrono::{NaiveDate, Utc}; /// /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1) /// .unwrap() /// .and_hms_milli_opt(0, 0, 1, 444) /// .unwrap() /// .and_local_timezone(Utc) /// .unwrap(); /// assert_eq!(dt.timestamp_millis(), 1_444); /// /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9) /// .unwrap() /// .and_hms_milli_opt(1, 46, 40, 555) /// .unwrap() /// .and_local_timezone(Utc) /// .unwrap(); /// assert_eq!(dt.timestamp_millis(), 1_000_000_000_555); /// ``` #[inline] #[must_use] pub const fn timestamp_millis(&self) -> i64 { let as_ms = self.timestamp() * 1000; as_ms + self.timestamp_subsec_millis() as i64 } /// Returns the number of non-leap-microseconds since January 1, 1970 UTC. /// /// # Example /// /// ``` /// use chrono::{NaiveDate, Utc}; /// /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1) /// .unwrap() /// .and_hms_micro_opt(0, 0, 1, 444) /// .unwrap() /// .and_local_timezone(Utc) /// .unwrap(); /// assert_eq!(dt.timestamp_micros(), 1_000_444); /// /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9) /// .unwrap() /// .and_hms_micro_opt(1, 46, 40, 555) /// .unwrap() /// .and_local_timezone(Utc) /// .unwrap(); /// assert_eq!(dt.timestamp_micros(), 1_000_000_000_000_555); /// ``` #[inline] #[must_use] pub const fn timestamp_micros(&self) -> i64 { let as_us = self.timestamp() * 1_000_000; as_us + self.timestamp_subsec_micros() as i64 } /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC. /// /// # Panics /// /// An `i64` with nanosecond precision can span a range of ~584 years. This function panics on /// an out of range `DateTime`. /// /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192 /// and 2262-04-11T23:47:16.854775807. #[deprecated(since = "0.4.31", note = "use `timestamp_nanos_opt()` instead")] #[inline] #[must_use] pub const fn timestamp_nanos(&self) -> i64 { expect( self.timestamp_nanos_opt(), "value can not be represented in a timestamp with nanosecond precision.", ) } /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC. /// /// # Errors /// /// An `i64` with nanosecond precision can span a range of ~584 years. This function returns /// `None` on an out of range `DateTime`. /// /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192 /// and 2262-04-11T23:47:16.854775807. /// /// # Example /// /// ``` /// use chrono::{NaiveDate, Utc}; /// /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1) /// .unwrap() /// .and_hms_nano_opt(0, 0, 1, 444) /// .unwrap() /// .and_local_timezone(Utc) /// .unwrap(); /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_444)); /// /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9) /// .unwrap() /// .and_hms_nano_opt(1, 46, 40, 555) /// .unwrap() /// .and_local_timezone(Utc) /// .unwrap(); /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_000_000_000_555)); /// /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21) /// .unwrap() /// .and_hms_nano_opt(0, 12, 43, 145_224_192) /// .unwrap() /// .and_local_timezone(Utc) /// .unwrap(); /// assert_eq!(dt.timestamp_nanos_opt(), Some(-9_223_372_036_854_775_808)); /// /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11) /// .unwrap() /// .and_hms_nano_opt(23, 47, 16, 854_775_807) /// .unwrap() /// .and_local_timezone(Utc) /// .unwrap(); /// assert_eq!(dt.timestamp_nanos_opt(), Some(9_223_372_036_854_775_807)); /// /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21) /// .unwrap() /// .and_hms_nano_opt(0, 12, 43, 145_224_191) /// .unwrap() /// .and_local_timezone(Utc) /// .unwrap(); /// assert_eq!(dt.timestamp_nanos_opt(), None); /// /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11) /// .unwrap() /// .and_hms_nano_opt(23, 47, 16, 854_775_808) /// .unwrap() /// .and_local_timezone(Utc) /// .unwrap(); /// assert_eq!(dt.timestamp_nanos_opt(), None); /// ``` #[inline] #[must_use] pub const fn timestamp_nanos_opt(&self) -> Option { let mut timestamp = self.timestamp(); let mut subsec_nanos = self.timestamp_subsec_nanos() as i64; // `(timestamp * 1_000_000_000) + subsec_nanos` may create a temporary that underflows while // the final value can be represented as an `i64`. // As workaround we converting the negative case to: // `((timestamp + 1) * 1_000_000_000) + (ns - 1_000_000_000)`` // // Also see . if timestamp < 0 { subsec_nanos -= 1_000_000_000; timestamp += 1; } try_opt!(timestamp.checked_mul(1_000_000_000)).checked_add(subsec_nanos) } /// Returns the number of milliseconds since the last second boundary. /// /// In event of a leap second this may exceed 999. #[inline] #[must_use] pub const fn timestamp_subsec_millis(&self) -> u32 { self.timestamp_subsec_nanos() / 1_000_000 } /// Returns the number of microseconds since the last second boundary. /// /// In event of a leap second this may exceed 999,999. #[inline] #[must_use] pub const fn timestamp_subsec_micros(&self) -> u32 { self.timestamp_subsec_nanos() / 1_000 } /// Returns the number of nanoseconds since the last second boundary /// /// In event of a leap second this may exceed 999,999,999. #[inline] #[must_use] pub const fn timestamp_subsec_nanos(&self) -> u32 { self.datetime.time().nanosecond() } /// Retrieves an associated offset from UTC. #[inline] #[must_use] pub const fn offset(&self) -> &Tz::Offset { &self.offset } /// Retrieves an associated time zone. #[inline] #[must_use] pub fn timezone(&self) -> Tz { TimeZone::from_offset(&self.offset) } /// Changes the associated time zone. /// The returned `DateTime` references the same instant of time from the perspective of the /// provided time zone. #[inline] #[must_use] pub fn with_timezone(&self, tz: &Tz2) -> DateTime { tz.from_utc_datetime(&self.datetime) } /// Fix the offset from UTC to its current value, dropping the associated timezone information. /// This it useful for converting a generic `DateTime` to `DateTime`. #[inline] #[must_use] pub fn fixed_offset(&self) -> DateTime { self.with_timezone(&self.offset().fix()) } /// Turn this `DateTime` into a `DateTime`, dropping the offset and associated timezone /// information. #[inline] #[must_use] pub const fn to_utc(&self) -> DateTime { DateTime { datetime: self.datetime, offset: Utc } } /// Adds given `TimeDelta` to the current date and time. /// /// # Errors /// /// Returns `None` if the resulting date would be out of range. #[inline] #[must_use] pub fn checked_add_signed(self, rhs: TimeDelta) -> Option> { let datetime = self.datetime.checked_add_signed(rhs)?; let tz = self.timezone(); Some(tz.from_utc_datetime(&datetime)) } /// Adds given `Months` to the current date and time. /// /// Uses the last day of the month if the day does not exist in the resulting month. /// /// See [`NaiveDate::checked_add_months`] for more details on behavior. /// /// # Errors /// /// Returns `None` if: /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. /// - The resulting UTC datetime would be out of range. /// - The resulting local datetime would be out of range (unless `months` is zero). #[must_use] pub fn checked_add_months(self, months: Months) -> Option> { // `NaiveDate::checked_add_months` has a fast path for `Months(0)` that does not validate // the resulting date, with which we can return `Some` even for an out of range local // datetime. self.overflowing_naive_local() .checked_add_months(months)? .and_local_timezone(Tz::from_offset(&self.offset)) .single() } /// Subtracts given `TimeDelta` from the current date and time. /// /// # Errors /// /// Returns `None` if the resulting date would be out of range. #[inline] #[must_use] pub fn checked_sub_signed(self, rhs: TimeDelta) -> Option> { let datetime = self.datetime.checked_sub_signed(rhs)?; let tz = self.timezone(); Some(tz.from_utc_datetime(&datetime)) } /// Subtracts given `Months` from the current date and time. /// /// Uses the last day of the month if the day does not exist in the resulting month. /// /// See [`NaiveDate::checked_sub_months`] for more details on behavior. /// /// # Errors /// /// Returns `None` if: /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. /// - The resulting UTC datetime would be out of range. /// - The resulting local datetime would be out of range (unless `months` is zero). #[must_use] pub fn checked_sub_months(self, months: Months) -> Option> { // `NaiveDate::checked_sub_months` has a fast path for `Months(0)` that does not validate // the resulting date, with which we can return `Some` even for an out of range local // datetime. self.overflowing_naive_local() .checked_sub_months(months)? .and_local_timezone(Tz::from_offset(&self.offset)) .single() } /// Add a duration in [`Days`] to the date part of the `DateTime`. /// /// # Errors /// /// Returns `None` if: /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. /// - The resulting UTC datetime would be out of range. /// - The resulting local datetime would be out of range (unless `days` is zero). #[must_use] pub fn checked_add_days(self, days: Days) -> Option { if days == Days::new(0) { return Some(self); } // `NaiveDate::add_days` has a fast path if the result remains within the same year, that // does not validate the resulting date. This allows us to return `Some` even for an out of // range local datetime when adding `Days(0)`. self.overflowing_naive_local() .checked_add_days(days) .and_then(|dt| self.timezone().from_local_datetime(&dt).single()) .filter(|dt| dt <= &DateTime::::MAX_UTC) } /// Subtract a duration in [`Days`] from the date part of the `DateTime`. /// /// # Errors /// /// Returns `None` if: /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. /// - The resulting UTC datetime would be out of range. /// - The resulting local datetime would be out of range (unless `days` is zero). #[must_use] pub fn checked_sub_days(self, days: Days) -> Option { // `NaiveDate::add_days` has a fast path if the result remains within the same year, that // does not validate the resulting date. This allows us to return `Some` even for an out of // range local datetime when adding `Days(0)`. self.overflowing_naive_local() .checked_sub_days(days) .and_then(|dt| self.timezone().from_local_datetime(&dt).single()) .filter(|dt| dt >= &DateTime::::MIN_UTC) } /// Subtracts another `DateTime` from the current date and time. /// This does not overflow or underflow at all. #[inline] #[must_use] pub fn signed_duration_since( self, rhs: impl Borrow>, ) -> TimeDelta { self.datetime.signed_duration_since(rhs.borrow().datetime) } /// Returns a view to the naive UTC datetime. #[inline] #[must_use] pub const fn naive_utc(&self) -> NaiveDateTime { self.datetime } /// Returns a view to the naive local datetime. /// /// # Panics /// /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This /// method will panic if the offset from UTC would push the local datetime outside of the /// representable range of a [`NaiveDateTime`]. #[inline] #[must_use] pub fn naive_local(&self) -> NaiveDateTime { self.datetime .checked_add_offset(self.offset.fix()) .expect("Local time out of range for `NaiveDateTime`") } /// Returns the naive local datetime. /// /// This makes use of the buffer space outside of the representable range of values of /// `NaiveDateTime`. The result can be used as intermediate value, but should never be exposed /// outside chrono. #[inline] #[must_use] pub(crate) fn overflowing_naive_local(&self) -> NaiveDateTime { self.datetime.overflowing_add_offset(self.offset.fix()) } /// Retrieve the elapsed years from now to the given [`DateTime`]. /// /// # Errors /// /// Returns `None` if `base > self`. #[must_use] pub fn years_since(&self, base: Self) -> Option { let mut years = self.year() - base.year(); let earlier_time = (self.month(), self.day(), self.time()) < (base.month(), base.day(), base.time()); years -= match earlier_time { true => 1, false => 0, }; match years >= 0 { true => Some(years as u32), false => None, } } /// Returns an RFC 2822 date and time string such as `Tue, 1 Jul 2003 10:52:37 +0200`. /// /// # Panics /// /// Panics if the date can not be represented in this format: the year may not be negative and /// can not have more than 4 digits. #[cfg(feature = "alloc")] #[must_use] pub fn to_rfc2822(&self) -> String { let mut result = String::with_capacity(32); write_rfc2822(&mut result, self.overflowing_naive_local(), self.offset.fix()) .expect("writing rfc2822 datetime to string should never fail"); result } /// Returns an RFC 3339 and ISO 8601 date and time string such as `1996-12-19T16:39:57-08:00`. #[cfg(feature = "alloc")] #[must_use] pub fn to_rfc3339(&self) -> String { // For some reason a string with a capacity less than 32 is ca 20% slower when benchmarking. let mut result = String::with_capacity(32); let naive = self.overflowing_naive_local(); let offset = self.offset.fix(); write_rfc3339(&mut result, naive, offset, SecondsFormat::AutoSi, false) .expect("writing rfc3339 datetime to string should never fail"); result } /// Return an RFC 3339 and ISO 8601 date and time string with subseconds /// formatted as per `SecondsFormat`. /// /// If `use_z` is true and the timezone is UTC (offset 0), uses `Z` as /// per [`Fixed::TimezoneOffsetColonZ`]. If `use_z` is false, uses /// [`Fixed::TimezoneOffsetColon`] /// /// # Examples /// /// ```rust /// # use chrono::{FixedOffset, SecondsFormat, TimeZone, NaiveDate}; /// let dt = NaiveDate::from_ymd_opt(2018, 1, 26) /// .unwrap() /// .and_hms_micro_opt(18, 30, 9, 453_829) /// .unwrap() /// .and_utc(); /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, false), "2018-01-26T18:30:09.453+00:00"); /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, true), "2018-01-26T18:30:09.453Z"); /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T18:30:09Z"); /// /// let pst = FixedOffset::east_opt(8 * 60 * 60).unwrap(); /// let dt = pst /// .from_local_datetime( /// &NaiveDate::from_ymd_opt(2018, 1, 26) /// .unwrap() /// .and_hms_micro_opt(10, 30, 9, 453_829) /// .unwrap(), /// ) /// .unwrap(); /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T10:30:09+08:00"); /// ``` #[cfg(feature = "alloc")] #[must_use] pub fn to_rfc3339_opts(&self, secform: SecondsFormat, use_z: bool) -> String { let mut result = String::with_capacity(38); write_rfc3339(&mut result, self.naive_local(), self.offset.fix(), secform, use_z) .expect("writing rfc3339 datetime to string should never fail"); result } /// Set the time to a new fixed time on the existing date. /// /// # Errors /// /// Returns `LocalResult::None` if the datetime is at the edge of the representable range for a /// `DateTime`, and `with_time` would push the value in UTC out of range. /// /// # Example /// /// ``` /// # #[cfg(feature = "clock")] { /// use chrono::{Local, NaiveTime}; /// /// let noon = NaiveTime::from_hms_opt(12, 0, 0).unwrap(); /// let today_noon = Local::now().with_time(noon); /// let today_midnight = Local::now().with_time(NaiveTime::MIN); /// /// assert_eq!(today_noon.single().unwrap().time(), noon); /// assert_eq!(today_midnight.single().unwrap().time(), NaiveTime::MIN); /// # } /// ``` #[must_use] pub fn with_time(&self, time: NaiveTime) -> LocalResult { self.timezone().from_local_datetime(&self.overflowing_naive_local().date().and_time(time)) } /// The minimum possible `DateTime`. pub const MIN_UTC: DateTime = DateTime { datetime: NaiveDateTime::MIN, offset: Utc }; /// The maximum possible `DateTime`. pub const MAX_UTC: DateTime = DateTime { datetime: NaiveDateTime::MAX, offset: Utc }; } impl DateTime { /// Makes a new `DateTime` from the number of non-leap seconds /// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp") /// and the number of nanoseconds since the last whole non-leap second. /// /// This is guaranteed to round-trip with regard to [`timestamp`](DateTime::timestamp) and /// [`timestamp_subsec_nanos`](DateTime::timestamp_subsec_nanos). /// /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use /// [`TimeZone::timestamp_opt`] or [`DateTime::with_timezone`]. /// /// The nanosecond part can exceed 1,000,000,000 in order to represent a /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`. /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.) /// /// # Errors /// /// Returns `None` on out-of-range number of seconds and/or /// invalid nanosecond, otherwise returns `Some(DateTime {...})`. /// /// # Example /// /// ``` /// use chrono::DateTime; /// /// let dt = DateTime::from_timestamp(1431648000, 0).expect("invalid timestamp"); /// /// assert_eq!(dt.to_string(), "2015-05-15 00:00:00 UTC"); /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt); /// ``` #[inline] #[must_use] pub const fn from_timestamp(secs: i64, nsecs: u32) -> Option { let days = secs.div_euclid(86_400) + UNIX_EPOCH_DAY; let secs = secs.rem_euclid(86_400); if days < i32::MIN as i64 || days > i32::MAX as i64 { return None; } let date = try_opt!(NaiveDate::from_num_days_from_ce_opt(days as i32)); let time = try_opt!(NaiveTime::from_num_seconds_from_midnight_opt(secs as u32, nsecs)); Some(date.and_time(time).and_utc()) } /// Makes a new `DateTime` from the number of non-leap milliseconds /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp"). /// /// This is guaranteed to round-trip with [`timestamp_millis`](DateTime::timestamp_millis). /// /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use /// [`TimeZone::timestamp_millis_opt`] or [`DateTime::with_timezone`]. /// /// # Errors /// /// Returns `None` on out-of-range number of milliseconds, otherwise returns `Some(DateTime {...})`. /// /// # Example /// /// ``` /// use chrono::DateTime; /// /// let dt = DateTime::from_timestamp_millis(947638923004).expect("invalid timestamp"); /// /// assert_eq!(dt.to_string(), "2000-01-12 01:02:03.004 UTC"); /// assert_eq!(DateTime::from_timestamp_millis(dt.timestamp_millis()).unwrap(), dt); /// ``` #[inline] #[must_use] pub const fn from_timestamp_millis(millis: i64) -> Option { let secs = millis.div_euclid(1000); let nsecs = millis.rem_euclid(1000) as u32 * 1_000_000; Self::from_timestamp(secs, nsecs) } /// Creates a new `DateTime` from the number of non-leap microseconds /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp"). /// /// This is guaranteed to round-trip with [`timestamp_micros`](DateTime::timestamp_micros). /// /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use /// [`TimeZone::timestamp_micros`] or [`DateTime::with_timezone`]. /// /// # Errors /// /// Returns `None` if the number of microseconds would be out of range for a `NaiveDateTime` /// (more than ca. 262,000 years away from common era) /// /// # Example /// /// ``` /// use chrono::DateTime; /// /// let timestamp_micros: i64 = 1662921288000000; // Sun, 11 Sep 2022 18:34:48 UTC /// let dt = DateTime::from_timestamp_micros(timestamp_micros); /// assert!(dt.is_some()); /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp").timestamp_micros()); /// /// // Negative timestamps (before the UNIX epoch) are supported as well. /// let timestamp_micros: i64 = -2208936075000000; // Mon, 1 Jan 1900 14:38:45 UTC /// let dt = DateTime::from_timestamp_micros(timestamp_micros); /// assert!(dt.is_some()); /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp").timestamp_micros()); /// ``` #[inline] #[must_use] pub const fn from_timestamp_micros(micros: i64) -> Option { let secs = micros.div_euclid(1_000_000); let nsecs = micros.rem_euclid(1_000_000) as u32 * 1000; Self::from_timestamp(secs, nsecs) } /// Creates a new [`DateTime`] from the number of non-leap nanoseconds /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp"). /// /// This is guaranteed to round-trip with [`timestamp_nanos`](DateTime::timestamp_nanos). /// /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use /// [`TimeZone::timestamp_nanos`] or [`DateTime::with_timezone`]. /// /// The UNIX epoch starts on midnight, January 1, 1970, UTC. /// /// An `i64` with nanosecond precision can span a range of ~584 years. Because all values can /// be represented as a `DateTime` this method never fails. /// /// # Example /// /// ``` /// use chrono::DateTime; /// /// let timestamp_nanos: i64 = 1662921288_000_000_000; // Sun, 11 Sep 2022 18:34:48 UTC /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos); /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap()); /// /// // Negative timestamps (before the UNIX epoch) are supported as well. /// let timestamp_nanos: i64 = -2208936075_000_000_000; // Mon, 1 Jan 1900 14:38:45 UTC /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos); /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap()); /// ``` #[inline] #[must_use] pub const fn from_timestamp_nanos(nanos: i64) -> Self { let secs = nanos.div_euclid(1_000_000_000); let nsecs = nanos.rem_euclid(1_000_000_000) as u32; expect(Self::from_timestamp(secs, nsecs), "timestamp in nanos is always in range") } /// The Unix Epoch, 1970-01-01 00:00:00 UTC. pub const UNIX_EPOCH: Self = expect(NaiveDate::from_ymd_opt(1970, 1, 1), "").and_time(NaiveTime::MIN).and_utc(); } impl Default for DateTime { fn default() -> Self { Utc.from_utc_datetime(&NaiveDateTime::default()) } } #[cfg(feature = "clock")] impl Default for DateTime { fn default() -> Self { Local.from_utc_datetime(&NaiveDateTime::default()) } } impl Default for DateTime { fn default() -> Self { FixedOffset::west_opt(0).unwrap().from_utc_datetime(&NaiveDateTime::default()) } } /// Convert a `DateTime` instance into a `DateTime` instance. impl From> for DateTime { /// Convert this `DateTime` instance into a `DateTime` instance. /// /// Conversion is done via [`DateTime::with_timezone`]. Note that the converted value returned by /// this will be created with a fixed timezone offset of 0. fn from(src: DateTime) -> Self { src.with_timezone(&FixedOffset::east_opt(0).unwrap()) } } /// Convert a `DateTime` instance into a `DateTime` instance. #[cfg(feature = "clock")] impl From> for DateTime { /// Convert this `DateTime` instance into a `DateTime` instance. /// /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in timezones. fn from(src: DateTime) -> Self { src.with_timezone(&Local) } } /// Convert a `DateTime` instance into a `DateTime` instance. impl From> for DateTime { /// Convert this `DateTime` instance into a `DateTime` instance. /// /// Conversion is performed via [`DateTime::with_timezone`], accounting for the timezone /// difference. fn from(src: DateTime) -> Self { src.with_timezone(&Utc) } } /// Convert a `DateTime` instance into a `DateTime` instance. #[cfg(feature = "clock")] impl From> for DateTime { /// Convert this `DateTime` instance into a `DateTime` instance. /// /// Conversion is performed via [`DateTime::with_timezone`]. Returns the equivalent value in local /// time. fn from(src: DateTime) -> Self { src.with_timezone(&Local) } } /// Convert a `DateTime` instance into a `DateTime` instance. #[cfg(feature = "clock")] impl From> for DateTime { /// Convert this `DateTime` instance into a `DateTime` instance. /// /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in /// timezones. fn from(src: DateTime) -> Self { src.with_timezone(&Utc) } } /// Convert a `DateTime` instance into a `DateTime` instance. #[cfg(feature = "clock")] impl From> for DateTime { /// Convert this `DateTime` instance into a `DateTime` instance. /// /// Conversion is performed via [`DateTime::with_timezone`]. fn from(src: DateTime) -> Self { src.with_timezone(&src.offset().fix()) } } /// Maps the local datetime to other datetime with given conversion function. fn map_local(dt: &DateTime, mut f: F) -> Option> where F: FnMut(NaiveDateTime) -> Option, { f(dt.overflowing_naive_local()) .and_then(|datetime| dt.timezone().from_local_datetime(&datetime).single()) .filter(|dt| dt >= &DateTime::::MIN_UTC && dt <= &DateTime::::MAX_UTC) } impl DateTime { /// Parses an RFC 2822 date-and-time string into a `DateTime` value. /// /// This parses valid RFC 2822 datetime strings (such as `Tue, 1 Jul 2003 10:52:37 +0200`) /// and returns a new [`DateTime`] instance with the parsed timezone as the [`FixedOffset`]. /// /// RFC 2822 is the internet message standard that specifies the representation of times in HTTP /// and email headers. It is the 2001 revision of RFC 822, and is itself revised as RFC 5322 in /// 2008. /// /// # Support for the obsolete date format /// /// - A 2-digit year is interpreted to be a year in 1950-2049. /// - The standard allows comments and whitespace between many of the tokens. See [4.3] and /// [Appendix A.5] /// - Single letter 'military' time zone names are parsed as a `-0000` offset. /// They were defined with the wrong sign in RFC 822 and corrected in RFC 2822. But because /// the meaning is now ambiguous, the standard says they should be considered as `-0000` /// unless there is out-of-band information confirming their meaning. /// The exception is `Z`, which remains identical to `+0000`. /// /// [4.3]: https://www.rfc-editor.org/rfc/rfc2822#section-4.3 /// [Appendix A.5]: https://www.rfc-editor.org/rfc/rfc2822#appendix-A.5 /// /// # Example /// /// ``` /// # use chrono::{DateTime, FixedOffset, TimeZone}; /// assert_eq!( /// DateTime::parse_from_rfc2822("Wed, 18 Feb 2015 23:16:09 GMT").unwrap(), /// FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap() /// ); /// ``` pub fn parse_from_rfc2822(s: &str) -> ParseResult> { const ITEMS: &[Item<'static>] = &[Item::Fixed(Fixed::RFC2822)]; let mut parsed = Parsed::new(); parse(&mut parsed, s, ITEMS.iter())?; parsed.to_datetime() } /// Parses an RFC 3339 date-and-time string into a `DateTime` value. /// /// Parses all valid RFC 3339 values (as well as the subset of valid ISO 8601 values that are /// also valid RFC 3339 date-and-time values) and returns a new [`DateTime`] with a /// [`FixedOffset`] corresponding to the parsed timezone. While RFC 3339 values come in a wide /// variety of shapes and sizes, `1996-12-19T16:39:57-08:00` is an example of the most commonly /// encountered variety of RFC 3339 formats. /// /// Why isn't this named `parse_from_iso8601`? That's because ISO 8601 allows representing /// values in a wide range of formats, only some of which represent actual date-and-time /// instances (rather than periods, ranges, dates, or times). Some valid ISO 8601 values are /// also simultaneously valid RFC 3339 values, but not all RFC 3339 values are valid ISO 8601 /// values (or the other way around). pub fn parse_from_rfc3339(s: &str) -> ParseResult> { let mut parsed = Parsed::new(); let (s, _) = parse_rfc3339(&mut parsed, s)?; if !s.is_empty() { return Err(TOO_LONG); } parsed.to_datetime() } /// Parses a string from a user-specified format into a `DateTime` value. /// /// Note that this method *requires a timezone* in the input string. See /// [`NaiveDateTime::parse_from_str`](./naive/struct.NaiveDateTime.html#method.parse_from_str) /// for a version that does not require a timezone in the to-be-parsed str. The returned /// [`DateTime`] value will have a [`FixedOffset`] reflecting the parsed timezone. /// /// See the [`format::strftime` module](crate::format::strftime) for supported format /// sequences. /// /// # Example /// /// ```rust /// use chrono::{DateTime, FixedOffset, NaiveDate, TimeZone}; /// /// let dt = DateTime::parse_from_str("1983 Apr 13 12:09:14.274 +0000", "%Y %b %d %H:%M:%S%.3f %z"); /// assert_eq!( /// dt, /// Ok(FixedOffset::east_opt(0) /// .unwrap() /// .from_local_datetime( /// &NaiveDate::from_ymd_opt(1983, 4, 13) /// .unwrap() /// .and_hms_milli_opt(12, 9, 14, 274) /// .unwrap() /// ) /// .unwrap()) /// ); /// ``` pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult> { let mut parsed = Parsed::new(); parse(&mut parsed, s, StrftimeItems::new(fmt))?; parsed.to_datetime() } /// Parses a string from a user-specified format into a `DateTime` value, and a /// slice with the remaining portion of the string. /// /// Note that this method *requires a timezone* in the input string. See /// [`NaiveDateTime::parse_and_remainder`] for a version that does not /// require a timezone in `s`. The returned [`DateTime`] value will have a [`FixedOffset`] /// reflecting the parsed timezone. /// /// See the [`format::strftime` module](./format/strftime/index.html) for supported format /// sequences. /// /// Similar to [`parse_from_str`](#method.parse_from_str). /// /// # Example /// /// ```rust /// # use chrono::{DateTime, FixedOffset, TimeZone}; /// let (datetime, remainder) = DateTime::parse_and_remainder( /// "2015-02-18 23:16:09 +0200 trailing text", /// "%Y-%m-%d %H:%M:%S %z", /// ) /// .unwrap(); /// assert_eq!( /// datetime, /// FixedOffset::east_opt(2 * 3600).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap() /// ); /// assert_eq!(remainder, " trailing text"); /// ``` pub fn parse_and_remainder<'a>( s: &'a str, fmt: &str, ) -> ParseResult<(DateTime, &'a str)> { let mut parsed = Parsed::new(); let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?; parsed.to_datetime().map(|d| (d, remainder)) } } impl DateTime where Tz::Offset: fmt::Display, { /// Formats the combined date and time with the specified formatting items. #[cfg(feature = "alloc")] #[inline] #[must_use] pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat where I: Iterator + Clone, B: Borrow>, { let local = self.overflowing_naive_local(); DelayedFormat::new_with_offset(Some(local.date()), Some(local.time()), &self.offset, items) } /// Formats the combined date and time per the specified format string. /// /// See the [`crate::format::strftime`] module for the supported escape sequences. /// /// # Example /// ```rust /// use chrono::prelude::*; /// /// let date_time: DateTime = Utc.with_ymd_and_hms(2017, 04, 02, 12, 50, 32).unwrap(); /// let formatted = format!("{}", date_time.format("%d/%m/%Y %H:%M")); /// assert_eq!(formatted, "02/04/2017 12:50"); /// ``` #[cfg(feature = "alloc")] #[inline] #[must_use] pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat> { self.format_with_items(StrftimeItems::new(fmt)) } /// Formats the combined date and time with the specified formatting items and locale. #[cfg(all(feature = "unstable-locales", feature = "alloc"))] #[inline] #[must_use] pub fn format_localized_with_items<'a, I, B>( &self, items: I, locale: Locale, ) -> DelayedFormat where I: Iterator + Clone, B: Borrow>, { let local = self.overflowing_naive_local(); DelayedFormat::new_with_offset_and_locale( Some(local.date()), Some(local.time()), &self.offset, items, locale, ) } /// Formats the combined date and time per the specified format string and /// locale. /// /// See the [`crate::format::strftime`] module on the supported escape /// sequences. #[cfg(all(feature = "unstable-locales", feature = "alloc"))] #[inline] #[must_use] pub fn format_localized<'a>( &self, fmt: &'a str, locale: Locale, ) -> DelayedFormat> { self.format_localized_with_items(StrftimeItems::new_with_locale(fmt, locale), locale) } } impl Datelike for DateTime { #[inline] fn year(&self) -> i32 { self.overflowing_naive_local().year() } #[inline] fn month(&self) -> u32 { self.overflowing_naive_local().month() } #[inline] fn month0(&self) -> u32 { self.overflowing_naive_local().month0() } #[inline] fn day(&self) -> u32 { self.overflowing_naive_local().day() } #[inline] fn day0(&self) -> u32 { self.overflowing_naive_local().day0() } #[inline] fn ordinal(&self) -> u32 { self.overflowing_naive_local().ordinal() } #[inline] fn ordinal0(&self) -> u32 { self.overflowing_naive_local().ordinal0() } #[inline] fn weekday(&self) -> Weekday { self.overflowing_naive_local().weekday() } #[inline] fn iso_week(&self) -> IsoWeek { self.overflowing_naive_local().iso_week() } #[inline] /// Makes a new `DateTime` with the year number changed, while keeping the same month and day. /// /// See also the [`NaiveDate::with_year`] method. /// /// # Errors /// /// Returns `None` if: /// - The resulting date does not exist (February 29 in a non-leap year). /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. /// - The resulting UTC datetime would be out of range. /// - The resulting local datetime would be out of range (unless the year remains the same). fn with_year(&self, year: i32) -> Option> { map_local(self, |dt| match dt.year() == year { true => Some(dt), false => dt.with_year(year), }) } /// Makes a new `DateTime` with the month number (starting from 1) changed. /// /// Don't combine multiple `Datelike::with_*` methods. The intermediate value may not exist. /// /// See also the [`NaiveDate::with_month`] method. /// /// # Errors /// /// Returns `None` if: /// - The resulting date does not exist (for example `month(4)` when day of the month is 31). /// - The value for `month` is invalid. /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. #[inline] fn with_month(&self, month: u32) -> Option> { map_local(self, |datetime| datetime.with_month(month)) } /// Makes a new `DateTime` with the month number (starting from 0) changed. /// /// See also the [`NaiveDate::with_month0`] method. /// /// # Errors /// /// Returns `None` if: /// - The resulting date does not exist (for example `month0(3)` when day of the month is 31). /// - The value for `month0` is invalid. /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. #[inline] fn with_month0(&self, month0: u32) -> Option> { map_local(self, |datetime| datetime.with_month0(month0)) } /// Makes a new `DateTime` with the day of month (starting from 1) changed. /// /// See also the [`NaiveDate::with_day`] method. /// /// # Errors /// /// Returns `None` if: /// - The resulting date does not exist (for example `day(31)` in April). /// - The value for `day` is invalid. /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. #[inline] fn with_day(&self, day: u32) -> Option> { map_local(self, |datetime| datetime.with_day(day)) } /// Makes a new `DateTime` with the day of month (starting from 0) changed. /// /// See also the [`NaiveDate::with_day0`] method. /// /// # Errors /// /// Returns `None` if: /// - The resulting date does not exist (for example `day(30)` in April). /// - The value for `day0` is invalid. /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. #[inline] fn with_day0(&self, day0: u32) -> Option> { map_local(self, |datetime| datetime.with_day0(day0)) } /// Makes a new `DateTime` with the day of year (starting from 1) changed. /// /// See also the [`NaiveDate::with_ordinal`] method. /// /// # Errors /// /// Returns `None` if: /// - The resulting date does not exist (`with_ordinal(366)` in a non-leap year). /// - The value for `ordinal` is invalid. /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. #[inline] fn with_ordinal(&self, ordinal: u32) -> Option> { map_local(self, |datetime| datetime.with_ordinal(ordinal)) } /// Makes a new `DateTime` with the day of year (starting from 0) changed. /// /// See also the [`NaiveDate::with_ordinal0`] method. /// /// # Errors /// /// Returns `None` if: /// - The resulting date does not exist (`with_ordinal0(365)` in a non-leap year). /// - The value for `ordinal0` is invalid. /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. #[inline] fn with_ordinal0(&self, ordinal0: u32) -> Option> { map_local(self, |datetime| datetime.with_ordinal0(ordinal0)) } } impl Timelike for DateTime { #[inline] fn hour(&self) -> u32 { self.overflowing_naive_local().hour() } #[inline] fn minute(&self) -> u32 { self.overflowing_naive_local().minute() } #[inline] fn second(&self) -> u32 { self.overflowing_naive_local().second() } #[inline] fn nanosecond(&self) -> u32 { self.overflowing_naive_local().nanosecond() } /// Makes a new `DateTime` with the hour number changed. /// /// See also the [`NaiveTime::with_hour`] method. /// /// # Errors /// /// Returns `None` if: /// - The value for `hour` is invalid. /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. #[inline] fn with_hour(&self, hour: u32) -> Option> { map_local(self, |datetime| datetime.with_hour(hour)) } /// Makes a new `DateTime` with the minute number changed. /// /// See also the [`NaiveTime::with_minute`] method. /// /// # Errors /// /// - The value for `minute` is invalid. /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. #[inline] fn with_minute(&self, min: u32) -> Option> { map_local(self, |datetime| datetime.with_minute(min)) } /// Makes a new `DateTime` with the second number changed. /// /// As with the [`second`](#method.second) method, /// the input range is restricted to 0 through 59. /// /// See also the [`NaiveTime::with_second`] method. /// /// # Errors /// /// Returns `None` if: /// - The value for `second` is invalid. /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. #[inline] fn with_second(&self, sec: u32) -> Option> { map_local(self, |datetime| datetime.with_second(sec)) } /// Makes a new `DateTime` with nanoseconds since the whole non-leap second changed. /// /// Returns `None` when the resulting `NaiveDateTime` would be invalid. /// As with the [`NaiveDateTime::nanosecond`] method, /// the input range can exceed 1,000,000,000 for leap seconds. /// /// See also the [`NaiveTime::with_nanosecond`] method. /// /// # Errors /// /// Returns `None` if `nanosecond >= 2,000,000,000`. #[inline] fn with_nanosecond(&self, nano: u32) -> Option> { map_local(self, |datetime| datetime.with_nanosecond(nano)) } } // We don't store a field with the `Tz` type, so it doesn't need to influence whether `DateTime` can // be `Copy`. Implement it manually if the two types we do have are `Copy`. impl Copy for DateTime where ::Offset: Copy, NaiveDateTime: Copy, { } impl PartialEq> for DateTime { fn eq(&self, other: &DateTime) -> bool { self.datetime == other.datetime } } impl Eq for DateTime {} impl PartialOrd> for DateTime { /// Compare two DateTimes based on their true time, ignoring time zones /// /// # Example /// /// ``` /// use chrono::prelude::*; /// /// let earlier = Utc /// .with_ymd_and_hms(2015, 5, 15, 2, 0, 0) /// .unwrap() /// .with_timezone(&FixedOffset::west_opt(1 * 3600).unwrap()); /// let later = Utc /// .with_ymd_and_hms(2015, 5, 15, 3, 0, 0) /// .unwrap() /// .with_timezone(&FixedOffset::west_opt(5 * 3600).unwrap()); /// /// assert_eq!(earlier.to_string(), "2015-05-15 01:00:00 -01:00"); /// assert_eq!(later.to_string(), "2015-05-14 22:00:00 -05:00"); /// /// assert!(later > earlier); /// ``` fn partial_cmp(&self, other: &DateTime) -> Option { self.datetime.partial_cmp(&other.datetime) } } impl Ord for DateTime { fn cmp(&self, other: &DateTime) -> Ordering { self.datetime.cmp(&other.datetime) } } impl hash::Hash for DateTime { fn hash(&self, state: &mut H) { self.datetime.hash(state) } } /// Add `TimeDelta` to `DateTime`. /// /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case /// the assumption becomes that **there is exactly a single leap second ever**. /// /// # Panics /// /// Panics if the resulting date would be out of range. /// Consider using [`DateTime::checked_add_signed`] to get an `Option` instead. impl Add for DateTime { type Output = DateTime; #[inline] fn add(self, rhs: TimeDelta) -> DateTime { self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed") } } /// Add `std::time::Duration` to `DateTime`. /// /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case /// the assumption becomes that **there is exactly a single leap second ever**. /// /// # Panics /// /// Panics if the resulting date would be out of range. /// Consider using [`DateTime::checked_add_signed`] to get an `Option` instead. impl Add for DateTime { type Output = DateTime; #[inline] fn add(self, rhs: Duration) -> DateTime { let rhs = TimeDelta::from_std(rhs) .expect("overflow converting from core::time::Duration to TimeDelta"); self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed") } } /// Add-assign `chrono::Duration` to `DateTime`. /// /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case /// the assumption becomes that **there is exactly a single leap second ever**. /// /// # Panics /// /// Panics if the resulting date would be out of range. /// Consider using [`DateTime::checked_add_signed`] to get an `Option` instead. impl AddAssign for DateTime { #[inline] fn add_assign(&mut self, rhs: TimeDelta) { let datetime = self.datetime.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed"); let tz = self.timezone(); *self = tz.from_utc_datetime(&datetime); } } /// Add-assign `std::time::Duration` to `DateTime`. /// /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap /// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case /// the assumption becomes that **there is exactly a single leap second ever**. /// /// # Panics /// /// Panics if the resulting date would be out of range. /// Consider using [`DateTime::checked_add_signed`] to get an `Option` instead. impl AddAssign for DateTime { #[inline] fn add_assign(&mut self, rhs: Duration) { let rhs = TimeDelta::from_std(rhs) .expect("overflow converting from core::time::Duration to TimeDelta"); *self += rhs; } } /// Add `FixedOffset` to the datetime value of `DateTime` (offset remains unchanged). /// /// # Panics /// /// Panics if the resulting date would be out of range. impl Add for DateTime { type Output = DateTime; #[inline] fn add(mut self, rhs: FixedOffset) -> DateTime { self.datetime = self.naive_utc().checked_add_offset(rhs).expect("`DateTime + FixedOffset` overflowed"); self } } /// Add `Months` to `DateTime`. /// /// The result will be clamped to valid days in the resulting month, see `checked_add_months` for /// details. /// /// # Panics /// /// Panics if: /// - The resulting date would be out of range. /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. /// /// Strongly consider using [`DateTime::checked_add_months`] to get an `Option` instead. impl Add for DateTime { type Output = DateTime; fn add(self, rhs: Months) -> Self::Output { self.checked_add_months(rhs).expect("`DateTime + Months` out of range") } } /// Subtract `TimeDelta` from `DateTime`. /// /// This is the same as the addition with a negated `TimeDelta`. /// /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap /// second ever**, except when the `DateTime` itself represents a leap second in which case /// the assumption becomes that **there is exactly a single leap second ever**. /// /// # Panics /// /// Panics if the resulting date would be out of range. /// Consider using [`DateTime::checked_sub_signed`] to get an `Option` instead. impl Sub for DateTime { type Output = DateTime; #[inline] fn sub(self, rhs: TimeDelta) -> DateTime { self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed") } } /// Subtract `std::time::Duration` from `DateTime`. /// /// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap /// second ever**, except when the `DateTime` itself represents a leap second in which case /// the assumption becomes that **there is exactly a single leap second ever**. /// /// # Panics /// /// Panics if the resulting date would be out of range. /// Consider using [`DateTime::checked_sub_signed`] to get an `Option` instead. impl Sub for DateTime { type Output = DateTime; #[inline] fn sub(self, rhs: Duration) -> DateTime { let rhs = TimeDelta::from_std(rhs) .expect("overflow converting from core::time::Duration to TimeDelta"); self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed") } } /// Subtract-assign `TimeDelta` from `DateTime`. /// /// This is the same as the addition with a negated `TimeDelta`. /// /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap /// second ever**, except when the `DateTime` itself represents a leap second in which case /// the assumption becomes that **there is exactly a single leap second ever**. /// /// # Panics /// /// Panics if the resulting date would be out of range. /// Consider using [`DateTime::checked_sub_signed`] to get an `Option` instead. impl SubAssign for DateTime { #[inline] fn sub_assign(&mut self, rhs: TimeDelta) { let datetime = self.datetime.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed"); let tz = self.timezone(); *self = tz.from_utc_datetime(&datetime) } } /// Subtract-assign `std::time::Duration` from `DateTime`. /// /// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap /// second ever**, except when the `DateTime` itself represents a leap second in which case /// the assumption becomes that **there is exactly a single leap second ever**. /// /// # Panics /// /// Panics if the resulting date would be out of range. /// Consider using [`DateTime::checked_sub_signed`] to get an `Option` instead. impl SubAssign for DateTime { #[inline] fn sub_assign(&mut self, rhs: Duration) { let rhs = TimeDelta::from_std(rhs) .expect("overflow converting from core::time::Duration to TimeDelta"); *self -= rhs; } } /// Subtract `FixedOffset` from the datetime value of `DateTime` (offset remains unchanged). /// /// # Panics /// /// Panics if the resulting date would be out of range. impl Sub for DateTime { type Output = DateTime; #[inline] fn sub(mut self, rhs: FixedOffset) -> DateTime { self.datetime = self.naive_utc().checked_sub_offset(rhs).expect("`DateTime - FixedOffset` overflowed"); self } } /// Subtract `Months` from `DateTime`. /// /// The result will be clamped to valid days in the resulting month, see /// [`DateTime::checked_sub_months`] for details. /// /// # Panics /// /// Panics if: /// - The resulting date would be out of range. /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. /// /// Strongly consider using [`DateTime::checked_sub_months`] to get an `Option` instead. impl Sub for DateTime { type Output = DateTime; fn sub(self, rhs: Months) -> Self::Output { self.checked_sub_months(rhs).expect("`DateTime - Months` out of range") } } impl Sub> for DateTime { type Output = TimeDelta; #[inline] fn sub(self, rhs: DateTime) -> TimeDelta { self.signed_duration_since(rhs) } } impl Sub<&DateTime> for DateTime { type Output = TimeDelta; #[inline] fn sub(self, rhs: &DateTime) -> TimeDelta { self.signed_duration_since(rhs) } } /// Add `Days` to `NaiveDateTime`. /// /// # Panics /// /// Panics if: /// - The resulting date would be out of range. /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. /// /// Strongly consider using `DateTime::checked_add_days` to get an `Option` instead. impl Add for DateTime { type Output = DateTime; fn add(self, days: Days) -> Self::Output { self.checked_add_days(days).expect("`DateTime + Days` out of range") } } /// Subtract `Days` from `DateTime`. /// /// # Panics /// /// Panics if: /// - The resulting date would be out of range. /// - The local time at the resulting date does not exist or is ambiguous, for example during a /// daylight saving time transition. /// /// Strongly consider using `DateTime::checked_sub_days` to get an `Option` instead. impl Sub for DateTime { type Output = DateTime; fn sub(self, days: Days) -> Self::Output { self.checked_sub_days(days).expect("`DateTime - Days` out of range") } } impl fmt::Debug for DateTime { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.overflowing_naive_local().fmt(f)?; self.offset.fmt(f) } } // `fmt::Debug` is hand implemented for the `rkyv::Archive` variant of `DateTime` because // deriving a trait recursively does not propagate trait defined associated types with their own // constraints: // In our case `<::Offset as Archive>::Archived` // cannot be formatted using `{:?}` because it doesn't implement `Debug`. // See below for further discussion: // * https://github.com/rust-lang/rust/issues/26925 // * https://github.com/rkyv/rkyv/issues/333 // * https://github.com/dtolnay/syn/issues/370 #[cfg(feature = "rkyv-validation")] impl fmt::Debug for ArchivedDateTime where Tz: Archive, ::Archived: fmt::Debug, <::Offset as Archive>::Archived: fmt::Debug, ::Offset: fmt::Debug + Archive, { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("ArchivedDateTime") .field("datetime", &self.datetime) .field("offset", &self.offset) .finish() } } impl fmt::Display for DateTime where Tz::Offset: fmt::Display, { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.overflowing_naive_local().fmt(f)?; f.write_char(' ')?; self.offset.fmt(f) } } /// Accepts a relaxed form of RFC3339. /// A space or a 'T' are accepted as the separator between the date and time /// parts. /// /// All of these examples are equivalent: /// ``` /// # use chrono::{DateTime, Utc}; /// "2012-12-12T12:12:12Z".parse::>()?; /// "2012-12-12 12:12:12Z".parse::>()?; /// "2012-12-12 12:12:12+0000".parse::>()?; /// "2012-12-12 12:12:12+00:00".parse::>()?; /// # Ok::<(), chrono::ParseError>(()) /// ``` impl str::FromStr for DateTime { type Err = ParseError; fn from_str(s: &str) -> ParseResult> { s.parse::>().map(|dt| dt.with_timezone(&Utc)) } } /// Accepts a relaxed form of RFC3339. /// A space or a 'T' are accepted as the separator between the date and time /// parts. /// /// All of these examples are equivalent: /// ``` /// # use chrono::{DateTime, Local}; /// "2012-12-12T12:12:12Z".parse::>()?; /// "2012-12-12 12:12:12Z".parse::>()?; /// "2012-12-12 12:12:12+0000".parse::>()?; /// "2012-12-12 12:12:12+00:00".parse::>()?; /// # Ok::<(), chrono::ParseError>(()) /// ``` #[cfg(feature = "clock")] impl str::FromStr for DateTime { type Err = ParseError; fn from_str(s: &str) -> ParseResult> { s.parse::>().map(|dt| dt.with_timezone(&Local)) } } #[cfg(feature = "std")] impl From for DateTime { fn from(t: SystemTime) -> DateTime { let (sec, nsec) = match t.duration_since(UNIX_EPOCH) { Ok(dur) => (dur.as_secs() as i64, dur.subsec_nanos()), Err(e) => { // unlikely but should be handled let dur = e.duration(); let (sec, nsec) = (dur.as_secs() as i64, dur.subsec_nanos()); if nsec == 0 { (-sec, 0) } else { (-sec - 1, 1_000_000_000 - nsec) } } }; Utc.timestamp_opt(sec, nsec).unwrap() } } #[cfg(feature = "clock")] impl From for DateTime { fn from(t: SystemTime) -> DateTime { DateTime::::from(t).with_timezone(&Local) } } #[cfg(feature = "std")] impl From> for SystemTime { fn from(dt: DateTime) -> SystemTime { let sec = dt.timestamp(); let nsec = dt.timestamp_subsec_nanos(); if sec < 0 { // unlikely but should be handled UNIX_EPOCH - Duration::new(-sec as u64, 0) + Duration::new(0, nsec) } else { UNIX_EPOCH + Duration::new(sec as u64, nsec) } } } #[cfg(all( target_arch = "wasm32", feature = "wasmbind", not(any(target_os = "emscripten", target_os = "wasi")) ))] impl From for DateTime { fn from(date: js_sys::Date) -> DateTime { DateTime::::from(&date) } } #[cfg(all( target_arch = "wasm32", feature = "wasmbind", not(any(target_os = "emscripten", target_os = "wasi")) ))] impl From<&js_sys::Date> for DateTime { fn from(date: &js_sys::Date) -> DateTime { Utc.timestamp_millis_opt(date.get_time() as i64).unwrap() } } #[cfg(all( target_arch = "wasm32", feature = "wasmbind", not(any(target_os = "emscripten", target_os = "wasi")) ))] impl From> for js_sys::Date { /// Converts a `DateTime` to a JS `Date`. The resulting value may be lossy, /// any values that have a millisecond timestamp value greater/less than ±8,640,000,000,000,000 /// (April 20, 271821 BCE ~ September 13, 275760 CE) will become invalid dates in JS. fn from(date: DateTime) -> js_sys::Date { let js_millis = wasm_bindgen::JsValue::from_f64(date.timestamp_millis() as f64); js_sys::Date::new(&js_millis) } } // Note that implementation of Arbitrary cannot be simply derived for DateTime, due to // the nontrivial bound ::Offset: Arbitrary. #[cfg(all(feature = "arbitrary", feature = "std"))] impl<'a, Tz> arbitrary::Arbitrary<'a> for DateTime where Tz: TimeZone, ::Offset: arbitrary::Arbitrary<'a>, { fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result> { let datetime = NaiveDateTime::arbitrary(u)?; let offset = ::Offset::arbitrary(u)?; Ok(DateTime::from_naive_utc_and_offset(datetime, offset)) } } /// Number of days between Januari 1, 1970 and December 31, 1 BCE which we define to be day 0. /// 4 full leap year cycles until December 31, 1600 4 * 146097 = 584388 /// 1 day until January 1, 1601 1 /// 369 years until Januari 1, 1970 369 * 365 = 134685 /// of which floor(369 / 4) are leap years floor(369 / 4) = 92 /// except for 1700, 1800 and 1900 -3 + /// -------- /// 719163 const UNIX_EPOCH_DAY: i64 = 719_163;