#![warn(rust_2018_idioms)] use ::bytes::{Buf, Bytes, BytesMut}; use core::{cmp, mem}; use std::collections::VecDeque; #[cfg(feature = "std")] use std::io::IoSlice; // A random 64-byte ascii string, with the first 8 bytes altered to // give valid representations of f32 and f64 (making them easier to compare) // and negative signed numbers when interpreting as big endian // (testing Sign Extension for `Buf::get_int' and `Buf::get_int_ne`). const INPUT: &[u8] = b"\xffFqrjrDqPhvTc45vvq33f6bJrUtyHESuTeklWKgYd64xgzxJwvAkpYYnpNJyZSRn"; macro_rules! e { ($big_endian_val:expr, $little_endian_val:expr) => { if cfg!(target_endian = "big") { $big_endian_val } else { $little_endian_val } }; } macro_rules! buf_tests { ($make_input:ident) => { buf_tests!($make_input, true); }; ($make_input:ident, $checks_vectored_is_complete:expr) => { use super::*; #[test] fn empty_state() { let buf = $make_input(&[]); assert_eq!(buf.remaining(), 0); assert!(!buf.has_remaining()); assert!(buf.chunk().is_empty()); } #[test] fn fresh_state() { let buf = $make_input(INPUT); assert_eq!(buf.remaining(), 64); assert!(buf.has_remaining()); let chunk = buf.chunk(); assert!(chunk.len() <= 64); assert!(INPUT.starts_with(chunk)); } #[test] fn advance() { let mut buf = $make_input(INPUT); buf.advance(8); assert_eq!(buf.remaining(), 64 - 8); assert!(buf.has_remaining()); let chunk = buf.chunk(); assert!(chunk.len() <= 64 - 8); assert!(INPUT[8..].starts_with(chunk)); } #[test] fn advance_to_end() { let mut buf = $make_input(INPUT); buf.advance(64); assert_eq!(buf.remaining(), 0); assert!(!buf.has_remaining()); let chunk = buf.chunk(); assert!(chunk.is_empty()); } #[test] #[should_panic] fn advance_past_end() { let mut buf = $make_input(INPUT); buf.advance(65); } #[test] #[cfg(feature = "std")] fn chunks_vectored_empty() { let buf = $make_input(&[]); let mut bufs = [IoSlice::new(&[]); 16]; let n = buf.chunks_vectored(&mut bufs); assert_eq!(n, 0); assert!(bufs.iter().all(|buf| buf.is_empty())); } #[test] #[cfg(feature = "std")] fn chunks_vectored_is_complete() { let buf = $make_input(INPUT); let mut bufs = [IoSlice::new(&[]); 16]; let n = buf.chunks_vectored(&mut bufs); assert!(n > 0); assert!(n <= 16); let bufs_concat = bufs[..n] .iter() .flat_map(|b| b.iter().copied()) .collect::>(); if $checks_vectored_is_complete { assert_eq!(bufs_concat, INPUT); } else { // If this panics then `buf` implements `chunks_vectored`. // Remove the `false` argument from `buf_tests!` for that type. assert!(bufs_concat.len() < INPUT.len()); assert!(INPUT.starts_with(&bufs_concat)); } for i in n..16 { assert!(bufs[i].is_empty()); } } #[test] fn copy_to_slice() { let mut buf = $make_input(INPUT); let mut chunk = [0u8; 8]; buf.copy_to_slice(&mut chunk); assert_eq!(buf.remaining(), 64 - 8); assert!(buf.has_remaining()); assert_eq!(chunk, INPUT[..8]); let chunk = buf.chunk(); assert!(chunk.len() <= 64 - 8); assert!(INPUT[8..].starts_with(chunk)); } #[test] fn copy_to_slice_big() { let mut buf = $make_input(INPUT); let mut chunk = [0u8; 56]; buf.copy_to_slice(&mut chunk); assert_eq!(buf.remaining(), 64 - 56); assert!(buf.has_remaining()); assert_eq!(chunk, INPUT[..56]); let chunk = buf.chunk(); assert!(chunk.len() <= 64 - 56); assert!(INPUT[56..].starts_with(chunk)); } #[test] fn copy_to_slice_to_end() { let mut buf = $make_input(INPUT); let mut chunk = [0u8; 64]; buf.copy_to_slice(&mut chunk); assert_eq!(buf.remaining(), 0); assert!(!buf.has_remaining()); assert_eq!(chunk, INPUT); assert!(buf.chunk().is_empty()); } #[test] #[should_panic] fn copy_to_slice_overflow() { let mut buf = $make_input(INPUT); let mut chunk = [0u8; 65]; buf.copy_to_slice(&mut chunk); } #[test] fn copy_to_bytes() { let mut buf = $make_input(INPUT); let chunk = buf.copy_to_bytes(8); assert_eq!(buf.remaining(), 64 - 8); assert!(buf.has_remaining()); assert_eq!(chunk, INPUT[..8]); let chunk = buf.chunk(); assert!(chunk.len() <= 64 - 8); assert!(INPUT[8..].starts_with(chunk)); } #[test] fn copy_to_bytes_big() { let mut buf = $make_input(INPUT); let chunk = buf.copy_to_bytes(56); assert_eq!(buf.remaining(), 64 - 56); assert!(buf.has_remaining()); assert_eq!(chunk, INPUT[..56]); let chunk = buf.chunk(); assert!(chunk.len() <= 64 - 56); assert!(INPUT[56..].starts_with(chunk)); } #[test] fn copy_to_bytes_to_end() { let mut buf = $make_input(INPUT); let chunk = buf.copy_to_bytes(64); assert_eq!(buf.remaining(), 0); assert!(!buf.has_remaining()); assert_eq!(chunk, INPUT); assert!(buf.chunk().is_empty()); } #[test] #[should_panic] fn copy_to_bytes_overflow() { let mut buf = $make_input(INPUT); let _ = buf.copy_to_bytes(65); } buf_tests!(number $make_input, get_u8, get_u8_overflow, u8, get_u8, 0xff); buf_tests!(number $make_input, get_i8, get_i8_overflow, i8, get_i8, 0xffu8 as i8); buf_tests!(number $make_input, get_u16_be, get_u16_be_overflow, u16, get_u16, 0xff46); buf_tests!(number $make_input, get_u16_le, get_u16_le_overflow, u16, get_u16_le, 0x46ff); buf_tests!(number $make_input, get_u16_ne, get_u16_ne_overflow, u16, get_u16_ne, e!(0xff46, 0x46ff)); buf_tests!(number $make_input, get_i16_be, get_i16_be_overflow, i16, get_i16, 0xff46u16 as i16); buf_tests!(number $make_input, get_i16_le, get_i16_le_overflow, i16, get_i16_le, 0x46ff); buf_tests!(number $make_input, get_i16_ne, get_i16_ne_overflow, i16, get_i16_ne, e!(0xff46u16 as i16, 0x46ff)); buf_tests!(number $make_input, get_u32_be, get_u32_be_overflow, u32, get_u32, 0xff467172); buf_tests!(number $make_input, get_u32_le, get_u32_le_overflow, u32, get_u32_le, 0x727146ff); buf_tests!(number $make_input, get_u32_ne, get_u32_ne_overflow, u32, get_u32_ne, e!(0xff467172, 0x727146ff)); buf_tests!(number $make_input, get_i32_be, get_i32_be_overflow, i32, get_i32, 0xff467172u32 as i32); buf_tests!(number $make_input, get_i32_le, get_i32_le_overflow, i32, get_i32_le, 0x727146ff); buf_tests!(number $make_input, get_i32_ne, get_i32_ne_overflow, i32, get_i32_ne, e!(0xff467172u32 as i32, 0x727146ff)); buf_tests!(number $make_input, get_u64_be, get_u64_be_overflow, u64, get_u64, 0xff4671726a724471); buf_tests!(number $make_input, get_u64_le, get_u64_le_overflow, u64, get_u64_le, 0x7144726a727146ff); buf_tests!(number $make_input, get_u64_ne, get_u64_ne_overflow, u64, get_u64_ne, e!(0xff4671726a724471, 0x7144726a727146ff)); buf_tests!(number $make_input, get_i64_be, get_i64_be_overflow, i64, get_i64, 0xff4671726a724471u64 as i64); buf_tests!(number $make_input, get_i64_le, get_i64_le_overflow, i64, get_i64_le, 0x7144726a727146ff); buf_tests!(number $make_input, get_i64_ne, get_i64_ne_overflow, i64, get_i64_ne, e!(0xff4671726a724471u64 as i64, 0x7144726a727146ff)); buf_tests!(number $make_input, get_u128_be, get_u128_be_overflow, u128, get_u128, 0xff4671726a7244715068765463343576); buf_tests!(number $make_input, get_u128_le, get_u128_le_overflow, u128, get_u128_le, 0x76353463547668507144726a727146ff); buf_tests!(number $make_input, get_u128_ne, get_u128_ne_overflow, u128, get_u128_ne, e!(0xff4671726a7244715068765463343576, 0x76353463547668507144726a727146ff)); buf_tests!(number $make_input, get_i128_be, get_i128_be_overflow, i128, get_i128, 0xff4671726a7244715068765463343576u128 as i128); buf_tests!(number $make_input, get_i128_le, get_i128_le_overflow, i128, get_i128_le, 0x76353463547668507144726a727146ff); buf_tests!(number $make_input, get_i128_ne, get_i128_ne_overflow, i128, get_i128_ne, e!(0xff4671726a7244715068765463343576u128 as i128, 0x76353463547668507144726a727146ff)); buf_tests!(number $make_input, get_f32_be, get_f32_be_overflow, f32, get_f32, f32::from_bits(0xff467172)); buf_tests!(number $make_input, get_f32_le, get_f32_le_overflow, f32, get_f32_le, f32::from_bits(0x727146ff)); buf_tests!(number $make_input, get_f32_ne, get_f32_ne_overflow, f32, get_f32_ne, f32::from_bits(e!(0xff467172, 0x727146ff))); buf_tests!(number $make_input, get_f64_be, get_f64_be_overflow, f64, get_f64, f64::from_bits(0xff4671726a724471)); buf_tests!(number $make_input, get_f64_le, get_f64_le_overflow, f64, get_f64_le, f64::from_bits(0x7144726a727146ff)); buf_tests!(number $make_input, get_f64_ne, get_f64_ne_overflow, f64, get_f64_ne, f64::from_bits(e!(0xff4671726a724471, 0x7144726a727146ff))); buf_tests!(var_number $make_input, get_uint_be, get_uint_be_overflow, u64, get_uint, 3, 0xff4671); buf_tests!(var_number $make_input, get_uint_le, get_uint_le_overflow, u64, get_uint_le, 3, 0x7146ff); buf_tests!(var_number $make_input, get_uint_ne, get_uint_ne_overflow, u64, get_uint_ne, 3, e!(0xff4671, 0x7146ff)); buf_tests!(var_number $make_input, get_int_be, get_int_be_overflow, i64, get_int, 3, 0xffffffffffff4671u64 as i64); buf_tests!(var_number $make_input, get_int_le, get_int_le_overflow, i64, get_int_le, 3, 0x7146ff); buf_tests!(var_number $make_input, get_int_ne, get_int_ne_overflow, i64, get_int_ne, 3, e!(0xffffffffffff4671u64 as i64, 0x7146ff)); }; (number $make_input:ident, $ok_name:ident, $panic_name:ident, $number:ty, $method:ident, $value:expr) => { #[test] fn $ok_name() { let mut buf = $make_input(INPUT); let value = buf.$method(); assert_eq!(buf.remaining(), 64 - mem::size_of::<$number>()); assert!(buf.has_remaining()); assert_eq!(value, $value); } #[test] #[should_panic] fn $panic_name() { let mut buf = $make_input(&[]); let _ = buf.$method(); } }; (var_number $make_input:ident, $ok_name:ident, $panic_name:ident, $number:ty, $method:ident, $len:expr, $value:expr) => { #[test] fn $ok_name() { let mut buf = $make_input(INPUT); let value = buf.$method($len); assert_eq!(buf.remaining(), 64 - $len); assert!(buf.has_remaining()); assert_eq!(value, $value); } #[test] #[should_panic] fn $panic_name() { let mut buf = $make_input(&[]); let _ = buf.$method($len); } }; } mod u8_slice { fn make_input(buf: &'static [u8]) -> &'static [u8] { buf } buf_tests!(make_input); } mod bytes { fn make_input(buf: &'static [u8]) -> impl Buf { Bytes::from_static(buf) } buf_tests!(make_input); } mod bytes_mut { fn make_input(buf: &'static [u8]) -> impl Buf { BytesMut::from(buf) } buf_tests!(make_input); } mod vec_deque { fn make_input(buf: &'static [u8]) -> impl Buf { let mut deque = VecDeque::new(); if !buf.is_empty() { // Construct |b|some bytes|a| `VecDeque` let mid = buf.len() / 2; let (a, b) = buf.split_at(mid); deque.reserve_exact(buf.len() + 1); let extra_space = deque.capacity() - b.len() - 1; deque.resize(extra_space, 0); deque.extend(a); deque.drain(..extra_space); deque.extend(b); let (a, b) = deque.as_slices(); assert!( !a.is_empty(), "could not setup test - attempt to create discontiguous VecDeque failed" ); assert!( !b.is_empty(), "could not setup test - attempt to create discontiguous VecDeque failed" ); } deque } buf_tests!(make_input, true); } #[cfg(feature = "std")] mod cursor { use std::io::Cursor; fn make_input(buf: &'static [u8]) -> impl Buf { Cursor::new(buf) } buf_tests!(make_input); } mod box_bytes { fn make_input(buf: &'static [u8]) -> impl Buf { Box::new(Bytes::from_static(buf)) } buf_tests!(make_input); } mod chain_u8_slice { fn make_input(buf: &'static [u8]) -> impl Buf { let (a, b) = buf.split_at(buf.len() / 2); Buf::chain(a, b) } buf_tests!(make_input); } mod chain_small_big_u8_slice { fn make_input(buf: &'static [u8]) -> impl Buf { let mid = cmp::min(1, buf.len()); let (a, b) = buf.split_at(mid); Buf::chain(a, b) } buf_tests!(make_input); } mod chain_limited_slices { fn make_input(buf: &'static [u8]) -> impl Buf { let buf3 = &buf[cmp::min(buf.len(), 3)..]; let a = Buf::take(buf3, 0); let b = Buf::take(buf, 3); let c = Buf::take(buf3, usize::MAX); let d = buf; Buf::take(Buf::chain(Buf::chain(a, b), Buf::chain(c, d)), buf.len()) } buf_tests!(make_input, true); } #[allow(unused_allocation)] // This is intentional. #[test] fn test_deref_buf_forwards() { struct Special; impl Buf for Special { fn remaining(&self) -> usize { unreachable!("remaining"); } fn chunk(&self) -> &[u8] { unreachable!("chunk"); } fn advance(&mut self, _: usize) { unreachable!("advance"); } fn get_u8(&mut self) -> u8 { // specialized! b'x' } } // these should all use the specialized method assert_eq!(Special.get_u8(), b'x'); assert_eq!((&mut Special as &mut dyn Buf).get_u8(), b'x'); assert_eq!((Box::new(Special) as Box).get_u8(), b'x'); assert_eq!(Box::new(Special).get_u8(), b'x'); }