summaryrefslogtreecommitdiff
path: root/vendor/unicode-normalization/scripts/unicode.py
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/unicode-normalization/scripts/unicode.py')
-rwxr-xr-xvendor/unicode-normalization/scripts/unicode.py617
1 files changed, 0 insertions, 617 deletions
diff --git a/vendor/unicode-normalization/scripts/unicode.py b/vendor/unicode-normalization/scripts/unicode.py
deleted file mode 100755
index d9bb69cf..00000000
--- a/vendor/unicode-normalization/scripts/unicode.py
+++ /dev/null
@@ -1,617 +0,0 @@
-#!/usr/bin/env python
-#
-# Copyright 2011-2018 The Rust Project Developers. See the COPYRIGHT
-# file at the top-level directory of this distribution and at
-# http://rust-lang.org/COPYRIGHT.
-#
-# Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-# http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-# <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
-# option. This file may not be copied, modified, or distributed
-# except according to those terms.
-
-# This script uses the following Unicode tables:
-# - DerivedNormalizationProps.txt
-# - NormalizationTest.txt
-# - UnicodeData.txt
-# - StandardizedVariants.txt
-#
-# Since this should not require frequent updates, we just store this
-# out-of-line and check the tables.rs and normalization_tests.rs files into git.
-import collections
-import urllib.request
-from itertools import batched
-
-UNICODE_VERSION = "16.0.0"
-UCD_URL = "https://www.unicode.org/Public/%s/ucd/" % UNICODE_VERSION
-
-PREAMBLE = """// Copyright 2012-2018 The Rust Project Developers. See the COPYRIGHT
-// file at the top-level directory of this distribution and at
-// http://rust-lang.org/COPYRIGHT.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-// NOTE: The following code was generated by "scripts/unicode.py", do not edit directly
-
-#![allow(missing_docs)]
-"""
-
-NormalizationTest = collections.namedtuple(
- "NormalizationTest",
- ["source", "nfc", "nfd", "nfkc", "nfkd"],
-)
-
-# Mapping taken from Table 12 from:
-# http://www.unicode.org/reports/tr44/#General_Category_Values
-expanded_categories = {
- 'Lu': ['LC', 'L'], 'Ll': ['LC', 'L'], 'Lt': ['LC', 'L'],
- 'Lm': ['L'], 'Lo': ['L'],
- 'Mn': ['M'], 'Mc': ['M'], 'Me': ['M'],
- 'Nd': ['N'], 'Nl': ['N'], 'No': ['No'],
- 'Pc': ['P'], 'Pd': ['P'], 'Ps': ['P'], 'Pe': ['P'],
- 'Pi': ['P'], 'Pf': ['P'], 'Po': ['P'],
- 'Sm': ['S'], 'Sc': ['S'], 'Sk': ['S'], 'So': ['S'],
- 'Zs': ['Z'], 'Zl': ['Z'], 'Zp': ['Z'],
- 'Cc': ['C'], 'Cf': ['C'], 'Cs': ['C'], 'Co': ['C'], 'Cn': ['C'],
-}
-
-# Constants from Unicode 9.0.0 Section 3.12 Conjoining Jamo Behavior
-# http://www.unicode.org/versions/Unicode9.0.0/ch03.pdf#M9.32468.Heading.310.Combining.Jamo.Behavior
-S_BASE, L_COUNT, V_COUNT, T_COUNT = 0xAC00, 19, 21, 28
-S_COUNT = L_COUNT * V_COUNT * T_COUNT
-
-class UnicodeData(object):
- def __init__(self):
- self._load_unicode_data()
- self.norm_props = self._load_norm_props()
- self.norm_tests = self._load_norm_tests()
-
- self.canon_comp = self._compute_canonical_comp()
- self.canon_fully_decomp, self.compat_fully_decomp = self._compute_fully_decomposed()
-
- self.cjk_compat_variants_fully_decomp = {}
- self._load_cjk_compat_ideograph_variants()
-
- def stats(name, table):
- count = sum(len(v) for v in table.values())
- print("%s: %d chars => %d decomposed chars" % (name, len(table), count))
-
- print("Decomposition table stats:")
- stats("Canonical decomp", self.canon_decomp)
- stats("Compatible decomp", self.compat_decomp)
- stats("Canonical fully decomp", self.canon_fully_decomp)
- stats("Compatible fully decomp", self.compat_fully_decomp)
- stats("CJK Compat Variants fully decomp", self.cjk_compat_variants_fully_decomp)
-
- self.ss_leading, self.ss_trailing = self._compute_stream_safe_tables()
-
- def _fetch(self, filename):
- resp = urllib.request.urlopen(UCD_URL + filename)
- return resp.read().decode('utf-8')
-
- def _load_unicode_data(self):
- self.name_to_char_int = {}
- self.combining_classes = {}
- self.compat_decomp = {}
- self.canon_decomp = {}
- self.general_category_mark = []
- self.general_category_public_assigned = []
-
- assigned_start = 0;
- prev_char_int = -1;
- prev_name = "";
-
- for line in self._fetch("UnicodeData.txt").splitlines():
- # See ftp://ftp.unicode.org/Public/3.0-Update/UnicodeData-3.0.0.html
- pieces = line.split(';')
- assert len(pieces) == 15
- char, name, category, cc, decomp = pieces[0], pieces[1], pieces[2], pieces[3], pieces[5]
- char_int = int(char, 16)
-
- name = pieces[1].strip()
- self.name_to_char_int[name] = char_int
-
- if cc != '0':
- self.combining_classes[char_int] = cc
-
- if decomp.startswith('<'):
- self.compat_decomp[char_int] = [int(c, 16) for c in decomp.split()[1:]]
- elif decomp != '':
- self.canon_decomp[char_int] = [int(c, 16) for c in decomp.split()]
-
- if category == 'M' or 'M' in expanded_categories.get(category, []):
- self.general_category_mark.append(char_int)
-
- assert category != 'Cn', "Unexpected: Unassigned codepoint in UnicodeData.txt"
- if category not in ['Co', 'Cs']:
- if char_int != prev_char_int + 1 and not is_first_and_last(prev_name, name):
- self.general_category_public_assigned.append((assigned_start, prev_char_int))
- assigned_start = char_int
- prev_char_int = char_int
- prev_name = name;
-
- self.general_category_public_assigned.append((assigned_start, prev_char_int))
-
- def _load_cjk_compat_ideograph_variants(self):
- for line in self._fetch("StandardizedVariants.txt").splitlines():
- strip_comments = line.split('#', 1)[0].strip()
- if not strip_comments:
- continue
-
- variation_sequence, description, differences = strip_comments.split(';')
- description = description.strip()
-
- # Don't use variations that only apply in particular shaping environments.
- if differences:
- continue
-
- # Look for entries where the description field is a codepoint name.
- if description not in self.name_to_char_int:
- continue
-
- # Only consider the CJK Compatibility Ideographs.
- if not description.startswith('CJK COMPATIBILITY IDEOGRAPH-'):
- continue
-
- char_int = self.name_to_char_int[description]
-
- assert not char_int in self.combining_classes, "Unexpected: CJK compat variant with a combining class"
- assert not char_int in self.compat_decomp, "Unexpected: CJK compat variant and compatibility decomposition"
- assert len(self.canon_decomp[char_int]) == 1, "Unexpected: CJK compat variant and non-singleton canonical decomposition"
- # If we ever need to handle Hangul here, we'll need to handle it separately.
- assert not (S_BASE <= char_int < S_BASE + S_COUNT)
-
- cjk_compat_variant_parts = [int(c, 16) for c in variation_sequence.split()]
- for c in cjk_compat_variant_parts:
- assert not c in self.canon_decomp, "Unexpected: CJK compat variant is unnormalized (canon)"
- assert not c in self.compat_decomp, "Unexpected: CJK compat variant is unnormalized (compat)"
- self.cjk_compat_variants_fully_decomp[char_int] = cjk_compat_variant_parts
-
- def _load_norm_props(self):
- props = collections.defaultdict(list)
-
- for line in self._fetch("DerivedNormalizationProps.txt").splitlines():
- (prop_data, _, _) = line.partition("#")
- prop_pieces = prop_data.split(";")
-
- if len(prop_pieces) < 2:
- continue
-
- assert len(prop_pieces) <= 3
- (low, _, high) = prop_pieces[0].strip().partition("..")
-
- prop = prop_pieces[1].strip()
-
- data = None
- if len(prop_pieces) == 3:
- data = prop_pieces[2].strip()
-
- props[prop].append((low, high, data))
-
- return props
-
- def _load_norm_tests(self):
- tests = []
- for line in self._fetch("NormalizationTest.txt").splitlines():
- (test_data, _, _) = line.partition("#")
- test_pieces = test_data.split(";")
-
- if len(test_pieces) < 5:
- continue
-
- source, nfc, nfd, nfkc, nfkd = [[c.strip() for c in p.split()] for p in test_pieces[:5]]
- tests.append(NormalizationTest(source, nfc, nfd, nfkc, nfkd))
-
- return tests
-
- def _compute_canonical_comp(self):
- canon_comp = {}
- comp_exclusions = [
- (int(low, 16), int(high or low, 16))
- for low, high, _ in self.norm_props["Full_Composition_Exclusion"]
- ]
- for char_int, decomp in self.canon_decomp.items():
- if any(lo <= char_int <= hi for lo, hi in comp_exclusions):
- continue
-
- assert len(decomp) == 2
- assert (decomp[0], decomp[1]) not in canon_comp
- canon_comp[(decomp[0], decomp[1])] = char_int
-
- return canon_comp
-
- def _compute_fully_decomposed(self):
- """
- Even though the decomposition algorithm is recursive, it is possible
- to precompute the recursion at table generation time with modest
- increase to the table size. Then, for these precomputed tables, we
- note that 1) compatible decomposition is a subset of canonical
- decomposition and 2) they mostly agree on their intersection.
- Therefore, we don't store entries in the compatible table for
- characters that decompose the same way under canonical decomposition.
-
- Decomposition table stats:
- Canonical decomp: 2060 chars => 3085 decomposed chars
- Compatible decomp: 3662 chars => 5440 decomposed chars
- Canonical fully decomp: 2060 chars => 3404 decomposed chars
- Compatible fully decomp: 3678 chars => 5599 decomposed chars
-
- The upshot is that decomposition code is very simple and easy to inline
- at mild code size cost.
- """
- def _decompose(char_int, compatible):
- # 7-bit ASCII never decomposes
- if char_int <= 0x7f:
- yield char_int
- return
-
- # Assert that we're handling Hangul separately.
- assert not (S_BASE <= char_int < S_BASE + S_COUNT)
-
- decomp = self.canon_decomp.get(char_int)
- if decomp is not None:
- for decomposed_ch in decomp:
- for fully_decomposed_ch in _decompose(decomposed_ch, compatible):
- yield fully_decomposed_ch
- return
-
- if compatible and char_int in self.compat_decomp:
- for decomposed_ch in self.compat_decomp[char_int]:
- for fully_decomposed_ch in _decompose(decomposed_ch, compatible):
- yield fully_decomposed_ch
- return
-
- yield char_int
- return
-
- end_codepoint = max(
- max(self.canon_decomp.keys()),
- max(self.compat_decomp.keys()),
- )
-
- canon_fully_decomp = {}
- compat_fully_decomp = {}
-
- for char_int in range(0, end_codepoint + 1):
- # Always skip Hangul, since it's more efficient to represent its
- # decomposition programmatically.
- if S_BASE <= char_int < S_BASE + S_COUNT:
- continue
-
- canon = list(_decompose(char_int, False))
- if not (len(canon) == 1 and canon[0] == char_int):
- canon_fully_decomp[char_int] = canon
-
- compat = list(_decompose(char_int, True))
- if not (len(compat) == 1 and compat[0] == char_int):
- compat_fully_decomp[char_int] = compat
-
- # Since canon_fully_decomp is a subset of compat_fully_decomp, we don't
- # need to store their overlap when they agree. When they don't agree,
- # store the decomposition in the compatibility table since we'll check
- # that first when normalizing to NFKD.
- assert set(canon_fully_decomp) <= set(compat_fully_decomp)
-
- for ch in set(canon_fully_decomp) & set(compat_fully_decomp):
- if canon_fully_decomp[ch] == compat_fully_decomp[ch]:
- del compat_fully_decomp[ch]
-
- return canon_fully_decomp, compat_fully_decomp
-
- def _compute_stream_safe_tables(self):
- """
- To make a text stream-safe with the Stream-Safe Text Process (UAX15-D4),
- we need to be able to know the number of contiguous non-starters *after*
- applying compatibility decomposition to each character.
-
- We can do this incrementally by computing the number of leading and
- trailing non-starters for each character's compatibility decomposition
- with the following rules:
-
- 1) If a character is not affected by compatibility decomposition, look
- up its canonical combining class to find out if it's a non-starter.
- 2) All Hangul characters are starters, even under decomposition.
- 3) Otherwise, very few decomposing characters have a nonzero count
- of leading or trailing non-starters, so store these characters
- with their associated counts in a separate table.
- """
- leading_nonstarters = {}
- trailing_nonstarters = {}
-
- for c in set(self.canon_fully_decomp) | set(self.compat_fully_decomp):
- decomposed = self.compat_fully_decomp.get(c) or self.canon_fully_decomp[c]
-
- num_leading = 0
- for d in decomposed:
- if d not in self.combining_classes:
- break
- num_leading += 1
-
- num_trailing = 0
- for d in reversed(decomposed):
- if d not in self.combining_classes:
- break
- num_trailing += 1
-
- if num_leading > 0:
- leading_nonstarters[c] = num_leading
- if num_trailing > 0:
- trailing_nonstarters[c] = num_trailing
-
- return leading_nonstarters, trailing_nonstarters
-
-hexify = lambda c: '{:04X}'.format(c)
-
-# Test whether `first` and `last` are corresponding "<..., First>" and
-# "<..., Last>" markers.
-def is_first_and_last(first, last):
- if not first.startswith('<') or not first.endswith(', First>'):
- return False
- if not last.startswith('<') or not last.endswith(', Last>'):
- return False
- return first[1:-8] == last[1:-7]
-
-def gen_mph_data(name, d, kv_type, kv_callback, kv_row_width):
- (salt, keys) = minimal_perfect_hash(d)
- out.write(f"\npub(crate) const {name.upper()}_SALT: &[u16] = &[\n")
- for s_row in batched(salt, 13):
- out.write(" ")
- for s in s_row:
- out.write(f" 0x{s:03X},")
- out.write("\n")
- out.write("];\n")
- out.write(f"pub(crate) const {name.upper()}_KV: &[{kv_type}] = &[\n")
- for k_row in batched(keys, kv_row_width):
- out.write(" ")
- for k in k_row:
- out.write(f" {kv_callback(k)},")
- out.write("\n")
- out.write("];\n")
-
-def gen_combining_class(combining_classes, out):
- gen_mph_data('canonical_combining_class', combining_classes, 'u32',
- lambda k: f"0x{int(combining_classes[k]) | (k << 8):07X}", 8)
-
-def gen_composition_table(canon_comp, out):
- table = {}
- for (c1, c2), c3 in canon_comp.items():
- if c1 < 0x10000 and c2 < 0x10000:
- table[(c1 << 16) | c2] = c3
- (salt, keys) = minimal_perfect_hash(table)
- gen_mph_data('COMPOSITION_TABLE', table, '(u32, char)',
- lambda k: f"(0x{k:08X}, '\\u{{{table[k]:06X}}}')", 1)
-
- out.write("pub(crate) fn composition_table_astral(c1: char, c2: char) -> Option<char> {\n")
- out.write(" match (c1, c2) {\n")
- for (c1, c2), c3 in sorted(canon_comp.items()):
- if c1 >= 0x10000 or c2 >= 0x10000:
- out.write(" ('\\u{%s}', '\\u{%s}') => Some('\\u{%s}'),\n" % (hexify(c1), hexify(c2), hexify(c3)))
-
- out.write(" _ => None,\n")
- out.write(" }\n")
- out.write("}\n")
-
-def gen_decomposition_tables(canon_decomp, compat_decomp, cjk_compat_variants_decomp, out):
- tables = [(canon_decomp, 'canonical'), (compat_decomp, 'compatibility'), (cjk_compat_variants_decomp, 'cjk_compat_variants')]
- for table, name in tables:
- offsets = {}
- offset = 0
- out.write("pub(crate) const %s_DECOMPOSED_CHARS: &[char] = &[\n" % name.upper())
- for k, v in table.items():
- offsets[k] = offset
- offset += len(v)
- for c in v:
- out.write(" '\\u{%s}',\n" % hexify(c))
- # The largest offset must fit in a u16.
- assert offset < 65536
- out.write("];\n")
- gen_mph_data(name + '_decomposed', table, "(u32, (u16, u16))",
- lambda k: f"(0x{k:05X}, (0x{offsets[k]:03X}, 0x{len(table[k]):X}))", 1)
-
-def gen_qc_match(prop_table, out):
- out.write(" match c {\n")
-
- for low, high, data in prop_table:
- assert data in ('N', 'M')
- result = "No" if data == 'N' else "Maybe"
- if high:
- out.write(r" '\u{%s}'..='\u{%s}' => %s," % (low, high, result))
- else:
- out.write(r" '\u{%s}' => %s," % (low, result))
- out.write("\n")
-
- out.write(" _ => Yes,\n")
- out.write(" }\n")
-
-def gen_nfc_qc(prop_tables, out):
- out.write("\n#[inline]\n")
- out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
- out.write("pub fn qc_nfc(c: char) -> IsNormalized {\n")
- gen_qc_match(prop_tables['NFC_QC'], out)
- out.write("}\n")
-
-def gen_nfkc_qc(prop_tables, out):
- out.write("#[inline]\n")
- out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
- out.write("pub fn qc_nfkc(c: char) -> IsNormalized {\n")
- gen_qc_match(prop_tables['NFKC_QC'], out)
- out.write("}\n")
-
-def gen_nfd_qc(prop_tables, out):
- out.write("#[inline]\n")
- out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
- out.write("pub fn qc_nfd(c: char) -> IsNormalized {\n")
- gen_qc_match(prop_tables['NFD_QC'], out)
- out.write("}\n")
-
-def gen_nfkd_qc(prop_tables, out):
- out.write("#[inline]\n")
- out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
- out.write("pub fn qc_nfkd(c: char) -> IsNormalized {\n")
- gen_qc_match(prop_tables['NFKD_QC'], out)
- out.write("}\n")
-
-def gen_combining_mark(general_category_mark, out):
- gen_mph_data('combining_mark', general_category_mark, 'u32',
- lambda k: '0x{:05X}'.format(k), 10)
-
-def gen_public_assigned(general_category_public_assigned, out):
- # This could be done as a hash but the table is somewhat small.
- out.write("#[inline]\n")
- out.write("pub fn is_public_assigned(c: char) -> bool {\n")
- out.write(" match c {\n")
-
- start = True
- for first, last in general_category_public_assigned:
- if start:
- out.write(" ")
- start = False
- else:
- out.write("\n | ")
- if first == last:
- out.write("'\\u{%s}'" % hexify(first))
- else:
- out.write("'\\u{%s}'..='\\u{%s}'" % (hexify(first), hexify(last)))
- out.write(" => true,\n")
-
- out.write(" _ => false,\n")
- out.write(" }\n")
- out.write("}\n")
-
-def gen_stream_safe(leading, trailing, out):
- # This could be done as a hash but the table is very small.
- out.write("#[inline]\n")
- out.write("pub fn stream_safe_leading_nonstarters(c: char) -> usize {\n")
- out.write(" match c {\n")
-
- for char, num_leading in sorted(leading.items()):
- out.write(" '\\u{%s}' => %d,\n" % (hexify(char), num_leading))
-
- out.write(" _ => 0,\n")
- out.write(" }\n")
- out.write("}\n")
-
- gen_mph_data('trailing_nonstarters', trailing, 'u32',
- lambda k: f"0x{int(trailing[k]) | (k << 8):07X}", 8)
-
-def gen_tests(tests, out):
- out.write("""#[derive(Debug)]
-pub struct NormalizationTest {
- pub source: &'static str,
- pub nfc: &'static str,
- pub nfd: &'static str,
- pub nfkc: &'static str,
- pub nfkd: &'static str,
-}
-
-""")
-
- out.write("pub const NORMALIZATION_TESTS: &[NormalizationTest] = &[\n")
- str_literal = lambda s: '"%s"' % "".join("\\u{%s}" % c for c in s)
-
- for test in tests:
- out.write(" NormalizationTest {\n")
- out.write(" source: %s,\n" % str_literal(test.source))
- out.write(" nfc: %s,\n" % str_literal(test.nfc))
- out.write(" nfd: %s,\n" % str_literal(test.nfd))
- out.write(" nfkc: %s,\n" % str_literal(test.nfkc))
- out.write(" nfkd: %s,\n" % str_literal(test.nfkd))
- out.write(" },\n")
-
- out.write("];\n")
-
-# Guaranteed to be less than n.
-def my_hash(x, salt, n):
- # This is hash based on the theory that multiplication is efficient
- mask_32 = 0xffffffff
- y = ((x + salt) * 2654435769) & mask_32
- y ^= (x * 0x31415926) & mask_32
- return (y * n) >> 32
-
-# Compute minimal perfect hash function, d can be either a dict or list of keys.
-def minimal_perfect_hash(d):
- n = len(d)
- buckets = dict((h, []) for h in range(n))
- for key in d:
- h = my_hash(key, 0, n)
- buckets[h].append(key)
- bsorted = [(len(buckets[h]), h) for h in range(n)]
- bsorted.sort(reverse = True)
- claimed = [False] * n
- salts = [0] * n
- keys = [0] * n
- for (bucket_size, h) in bsorted:
- # Note: the traditional perfect hashing approach would also special-case
- # bucket_size == 1 here and assign any empty slot, rather than iterating
- # until rehash finds an empty slot. But we're not doing that so we can
- # avoid the branch.
- if bucket_size == 0:
- break
- else:
- for salt in range(1, 32768):
- rehashes = [my_hash(key, salt, n) for key in buckets[h]]
- # Make sure there are no rehash collisions within this bucket.
- if all(not claimed[hash] for hash in rehashes):
- if len(set(rehashes)) < bucket_size:
- continue
- salts[h] = salt
- for key in buckets[h]:
- rehash = my_hash(key, salt, n)
- claimed[rehash] = True
- keys[rehash] = key
- break
- if salts[h] == 0:
- print("minimal perfect hashing failed")
- # Note: if this happens (because of unfortunate data), then there are
- # a few things that could be done. First, the hash function could be
- # tweaked. Second, the bucket order could be scrambled (especially the
- # singletons). Right now, the buckets are sorted, which has the advantage
- # of being deterministic.
- #
- # As a more extreme approach, the singleton bucket optimization could be
- # applied (give the direct address for singleton buckets, rather than
- # relying on a rehash). That is definitely the more standard approach in
- # the minimal perfect hashing literature, but in testing the branch was a
- # significant slowdown.
- exit(1)
- return (salts, keys)
-
-if __name__ == '__main__':
- data = UnicodeData()
- with open("tables.rs", "w", newline = "\n") as out:
- out.write(PREAMBLE)
- out.write("use crate::quick_check::IsNormalized;\n")
- out.write("use crate::quick_check::IsNormalized::*;\n")
- out.write("\n")
-
- version = "(%s, %s, %s)" % tuple(UNICODE_VERSION.split("."))
- out.write("#[allow(unused)]\n")
- out.write("pub const UNICODE_VERSION: (u8, u8, u8) = %s;\n" % version)
-
- gen_combining_class(data.combining_classes, out)
-
- gen_composition_table(data.canon_comp, out)
-
- gen_decomposition_tables(data.canon_fully_decomp, data.compat_fully_decomp, data.cjk_compat_variants_fully_decomp, out)
-
- gen_combining_mark(data.general_category_mark, out)
-
- gen_public_assigned(data.general_category_public_assigned, out)
-
- gen_nfc_qc(data.norm_props, out)
-
- gen_nfkc_qc(data.norm_props, out)
-
- gen_nfd_qc(data.norm_props, out)
-
- gen_nfkd_qc(data.norm_props, out)
-
- gen_stream_safe(data.ss_leading, data.ss_trailing, out)
-
- with open("normalization_tests.rs", "w", newline = "\n") as out:
- out.write(PREAMBLE)
- gen_tests(data.norm_tests, out)